GEODYNAMICAL PHENOMENA:

Melt segregation and matrix compaction: closed governing
equation set, numerical models, applications
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Partially molten systems are commonly mode-
led as an interpenetrating flow of two viscous liquids
and are therefore described in terms of fluid me-
chanics [Drew, 1983; McKenzie, 1984; Nigmatulin,
1990]. In the gravitational field a liquid filling a vis-
cous permeable porous matrix is in mechanical
equilibrium only if its pressure gradient is equal to
the hydrostatic one, and the pressures of the liquid
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and matrix are the same. If the liquid and matrix
densities differ, with the liquid forming an intercon-
nected network, the two conditions cannot be sa-
tisfied simultaneously, and the liquid segregates from
the matrix while the latter compacts. The averaged
momentum and mass conservation equations for a
multi-phase medium are formulated separately for
every phase. Considering the energy conservation
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equation, this results in 4N+1 equations for a N-
phase medium while the number of unknowns is 5N
(3N velocity components, N pressures, temperature,
and N-1 independent phase fractions). Therefore,
for the problem to be fully determined it becomes
necessary to add N—1 coupling equations. Khazan
(2010; on review at GJI) and Khazan and Aryasova
(Rus. Earth Phys., 2010, in press) derived a gener-
al equation (the mush continuity equation, MCE)
closing the governing equation set. Its simplified 1D
form valid for a two-phase system in the case of
low-melt-fraction mush and linear matrix rheology,
together with equation describing the rate of the ine-
lastic porosity change [Scott, Stevenson, 1986], con-
stitute a closed subset of governing equation set:

—Ang:(ppl_pm,
n

9 k(@) 9(PI = Pm)
Jz 0z

aﬁ P — Pm (1)

ot N

where p,, and p,, are the melt and matrix pressure,
respectively, ¢ is the melt fraction or porosity,
k(p)e<@" is the matrix permeability, Ap=p,—p; is the
difference between the matrix, p,, and melt, p,, den-
sities, n and u are matrix and melt viscosities, cor-
respondingly, n=2 to 3, gis acceleration due to gra-
vity; Z axis points upward. Let L be the thickness of
the partially molten zone, and ¢, be the maximum
of the initial porosity distribution. In terms of dimen-

sionless coordinate {=7/L, time t=tApgL/M, melt
overpressure IT = (p—pm)/Apgl, and porosity y=¢/@,
the equations may be written as
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vc.and 9§, are referred to as the compaction/segrega-
tion parameter and length, respectively. If coordinate
is normalized by the compaction length, the first of
Egs. (2) does not contain y.[Gregoire et al., 2006] but
it appears instead in the boundary conditions.

In what follows two characteristic situations re-
ferred to as segregation and compaction are con-
sidered. The former is a model of the evolution of a
bounded partially molten zone. Its outer boundary
coincides with solidus where the porosity and pres-
sure difference vanish. The boundary and initial con-
ditions are TI(t,0) =TI(t,) =0, ¢(0,8)=4L@1-0).
For compaction (of bottom sediments, e. g.), it is
assumed that the bottom is impermeable, and po-
rosity at =0 is the same throughout the layer, so
that: dIl(t,000 =1, I1(t,)) =0, y(0,{) =1.

The solutions to Egs. (2) are shown in Fig. 1 for
segregation, and Fig. 2 for compaction. One may
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Fig. 1. Evolution of porosity y(t, {) at segregation: a —v, = 102 b —vy, = 10°, ¢ — at y.— Egs. (2) reduce to I1=0, dy/0{e=
=-dy"/0{ with u being a formally introduced time variable 8 = y.t. Note that the first and the second waves at t = 150 (b,
inset) contain 57 and 13 % of the melt, respectively, with the rest of the melt residing in the tail.
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Fig. 2. Compaction of the bottom sediments at: a — vy, = 0,
b—vy.=1¢c—y. =10, d — y.= 10* (n = 3).

see from Fig. 1 that at low &_practically all the melt
segregates to the roof with amplitude of the porosi-
ty growing with time (Fig. 1, a). The pressure gra-
dient remains hydrostatical in the enriched layer and
evolves to zero in the low-melt fraction tail. At high
v. (Fig. 1, b) a wave structure develops with the
dimensionless pressure being generally low and sigh
reversible, and a significant part of the melt remai-
ning trapped in the tail. The case y. = - (Fig. 1, ¢)
corresponds to I1=0 (or p, = p,). The porosity ampli-
tude remains the same (i. e. no segregation occurs),
and it takes dy/dC a finite time to reach the -8 im-
plying a numerical instability, which is absent from
the finite y. models. The variation of porosity while
a liquid is expulsed from a compacting porous layer
(Fig. 2) is similar to that at segregation indicating
that a property to generate a wave-like structure
becomes more pronounced with increasing v, i. €.
at high melt viscosity. A large pluton layering [Wa-
ger, Brown, 1968] may be due to this wave struc-
ture, which is supported by the observation [Brown,
1973] that layered intrusions are commonly intru-
sions of a tholeiitic basalt while those of the alkali
basalt parentage are rare, which may be due sim-
ply to about an order higher viscosity of the tholeitic
magmas.

The dependence of characteristic compaction,
T. and segregation, T, times on v, , is shown in
Fig. 3.Indimensional variables an approximate fit
to these results may be written as follows:
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where V;, is the Darcy’s velocity. The L™ scaling of
the compaction/segregation times at low v, effec-
tively constrains the thickness of compacting po-
rous sediments as well as the maximum possible
thickness of the partially molten zone. Really, if the
mushy layer thickness increases gradually, due to,
for instance, sedimentation with a rate of rythen the
steady sediment thickness, L4, may be estimated
as Ly/rq=t.wherefrom Ly =1.7\/nrq /Apg . Similar-
ly, let a protokimberlite melt result from a decom-
pression melting of a diapir floating at a velocity V4
with its temperature varying along an adiabate. The
melting starts when the diapir top reaches the inter-
section level of the adiabate and solidus, and ma-
ximum possible thickness of the molten zone, L,
may be estimated as Lg= =4.5/nVy/Apg . The
estimates of Ly and L, are valid if y.>>2 for the
compaction problem or y.>>80 for a segregation
one. Also, Darcy’s velocity is to be large, namely
Vp >>ry at compaction and Vp>>0.25V; at segrega-
tion. These estimates relate to an evolution of a
porous layer filled with a low viscosity liquid, and
may be used to estimate, for instance, a steady
thickness of porous marine sediments, or a maxi-
mum possible thickness of a partially molten zone
filled with a low viscosity magma (kimberlite, car-
bonatite) at the moment of segregation. To illustrate
the latter case, adopt the following parameter va-
lues: n = 10" Pas, Ap = 100 kg-m™3, V4= 3 cm-y ™,
k(p)=a%p%270 [Wark et al., 2003], grain size
a=1mm, @,=0.01, u = 0.1 Pas. Then compaction/
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segregation length 8.=6 km, V4= 30 cm-y?,
ts=0.2 My, Ls=8 km, y. =1.7. As soon as melt seg-
regates, new partially molten zone grows, and the
sequence of the events repeats until the whole dia-
pir passes by the melting level. A diapir size, D,
can be estimated based upon diameters D =20 to
80 km of low-amplitude uplifts known to correlate
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