О Р Л Ю К
Михаил Иванович

МАГНИТНАЯ МОДЕЛЬ ЗЕМНОЙ КОРЫ ЮГО-ЗАПАДА ВОСТОЧНО-ЕВРОПЕЙСКОЙ ПЛАТФОРМЫ

04.00.22 - Геофизика

dиссертация на соискание ученой степени доктора геолого-минералогических наук

К И Е В - 1999
Содержание работы

Оглавление... 2 - 4

Введение ... 5 - 15

1. Краткий экскурс в историю исследований....................... 16 - 31

2. Магнитоминералогическое, петрологическое и тектоническое обоснование магнитной модели литосферы................................. 31 - 55
 2.1. Магнитные минералы земной коры.......................... 31 - 37
 2.2. Прогноз намагниченности в термодинамических условиях земной коры ... 37 - 43
 2.3. Петролого-тектонические условия формирования и существования источников магнитных аномалий ... 43 - 55

3. Методика построения магнитных моделей земной коры... 55 - 122
 3.1. Выделение региональной компоненты аномального магнитного поля (ΔТ)... 63 - 77
 3.2. Анализ взаимосвязи региональной компоненты аномального магнитного поля с основными физико-петрологическими границами и выбор начального приближения... 78 – 88
 3.3. Теоретические магнитные модели палеорифтов и субдукционно-обдукционных зон как первоначальные приближения для построения и истолкования магнитных моделей коры................................. 88 - 109
3.4. Методика построения магнитной модели континентальной коры.. 109 - 122

4. Разномасштабные магнитные модели земной коры юго-запада Восточно-Европейской платформы... 123 - 196
 4.1. Магнитная модель юго-запада Восточно-Европейской платформы .. 124 - 152
 4.2. Трехмерная магнитная модель земной коры запада Украины... 153 - 166
 4.3. Трехмерная магнитная модель Днепровско-Донецкого авлакогена.. 167 - 182
 4.4. Пространственно-временная (четырехмерная) магнитная модель земной коры территории Украины... 183 - 196

5. Обобщенная петромуagnetная характеристика литосферы Земли.. 197 - 208

6. Истолкование разномасштабных магнитных моделей... 208 - 260
 6.1. Интерпретация магнитной модели юго-запада Восточно-Европейской платформы (Курско-Прибалтийской аномалии Магсат).. 209 - 221
 6.2. Геолого-тектоническая интерпретация магнитной модели земной коры Запада Украины.. 222 - 242
 6.3. Геолого-тектоническая интерпретация магнитной модели Днепровско-Донецкого авлакогена.. 243 - 260
7. Природа и эволюция глубинных магнитных источников... 261 – 271

8. Нефтегазоносность земной коры территории Украины в связи с ее намагниченностью... 271 - 341

 8.1. Структура, состав и намагниченность осадочного чехла Днепровско-Донецкой впадины ... 273 - 299

 8.1.1. Структура осадочного чехла Днепровско-Донецкой впадины .. 273 - 276

 8.1.2. Морфологические типы и генезис локальных структур осадочного чехла... 276 - 280

 8.1.3. Магнитные свойства осадочных образований...280 - 299

 8.2. Теоретические и экспериментальные предпосылки взаимосвязи путей миграции и месторождений углеводородов... 299 - 313

 8.3. Региональный прогноз нефтегазоносности земной коры территории Украины... 314 - 317

 8.4. Прогнозирование локальных нефтегазоносных структур.. 318 - 341

 8.4.1. Магнитные модели типовых локальных нефтегазоносных структур... 319 - 328

 8.4.2. Магнитная модель Селюховской структуры...............329 - 337

 8.4.3. Обсуждение результатов интерпретации......................337 - 341

Заключение.. 342 - 350

Список использованной литературы...351 - 389
Введение

Изучение строения и эволюции земной коры и верхней мантии является одной из важнейших задач наук о Земле. Ее постановка отражает растущую заинтересованность и общественное признание необходимости глубинных исследований Земли как теоретической базы для решения следующих научных задач:

а) регионального прогнозирования и поиска месторождений полезных ископаемых, как материальных базовых элементов развития общества;

б) оценки мест возможного возникновения землетрясений в областях, где за последний исторический период они не проявлялись и их влияния в пунктах размещения атомных станций, крупных предприятий, городов и других важных народнохозяйственных объектов;

в) изучение пространственно-временных закономерностей базовых и вариационных величин геофизических полей окружающей среды для решения ряда прикладных задач геофизической экологии.

В разномасштабных магнитных моделях литосферы находят отражение ее структура и пространственное распределение формирующих ее петромагнитных типов пород. Последние несут информацию о составе, термодинамических и окислительно-восстановительных условиях их образования и дальнейшего преобразования. Работами З.А. Крутиховской с соавторами (1982, 1985, 1986 гг. и др.) продемонстрирована высокая эффективность геомагнитного метода и двумерного моделирования земной коры Украинского щита (УЩ) для изучения его строения, развития и металлологенической специализации. Трехмерное магнитное моделирование
разномасштабных и разнотипных структур земной коры Восточно-Европейской платформы, в совокупности с другими геомагнитными и геолого-геофизическими данными, позволяет выяснить их глубинное строение, эволюцию и разработать геомагнитные критерии нефтегазоносности земной коры.

Кроме самостоятельного решения геомагнитных, геологических и прогнозных задач результаты трехмерного моделирования являются существенной необходимой частью для построения комплексных геофизических моделей земной коры.

Построение комплексной геофизической модели литосферы возможно только при использовании данных нескольких методов, позволяющих более обоснованно перейти от геофизических моделей в виде распределения физических параметров разреза земной коры и ее структурных форм к прогнозу вещественного состава глубинных зон литосферы. Перед автором в связи с этим стояла непростая задача обоснования и демонстрации возможностей метода магнитометрии в целом, и трехмерного магнитного моделирования в частности для изучения глубинного строения земной коры, эволюции литосферы, регионального и локального прогноза месторождений полезных ископаемых.

Так как геологическое истолкование магнитного поля лишь на основании общих интерпретационных принципов является малоэффективным, решение обратной задачи магниторазведки должно осуществляться в соответствии с основными принципами интерпретации согласно В.Н. Страхова: модельности, оптимальности и целесообразности, т.е. с максимальным привлечением априорных данных, созданием теоретических структурно-
генетических моделей изучаемых объектов и истолкованием построенных моделей в комплексе с данными других геолого-геофизических методов.

Занимаясь исследованиями многих аспектов геомагнетизма, в частности микромагнитным картированием даек и дайковых поясов, комплексированием микромагнитных и биолокационных исследований с целью познания сущности биолокации и явления магнетизма, исследованием вариаций аномального магнитного поля районов региональных магнитных аномалий и вблизи АЭС, изучением магнитной восприимчивости и намагниченности пород путем непосредственных экспериментальных измерений и т. д.. Главной сферой интересов автора на протяжении всей научно-производственной деятельности было и остается построение магнитных моделей коры и их истолкование с целью познания строения, эволюции земной коры и прогнозирования полезных ископаемых. Решению этой важной для научно-хозяйственного комплекса Украины задачи и посвящена диссертационная работа.

Цель работы — построение разномасштабных магнитных моделей структур земной коры юго-запада Восточно-Европейской платформы и окружающих регионов, а также их истолкование в комплексе с другими геолого-геофизическими данными для установления на их основе закономерностей строения, вещественного состава, эволюции земной коры и мелкомасштабного прогнозирования полезных ископаемых.

Основные задачи исследований.

1. Петромагнитное обоснование магнитной модели континентальной коры: рассмотрение магнитных минералов коры и выяснение их роли в намагниченности глубинных слоев земной коры; изучение петролого-
тектоначеских и геохимических аспектов образования и существования источников региональных магнитных аномалий.

2. Усовершенствование методики построения трехмерных магнитных моделей континентальной коры разных масштабов: выделение региональной компоненты, связанной с глубинными горизонтами земной коры; анализ взаимосвязи региональной компонента с физико-петрологическими границами земной коры, обоснование выбора нижнего ограничения магнитоактивной толщи и начального приближения для моделирования глубинных источников; оптимизация процесса построения магнитной модели с учетом перечисленных пунктов.

3. Построение трехмерной магнитной модели земной коры Восточно-Европейской платформы (м-б I: 5 000 000); ее юго-западной половины, соответствующей району Курско-Прибалтийской аномалии МАГСАТ (м-б I: 2 500 000); западной части Украинского щита и смежных районов в полосе геотрансекта "Евробридж", Диепровско-Донецкого авлакогена (м-б 1 : 500 000); пространственно-временной (эволюционной) магнитной модели земной коры территории Украины.

4. Петромагнитная характеристика образований, формирующих земную кору, на основании результатов моделирования и независимых петромагнитных исследований. Выделить петромагнитные типы, характеризующиеся определенным составом и намагниченностью.

5. Геолого-тектоническое истолкование построенных магнитных моделей с учетом данных других геолого-геофизических методов: связь распределения магнитных неоднородностей коры и ее петромагнитных типов со строением, вещественным составом и эволюцией литосферы Земли.
6. Рассмотрение с учетом совокупности всех геолого-геофизических данных природы и эволюции глубинных магнитных источников.

7. Методика регионального и локального прогнозирования нефтегазоносности земной коры с использованием геомагнитных данных: взаимосвязь нефтегазоносности коры и магнитных неоднородностей; намагниченность консолидированной коры и осадочного чехла; построение типовых магнитных моделей нефтегазоносных структур; механизм взаимосвязи нефтегазоносности коры и намагниченности: возможность регионального и локального прогноза.

8. Выделение преимущественно нефтяных, нефтегазовых и газовых районов в пределах нефтегазоносных областей и провинций территории Украины в свете комплекса магнитных и других геолого-геофизических глубинных критериев.

Научная новизна.

1. Все возможное многообразие петромуagnetных разрезов литосферы сведено к четырем петромуagnetным типам: ультрамафит-мафитовому, фемическому, сиальмафическому и сиалическому. Ультрамафит-мафитовый и фемический петромуagnetные типы органически связаны и присущи ранним стадиям развития коры. На более поздних этапах развития они приурочены к структурам режимов растяжения земной коры. Сиальмафический и сиалический петромуagnetные типы присущи структурам режима сжатия земной коры и характеризуются существенно гранитоидным составом.

2. Выделена региональная компонента аномального магнитного поля юго-запада Восточно-Европейской платформы и отдельных ее частей, которая не объясняется влиянием источников верхней части коры до глубин
10-15 км. Решение обратной задачи магнитометрии разными методами показывает приуровненность источников региональных магнитных аномалий с длинами волн от 100 до 350 км с средним и нижним частям земной коры. Эффективная намагниченность при этом не превышает первых амперов на метр.

3. Усовершенствованная методика построения трехмерных магнитных моделей континентальной земной коры предусматривает максимальное использование в качестве априорных, данных о глубинах залегания основных разделов земной коры по данным сейсмических исследований и сведений о намагниченности пород, представителей разных горизонтов коры. В качестве первоначальных приближений для интерпретации региональных магнитных аномалий и истолковании их природы предлагается использовать теоретические магнитные модели палеорифтов и островных дуг.

4. Построенные двухмерные и трехмерные разномасштабные магнитные модели земной коры Восточно-Европейской платформы, запада Украинского щита и Днепровско-Донецкого авлакогена свидетельствуют о вертикальной и латеральной неоднородности в распределении магнитных образований. Магнитная модель Восточно-Европейской платформы удовлетворяет региональную компоненту аномального магнитного поля на поверхности Земли и аномалии МАГСАТ.

5. На количественном уровне показана обусловленность аномалий МАГСАТ суперпозицией источников регионального класса. В пределах платформы выделены Курско-Прибалтийский, Северо-Скандинавский и Камско-Эмбенский сегменты, отличающиеся повышенной насыщенностью источниками с поперечными размерами 40-150 км и намагниченностью 1.0-
4.0 А/м, а также Санкт-Петербургский и Прикаспийский - с минимальной насыщенностью коры магнитными источниками.

6. Магнитные модели запада Украинского щита, Днепровско-Донецкого авлакогена и пространственно-временная (эволюционная) магнитная модель земной коры территории Украины показывают цикличность формирования магнитных неоднородностей.

7. Изучение природы и эволюции глубинных магнитных источников позволили предложить дна механизма их образования - рифтовый и субдукционный. Первый механизм образования - это насыщение корымагматическими образованиями основного и среднего состава (при благоприятных для реализации железа в виде ферро-ферримагнитных минералов окислительно-восстановительных условиях) на стадии преобладающего растяжения земной коры в зонах рифтов, палеорифтов и зон тектоно-магматической активизации. Такие источники образуются на ранних стадиях развития крупных тектоно-магматических циклов и они являются первичными по сравнению с источниками, формирующимися в результате субдукционного механизма. Субдукционный механизм образования глубинных магнитных неоднородностей двойственный: с одной стороны это поддвиг магнитной коры под немагнитную, а с другой - переплавление субдуктированной коры с насыщением верхней части разреза соответствующими образованиями по первому механизму.

8. Образование исходного органического вещества, миграция и накопление углеводородов в земной коре тесно взаимосвязаны с разновозрастными магнитными образованиями земной коры. Это позволило выполнить региональный прогноз нефтегазоносности земной коры
территории Украины и показать на примере Центральной депрессии Днепровско-Донецкой впадины возможность использования детальных магнитных моделей нефтегазоносных структур для локального прогноза.

Практическая ценность работы предопределена тем, что построенные магнитные модели структур земной коры разных рангов вносят существенный вклад в соответствующие обобщенные геолого-геофизические модели, отображающие строение и развитие земной коры и являющиеся необходимой основой при прогнозировании состава глубинных частей, мелкомасштабном прогнозировании размещения полезных ископаемых и решении задач экологической геофизики. Весьма важным для геотектонического районирования является вывод о глубинной природе источников положительных региональных магнитных аномалий Восточно-Европейской платформы, их обусловленности магматическими и метаморфическими комплексами основного и среднего состава, сформировавшихся в определенных временных интервалах, соответствующих эпохам преобладающего растяжения земной коры, приуроченных к начальным (ранним) стадиям крупных тектономагматических циклов.

Вторым моментом практической ценности исследований является установление структурно-генетической взаимосвязи нефтегазоносности земной коры с ее магнитной неоднородностью, что в сочетании с другими геолого-геофизическими критериями с успехом может быть использовано при региональном и локальном прогнозе в нефтегазоносных областях и провинциях.
Реализация результатов. Результаты автора используются производственными организациями при составлении тектонических и геолого-структурных карт Украины, при глубинном тектоническом районировании и прогнозировании полезных ископаемых. К таковым относятся "Рекомендации по направлению поиска алмазов на Украинском щите и сопредельных территориях с использованием региональных магнитных аномалий" (авторы З.А.Крутиховская, С.Г.Слоницкая, М.И.Орлюк) принятых Министерством геологии Украины в 1985г. За работу "Магнитная модель и изучение строения литосферы и связи с исследованием развития земной коры и ее металлогенической специализации" автор удостоен бронзовой медали ВДНХ СССР. Исследования автора вошли составными частями в ряд отчетов производственных организаций. В настоящее время в тесном контакте с нефтяными производственными организациями под руководством автора выполняется проект по линии ГКНТПП Украины "Построение и анализ трехмерной магнитной модели земной коры Днепровско-Донецкой впадины в связи с глубинными разломами и прогнозированием нефегазоносности".

Аппробация работы и публикации. Основные положения выполненной работы докладывались и обсуждались на международном совещании по линии 1.6.3 КАПГ (Киев,1979); симпозиуме "Актуальные проблемы геомагнитных исследований" (Nimegk, 1980); Всесоюзном совещании по комплексной интерпретации (Суздаль, 1981), II, III и IV Всесоюзных съездах по Геомагнетизму (Тбилиси, 1981; Киев-Ялта, 1986; Суздаль, 1990); VII конференция молодых геофизиков Украины (Киев, 1982); рабочем совещании "Исследование региональных магнитных аномалий платформенных

Результаты исследований изложены в 73 публикациях и 7 отчетах, а основные положения диссертации опубликованы в 40 изданиях. Из опубликованных работ 20 написано автором лично (из них, 12 статей в журналах и сборниках, 8 тезисов международных съездов, симпозиумов и конференций), а 53, включая 6 монографий, в соавторстве.

Структура и объем работы. Диссертация состоит из введения, семи глав, заключения и списка литературы из 404 наименований. Объем работы 260 страниц чистого текста и рисунка.

Фактический материал и личный вклад автора. Диссертационная работа выполнена в Институте геофизики им.С.И.Субботина НАН Украины в лаборатории аномального магнитного поля (зав.лабораторией - И.К.Пашкевич) отдела комплексной интерпретации потенциальных полей (зав.отдела –
С.С.Красовский). Я особо благодарен покойной ныне З.А.Крутиховской за ту роль, которую она сыграла в становлении автора как ученого, и в определении сферы научных интересов. В дальнейшем большое влияние на творческую и научную деятельность оказывала и оказывает в настоящее время соавтор большинства публикаций И.К.Пашкевич, которой автор искренне признателен за постоянное внимание, и поддержку, оказанную ее при выполнении работы.

Влияние на работу оказали постоянные очные и заочные контакты автора с ведущими магнитологами и специалистами смежных областей геологии и геофизики Украины и России, а в последнее время ряда зарубежных стран. Среди них следует отметить сотрудников отдела геомагнетизма А.Н.Третьяка, В.Н.Завойского, И.Н.Иващенко, Ю.Е.Неижсала, Н.П.Михайловой, А.М.Глевасской и ученых других отделов Института геофизики НАН Украины - Е.Г.Булаха, В.С.Гейко, О.Б.Гинтова, В.В.Гордиенко, В.Г.Гутермана, В.А.Дядюры, Т.В.Ильченко, В.Г.Козленко, П.П.Корчагина, С.С.Красовского, Р.И.Кутаса, Т.С.Лебедева, Г.К.Лоссовского, С.В.Мостового, Ю.П.Оровецкого, В.И.Старостенко, А А.Трипольского, О.М.Харитонова, А.В.Чекунова, В.Н.Шумана и других. На совещаниях разного уровня автор имел творческие и рабочие контакты с Г.Я.Голиздрой, А.М.Городницким, В.М.Березкиным, Г.И.Каратаевым, В.Н.Луговенко, Д.М.Печерским, В.Н.Страховым, способствовавшими усилению отдельных положений диссертационной работы. Кроме того, автор считает своим приятным долгом выразить благодарность Ю.В.Смирнову и Р.Н.Ярошенко за расчеты на ЭВМ, а В.А.Моченой и Т.А.Сикан за помощь в оформлении работы.
1. Краткий экскурс в историю исследований.

Привлечение магнитометрических данных для изучения строения земной коры началось в 20-30 годы в связи с разведкой и освоением железорудных месторождений Курска и Кривого рога. Чуть позже (1937г.) появилась работа Т.Н.Розе (в дальнейшем Т.Н.Симоненко) “Региональные магнитные аномалии Украины и их связь с геотектоникой” которую можно считать первой, из известных автору, работой, направленной на выяснение взаимосвязи магнитного поля с тектоническим районированием территории Украины и являющуюся своего рода “предтечей” послевоенных исследований и предствляемой диссертации [269]. В конце 50-х — начале 60-х годов уже широко проводятся исследования направленные на изучение природы магнитных аномалий разных классов и познания с их помощью закономерностей строения земной коры, в том числе глубинных ее горизонтов. Результаты этих исследований изложены в работах Л.В. Булиной [27, Ф.Л.Булмасова [31], Б.Д. Винц, В.И.Почтарева [42], В.Э.Волка [46], А.Г.Гайнанова, О.Н.Соловьова [50,51], Р.М.Деменицкой [96], Г.И.Каратаева [127], И.Г.Клушина, Н.И.Толстихина [136], З.А.Крутиховской, В.Н.Завойского, С.М.Подолянко, Б.Я.Савенко [149], Г.К.Кужелова [158], А.А.Логачева [176], Н.Н.Михайлова [202], Г.Г.Орлова [217], Т.Н.Симоненко [275], М.Ф.Скопиченко [280], Н.К.Ступака, К.Ф.Тяпкина [292], С.И.Субботина [293,294], Ф.С.Файнберга, А.С.Семенова [314], В.В.Федынского [317], R.G.Mason, A.D. Raff [372], F.I.Vine, D.H.Mattheus [400], I.Zietz, A.Griscom [403] и многих других.

В дальнейшем активное участие в исследовании связи аномального магнитного поля с вещественным составом и глубинной структурой земной
коры принял широкий круг советских и зарубежных геофизиков. Среди них следует отметить работы Б.А. Андреева, М.С. Рябковой [5], Т.Н. Аргутиной [6], Н.Г. Берлянд, В.С. Цирель [15, 16], А.А. Борисова, Г.И. Кругляковой, Д.Б. Фирсовой [21, 22], Л.В. Булиной, М.С. Рябковой [28-30], В.В. Гордиенко с соавторами [32, 34, 78], Р.В. Былинского с соавторами [35], А.Н. Василевского, Л.В. Витте [39, 40, 43], В.Э. Волка, С.С. Иванова, В.Н. Шимараева [47, 338], Р.А. Гафарова [56], О.Б. Гинтова, В.Н. Голуба [66], В.Н. Глазнева, В.Т. Филатовой [68], И.В. Головина и Б.В. Петрова [76, 77], К.А. Гуры [88], Б.Л. Гуревич, М.Г. Распоповой [90-91], В.М. Завойского [109-111], В.Н. Зандера, Ю.И. Томашунаса, А.Н. Берковского с соавторами [114], И. Зитца, Э. Кинга [117], В.И. Клушина [135], В.Г. Козленко [138], В.И. Колесовой, А.А. Петровой, В.И. Почтарева, М.А. Эфендиевой, Д.П. Голуба [123, 139, 261], Е.В. Кочергина, Ю.А. Павлова, К.Ф. Сергеева [141], З.А. Крутиховской, И.К. Пашкевич, И.М. Силиной, С.М. Подолянко, М.И. Орлюка, С.В. Елисеевой [151-157, 218-222, 240-245 и др.], Г.Ф. Кузнецова [159], В.Н. Луговенко, Б.А. Матушкина [178, 179, 193], Л.С. Нагайцевой, И.В. Запорожцевой [198], М.П. Новоселовой [120], А.И. Пильчина, Б.Э. Хесина [252], Б.Н. Писакина, А.А. Прияткина [253], А.Л. Пискарева [254], Г.А. Поротовой, М.С. Сипаковой [259, 260, 279], А.С. Семенова [274], Т.Н. Симоненко [276-278], А.П. Таркова [296], К.Ф. Тяпкина, Т.Т. Кивелиука [313], Н.В. Федоровой, В.А. Шапиرو, Ф.И. Никоновой [315, 316, 336], А.Я. Яроша [344], L.R. Alldredge [346], E. Berdagot, H. Dreyer [349], В.К. Bhattacharyya, L.-K. Leu [350], C. Charles, C. Schnetzler and Richard J. Allendy [353], R.L. Coles et al. [355], D.J. Dunlop, M. Prevout [356], D. Dyrelius [357], Elming Sten-Ake, Torne A. [359], A. Hahn et al. [362, 377], I.R. Heitzler, X. Pichon, J.G. Baron [364], L.H. Hall [365], J. Masin [371], I.W. Morley [375], W. Mundt [376], R. P. Riddichough [389], G. Rother [390],

Особого внимания заслуживают специальные работы по составлению магнитной модели Украинского щита с широким использованием данных других геофизических и геологических методов, осуществленных в Институте геофизики им. С. И. Субботина АН УССР под руководством З.А.Крутиховской [147-150]. Этим же коллективом написана первая в мире монография, посвященная вопросам связи магнитного поля с глубинным строением земной коры [155].

Начиная с 60-х годов Е.Г.Булахом [24, 25], Л.В.Булиной [27-29], В.Э.Волком, С.С.Ивановым, В.Н.Шимараевым [46, 47, 338], К.А.Гурой [87, 88], В.Н.Завойским, И.Н.Иващенко, Ю.Е.Неижсалом [107, 108, 112], М.С.Зейгельманом [116], Г.И.Каратаем, И.К.Пашкевич, А.В.Черным, Ю.М.Гусевым [127-130], Н.Н.Михайловым [202], К.И.Соколовским [284], В.И.Старостенко, А.Г.Манукяном, А.Н.Заворотько [288], В.Н.Страховым [289], К.Ф.Тяпкиным, Г.Я.Голиздрой [309, 312], А.В.Цирульским с соавторами [7] и многими другими разработаны эффективные методики количественной интерпретации аномалий магнитного поля с последующей статистической обработкой полученных результатов при анализе глубинного строения различных регионов.

Ценный вклад в общее направление подобных работ представляют результаты петрологических и петромагнитных исследований, являющиеся априорными на начальном этапе построения магнитной модели и оптимизирующими получаемые решения на завершающей стадии. Большой вклад в развитие этого направления внесли И.И.Абрамович, И.Г.Кlushин [1], Ю.С.Геншафт, А.В.Лыков, Д.М.Печерский [58-59, 181, 256-258], Д.Грин,
А.Рингвуд [85, 268], Н.Б.Дортман [102, 103, 318, 319], В.Н.Завойский, В.С.Марковский [111, 191, 192], З.А.Крутиховская, Б.Я.Савенко, И.К.Пашкевич, И.М.Силина [149, 153, 155], Т.С.Лебедев, Ю.П.Оровецкий [166], Ю.П.Мельник, Ю.М.Стебновская [196], Е.А.Назарова [209, 210], А.В.Сухорада [183], М.И.Толстой с соавторами [301], В.Н.Трухин [307], Т.Д.Донован et al. [357], С.Е.Хаггерт [361], М.А.Мейхью [369], Н.П.Михайлова, С.Н.Кравченко [373], Дж. Шимизу [393], и многие другие.

Среди работ по интерпретации аномального магнитного поля в связи с глубинным строением земной коры и верхней мантии З.А.Крутиховской намечено три главных направления [147]:

1) Выделение региональной составляющей аномального магнитного поля;

2) Исследование распределения намагниченных тел в разрезе коры путем вычисления их верхних и нижних кромок и составление геомагнитных разрезов;

3) Изучение корреляционной связи магнитного поля с сейсмическими границами.

К этим трем направлениям добавляется четвертое — изучение предельных глубин существования намагниченных образований с физической и петрологической точек зрения, т.е. до каких глубин могут существовать ферримагнитные минералы — носители намагниченности — как акцессорные или вторичные минералы определенных типов пород и на каких глубинах они ее теряют в условиях термодинамического режима коры.

1. Существует много способов выделения региональных магнитных номалий, но к настоящему времени самыми распространенными являются:
пересчет поля в верхнее полупространство, скользящее осреднение и редукция эффекта верхней части коры решением прямой задачи.

В результате пересчета аномального магнитного поля на высоту 50км Б.Д.Винц и В.И.Почтарев [43] выделили большое количество магнитных аномалий поперечником от 200 до 1000 км, и интенсивностью (-150) — (+300) нТл и пришли к выводу о существовании магнитных тел в коре и верхней мантии (ее намагниченность при этом составляет 5,0 А/м). В работе Н.Г.Берлянд и В.С.Цирель [16] показано, что не все выделенные аномалии являются "глубинными", часть из них является результатом суперпозиции на высоте 50 км множества наблюденных у земной поверхности интенсивных локальных аномалий и вполне могут быть объяснены неоднородностями строения верхней части коры.

Представления о магнитности коры и верхней мантии, основанные на анализе карт аномального магнитного поля, полученных для различных высот (от 10 до 200 км) развито в статьях А.А.Борисова, Г.Н.Кругляковой и Т.Д.Фирсовой [21, 22]. На высотах 100 и более километров выделены аномалии площадью 1-2 млн.кв.км., которые фиксируют не отдельные геологические структуры, а какие-то глубинные факторы, прежде всего, по-видимому, неравенство мощности магнитноактивной оболочки, средняя восприимчивость которой принята равной \(\kappa = 4000 \times 10^{-6} \) ед. СГС при мощности 65 км. Н.Г.Берлянд, В.С.Цирель [15] и З.А.Крутиховская [148] отметили ряд существенных недостатков этих работ, в частности — шаг выборки в 25 км и использование карты аномального магнитного поля СССР, не приведенной к единому уровню, что несомненно внесло искажение в региональные поля. Следовательно, если учесть эти замечания и данные работы З.А.Крутиховской, И.К.Пашкевич и И.М.Силиной [155], то
достоверно выделенные аномалии можно объяснить либо поведением нижнего ограничения магнитоактивной толщи (В.В.Гордиенко [78]), либо магнитной неоднородностью земной коры и верхней мантии (В.И.Почтарев, Д.П.Голуб [261]), либо тем и другим одновременно (З.А.Крутиховская [148]. Необходимо еще добавить, что при расчетах на большие высоты (100-200) км следует учитывать фактор кривизны Земли (Старостенко В.И., Манукян А.Г., Заворотько [288]), что также в данном случае не выполнено.

При изучении состава поля широко используется спектральный анализ. В.И.Колесовой, А.А.Петровой, В.И.Почтаревым, М.А.Эфендиевой [7, 124,139] на территории СССР в диапазоне широт 55° 00’ - 61° 20’ выделены коротковолновые и длинноволновые аномалии с длинами волн 5-7, 12-15, 20, 40-80, 100-200, 250-300 км, 500-700 км и 1500-2500 км. Стационарные участки поля с длинами волн 250-300 км и 500-700 км в рассмотренных регионах приурочены к однородным зонам гравитационного поля в том же интервале длин волн, что свидетельствует о существовании в литосфере древних платформ крупных неоднородностей, отражающихся как в магнитом так и в гравитационном полях. Учитывая, что гравитационные аномалии в редукции Буге с длинами волн 500-700 км связываются с глубинами, соответствующими глубинам границы Мохоровичича, авторы предполагают, что источники соответствующих им магнитных аномалий приурочены к тем же глубинам [139].

Наиболее полный анализ с целью получения региональной составляющей магнитного поля был проведен в Институте геофизики им.С.И.Субботна АН Украины для Украинского щита. В результате анализа различного рода фильтров разделения поля на локальную и региональную составляющие был выбран пересчет поля на высоту 10 км в сочетании с
методом геологического редуцирования по отдельным профилям. Исходным материалом для пересчета поля на высоту 10 км служила карта аномального магнитного поля УЩ, приведенная к единому уровню с использованием абсолютной опорной сети и поля относимости эпохи 1970 г., построенная методом сферического гармонического анализа (9 гармоник) по данным спутника "Космос-321". Были проведены специальные исследования по изучению вклада верхней части земной коры (до 10 км) в аномальное магнитное поле и повысотная аэромагнитная съемка с целью критической оценки РМА, полученных методом пересчета поля на высоту вверх, показавшие правильность выбранной методики и реальность существования региональных магнитных аномалий [147-150, 219, 240, 244 и др.].

2. Второму направлению исследований, т.е. изучению распределения намагниченных тел в земной коре, посвящено большое количество работ (Л.В.Булина, М.С.Рябкова [27-30], В.Э.Волк, С.С.Иванов, В.Н.Шимараев [46,47], А.Г.Гайнанов, О.Н.Соловьев [49,50], В.Н.Завойский, И.Н.Иващенко, З.А.Крутиховская, Ю.Е.Неижсал и др. [109, 110, 183 и др.]. Работу В.Э.Волка [46], по-видимому, можно считать первой попыткой построения магнитной модели с количественной оценкой границ раздела магнитных образований Арктического бассейна. Расчеты глубин залегания нижних кромок намагниченных тел показали их приуроченность к вполне определенным интервалам глубин. Согласно автору отметки до нижних кромок должны соответствовать уровню, где температура достигает критических значений точки Кюри ферромагнетиков или же поверхности, ниже которой все породы обладают сравнительно однородными свойствами. Однако геотермическими исследованиями установлено, что именно на щитах (где глубины до нижних кромок источников наблюденных магнитных аномалий составляют 10-15 км)
тепловой поток меньше, чем над платформенными частями (где нижние кромки находятся на глубине 20-30 км). При сопоставлении данных о распределении нижних кромок намагниченных образований с данными сейсмических исследований оказалось, что большинство из них приурочено к резким сейсмическим границам (К,М). Аналогичные исследования, выполненные на участке Курило-Камчатской дуги [40] также привели авторов к выводу, что распределение нижних кромок магнитных тел на больших глубинах определяется не геотермическим режимом земной коры, а рельефом поверхностей Конрада и Мохоровичича. По данным указанных авторов преобладающее большинство намагниченных тел располагаются внутри гранитного слоя и их нижние кромки группируются преимущественно вблизи поверхности К. Но здесь необходимо отметить, что статистическая обработка глубин до нижних кромок объективна только при введении весового коэффициента к полученным значениям глубин, в качестве чего было предложено соотношение поперечника каждого источника к сумме поперечников тел в исследуемом разрезе [40].

Интересные сведения о положении нижних кромок намагниченных образований получены для акватории океанов, например, в пределах Тихого океана. Так, А.Г.Гайнанов и О.Н.Соловьев [50,51] указывают, что для области Охотской возвышенности верхние кромки магнито-возмущающих тел залегают на глубинах 3,0-9,0 км, т.е. в верхах "гранитного" слоя. Нижние кромки залегают на глубинах 10-16 км, т.е. практически в кровле "базальтового" слоя.

Для Северо-Охотского и Присахалинского прогибов получены следующие величины: \(h_1 = 3,0-5,0 \) км — 13,0-18,0 км, \(h_2 = 27,0-34,0 \) км, т.е. верхние кромки магнитовозмущающих масс располагаются в "гранитном"
слое, а нижние кромки - в подошве "базальтового" (у границы Мохо). Для океанических областей, примыкающих к южным и центральным Курилам, получены следующие величины $h_1 = 4,0 \div 16,0$ км, $h_2 = 18,0 \div 40,0$ км у Курильской глубоководной впадины. Таким образом в этой части Тихого океана верхние кромки магнитных тел находятся в "базальтовом" слое и, возможно, даже в верхней мантии, а нижние кромки - в верхней мантии.

Намечается определенная закономерность в том, что нижние кромки магнитных тел достигают максимальных глубин в полосах глубинных разломов, которым часто соответствуют интенсивные полосовые магнитные аномалии и в крупных линейных зонах проницаемости коры насыщенных магматическими продуктами (А.Н. Василевский, Л.В. Витте, Л.А. Шарловская [40], Б.Д. Винц, В.И. Почтарев [42], Т.Н. Симоненко, Г.В. Литвиненко [278, 279]).

3. В плане рассматриваемой проблемы большой интерес представляет интерпретация магнитных аномалий с поперечником 60,0-100,0 км и более, позволяющая установить источники этих аномалий, их намагниченность, глубину распространения, структурную соподчиненность, условия возникновения и т.д. Число работ, отвечающих на этот вопрос, невелико, и прежде, чем дать их краткую характеристику, целесообразно подчеркнуть, что все расчеты параметров источников региональных магнитных аномалий делаются для изолированных аномалий и в предположении об однородной намагниченности их источников, поэтому имеют смысл лишь максимальных оценок. Иногда выделение такого класса аномалий даже с помощью простого графического сглаживания не представляет затруднения вследствие большого различия в горизонтальных градиентах и амплитудах региональных и локальных магнитных аномалий (Т.Н. Симоненко [277]).
Подробные каталоги региональных магнитных аномалий приведены в работах Т.Н.Симоненко [277], З.А.Крутиховской [147,148], Г.Ротер [390], М.И.Орлюка [221], поэтому остановимся лишь на некоторых из них, подвергшихся наиболее детальным исследованиям.

Региональные магнитные аномалии с поперечником в несколько десятков километров, которые не объясняются суммарным действием приповерхностных геологических тел, описаны для территории Канадского, Украинского, Балтийского и некоторых африканских щитов.

На Канадском щите верхние кромки источников согласно Л.Г.Холла [365] располагаются на глубинах 6,0–8,0 км, нижние на глубинах 17—24 км. Эффективная намагниченность источников аномалий составляет 2,0—2,8 А/м. В результате спектрального анализа магнитного поля по восьми трансконтинентальным профилям, пересекающим центральную часть Африки А.М.Грин [350] пришел к выводу о существовании аномалий двух классов: с длиной волны менее 60 км, которые хорошо коррелируют с локальными геологическими телами и более 60 км. Глубина до верхних кромок длинноволновых аномалий по оценкам А.М.Грин составляет от 4,0 до 30 км. О природе глубинных источников упомянутый автор сделал предположение, что в результате неполной дифференциации вещества мантии нижняя часть коры богата железом. Возможным источником региональных аномалий рассматриваются также участки подъема ультраосновной магмы, при остывании которой имелись благоприятные условия для образования ферромагнитных минералов.

В Скандинавии для объяснения региональной магнитной аномалии интенсивностью 600,0 нТл используется концепция ремобилизации большого объема земной коры, которая расплавляется и дифференцируется [358]. По
данным интерпретации Т.Донована, Н.Форгея и А.Робертса [358] источник аномалии располагается на глубине от 2,5 до 22,5 км и имеет эффективную намагниченность — 3,0 А/м.

Источники региональных магнитных аномалий Балтийского щита (Кольско-Кейвская, Пяозерская, Толво-Ярвинская, Ребольская) также имеют глубинную природу, при этом верхние кромки их не выходят на поверхность, а нижние не опускаются глубже границы Мохоровичича (З.А.Крутиховская, В.З.Негруца, С.В.Елисеева [151], З.А.Крутиховская, И.К.Пашкевич, Т.Н.Симоненко [367]).

Детальнее всего исследованы региональные магнитные аномалии Украинского щита. В частности, для Западно-Ингулецкой аномалии расчет поля от разреза верхней части земной коры до глубин 10,0 км с учетом данных о намагниченности докембрийских пород показал (И.К.Пашкевич [240], что последние не создают суммарный эффект, равный или близкий к интенсивности поля, пересчитанного на высоту. Как показал расчет, глубина залегания источника магнитной аномалии по энергетическому спектру аномального магнитного поля глубина до верхней кромки источника составляет 12,0 км (И.К.Пашкевич, В.Д.Соловьев [250]. Определенная методом подбора при условии однородного и постоянного намагничения, равного 2,5 А/м, глубина до верхней кромки возмущающего тела составляет 10 ± 2 км, а нижняя оценивается в 30 ± 6 км [240]. С помощью декомпозиционно-интерационного метода В.Н.Завойским, З.А.Крутиховской и Ю.Е.Неижсалом получено, что верхняя кромка источника не поднимается выше 6,0 км, а нижняя достигает низов коры [110]. По результатам продолжения поля в нижнее боковое полупространство (К.И.Соколовский, М.И.Орлюк, И.К.Пашкевич, С.В.Демянчук [275]) верхняя кромка глубинного
источника залегает на глубине 20—25 км, что может быть связано, как показало моделирование, с градиентным увеличением намагниченности с глубиной.

И другие региональные магнитные аномалии Украинского щита (Западно-Приазовская, Винницкая, Новоград-Волынская, Гайсинская, Синельниковская) также не объясняются влиянием верхней части коры и имеют глубинные источники [155, 221].

Первая попытка создания магнитной модели земной коры в двухмерном варианте была предпринята на Украинском щите на основе сейсмогеологического разреза по профилю ГСЗ VIII. Выделены два магнитоактивных слоя, границей между которыми принят протяженный отражающий горизонт, выделенный ГСЗ на глубине 10—18 км. Намагниченность нижнего слоя в 5—10 раз больше намагниченности верхнего и оценена в 2.0—3.0 А/м [155]. К таким же выводам о двухслойной магнитной модели земной коры Канадского щита с увеличением намагниченности в нижней ее части пришел также Л. Холл [365].

Здесь необходимо отметить, что приоритет в объяснении длинноволновой компоненты аномального магнитного поля эффектом базальтового слоя коры принадлежит Ф.Л.Булмасову [31], И.Зитцу и Э.Кингу [117]. Причем, последние авторы применили для “гранитного” и “базальтового” слоев названия “верхняя” и “нижняя” части коры, с преимущественно гранитоидным и базальтоидным составами соответственно. В дальнейшем эти названия, не имеющие четко выраженной “вещественно-породной” нагрузки, нашли широкое употребление при построении двухслойных магнитных моделей земной коры [155, 244 и др.] В результате изучения по ряду профилей ГСЗ аномального магнитного поля с
сейсмическими границами Т.Н.Симоненко [276,277], А.А.Борисов [21], Б.А.Матушкин [193] сделали вывод, что рельеф границ К и М не отражается в аномальном магнитном поле. Однако они обращают внимание на приуроченность магнитных аномалий к участкам наиболее резкого изменения положения глубинных границ земной коры, соответствующим зонам разломов. Материалы, полученные Л.В.Булиной и М.С.Рябковой [30], В.Э.Волком [46,47], З.А.Крутиховской [147] и другими авторами, свидетельствуют, что такая приуроченность является важной закономерностью, связывающей погружение поверхности М с глубинными разломами.

Таким образом, большинством авторов признается наличие намагниченных образований в верхней и нижней частях земной коры и связанных с ними региональных магнитных аномалий. Но в объяснении природы РМА существуют разные мнения. Так Н.Г.Берлянд и В.С.Цирель [15], В.Н.Луговенко и Б.А.Матушкин [178,179], а также ряд других авторов считают, что все региональные аномалии объясняются суммарным эффектом (суперпозицией) магнитных источников, расположенных в гранитном слое земной коры. Заметим при этом, что ими не приводятся необходимые для данных утверждений количественные расчеты. В противоположность данным авторам Л.В.Булиной [27-29], Ф.Л.Булмасовым [31], М.С.Зейгельманом [116], З.А.Крутиховской [150-155], М.И.Орлюком [218-220], И.К.Пашкевич [240-243], В.А.Шапиро, Н.В.Федоровой, Ф.И.Никоновой [315,316] показано существование намагниченных образований как в гранитно-гнейсовом, так и в гранулито-базитовом слоях.

4. Здесь важное значение приобретает вопрос петрологического обоснования возможности возникновения и существования магнетита (либо
другого ферромагнитного минерала) на глубинах, полученных для источников региональных магнитных аномалий. Анализ устойчивости магнетита в повышенных P-T условиях привели Т.Грини и А.Е.Рингвуда [85] к выводу о переходе окисного железа (в виде магнетита) к силикатному (в виде граната) при давлениях 10.0-13.0 кбар. Д.М.Печерский и А.В.Лыков экспериментально установили предельные условия появления ферромагнитных минералов из расплавов, близких к базальтам, при P=15.0—20.0 кбар [181, 256]. Для кристаллизации магнитных минералов в данном случае согласно А.А.Маракушиева и А.Д.Генкина необходим и определенный минимум кислорода, который оценивается P_{fo2} =10^{-8} атм при температуре не ниже 1200° С [190]. Таким образом, предельные глубины существования ферромагнитных минералов при литостатическом давлении составляют около 40 км, но в отдельных случаях возможны отклонения от такой закономерности, вызванные условиями развития коры в данном регионе. Отметим, что никто из ученых, занимающихся петромагнитными исследованиями, не рассматривает возможность возникновения ферромагнитных минералов за счет процессов восстановления, а не окисления (данный вопрос будет детально рассмотрен в разделе 2).

Существующие петрологические модели континентальной коры предполагают в настоящее время главным образом метаморфические образования гранулитовой фации в сочетании с магматическими породами основного состава, кислых и средних (55%), основных гранулитов и эклогитов (40%) и ультраосновных пород (5%) (А.Б.Ронов А.А.Ярошевский [270, 271], С.П.Тейлор, К. Дж.Мак-Леннан [297]). Если средний состав "гранитного" слоя коры не вызывает существенных разногласий среди исследователей и он принимается близким к гранодиоритам (Б.Г.Лутц [180],
А. Рингвуд [268], А. Б. Ронов [270], В. В. Белоусов [299] и др.), то в отношении состава "базальтового" слоя имеются более противоречивые суждения. Так, по данным Н. П. Добрецова [98] "базальтовый" слой сложен серпентинитами, амфиболитами, гнейсами, габбро-гнейсами, оливиновыми, амфиболизированными клинопироксенитами, гранитизированными габбро-перidotитами, эклогитами. По Б. Г. Лутцу [180] низы "базальтового" слоя слабо дифференцированы и сложены чарнокитами, амфиболитами и эклогитоподобными породами. Количество основных пород в "базальтовом" слое достигает 50% общего объема, а их состав принят по аналогии с составом геосинклинальных базальтов. Существенно большую основность "базальтового" слоя отстаивают А. Б. Ронов и А. А. Ярошевский [271], предполагающие, что состав этой части коры соответствует базальту в прямом понимании этого слова. А. Е. Рингвуд на основании экспериментальных данных показывает, что в сухих условиях состав нижней коры должен быть основным - средним (амфиболиты и средние породы в гранулитовой фации) [268]. В рамках проблемы связи региональных магнитных аномалий с глубинным строением земной коры важным представляется тот факт, что экспериментальные данные не противоречат намагниченности перечисленных выше типов пород (за исключением эклогита) [101-103].

Таким образом, на момент начала исследований автора для коры континентального типа достаточно достоверно выделены аномалии, не объясняющиеся неоднородностью ее верхней части. Интерпретация подобного рода аномалий формальными методами показала наличие источников с намагниченностью в первые амперы на метр в глубинных частях коры, а в некоторых случаях и в верхней мантии. Исследованы также
термодинамические условия возникновения и существования ферромагнитных минералов и температуры, при которых они теряют свои магнитные свойства, свидетельствующие о возможности распространения магнитных образований во всем разрезе коры. Имеющиеся расхождения в отнесении источников региональных магнитных аномалий к верхней либо к нижней частям коры могут быть объяснены, отчасти, реальными отличиями в строении магнитоактивных оболочек конкретных регионов.

2. Магнитоминералогическое, петрологическое и тектоническое обоснование магнитной модели литосферы.

2.1. Магнитные минералы земной коры. В природе существует больше десятка ферро-ферримагнитных минералов, которые могут служить носителями намагниченности пород, создающих аномалии магнитного поля. Однако по вертикальному разрезу коры они распространены весьма неравномерно, так как максимальное количество минеральных разновидностей приурочено к самой верхней ее части. Здесь они образуются, в основном, в результате химических реакций при температуре, близкой к комнатной и давлении около 1атм, в высокоокислительных условиях (А.Н.Третяк [302], В.Н.Трухин [307] и др.). Прежде всего, это гидроокислы железа (лепидокрокит, гетит, гидрогетит), переходящие в гематит и маггемит при потере воды. Реже, в пределах нефтегазоносных областей и провинций, в восстановительных условиях появляются магнетит и даже сульфиды железа, такие как пирит, пирротин, грейгит (Магниторазведка [184], Физические свойства ... [318, 319]). Кроме того, в верхах коры имеются магнитные минералы более глубинного генезиса,
попадающие сюда в результате магматической деятельности или образующиеся в процессе метаморфизма — титаномагнетиты и гематито-ильмениты (Н.Б. Дортман [101-103], Т.С. Лебедев, Ю.П. Оровецкий [166], Е.А. Назарова, А.М. Городницкий [210], Д.М. Печерский [242] и др.). С глубиной количество разновидностей минералов — носителей намагниченности коры — резко уменьшается. Минералогические исследования показывают, что намагниченность глубинных горных пород могут быть связаны с рядом рудных минералов и продуктов их разрушения [192, 244 и др.].

1. Титаномагнетит (Fe$_{3-x}$Ti$_x$O$_4$), образуют крупные зерна, продукты распада гемоильменита, как показало изучение их точек Кюри, близки по составу магнетиту и ильмениту. Взаимодействие с силикатами и форма зерен свидетельствуют о том, что титаномагнетиты являются продуктами твердофазных реакций [249].

2. Магнетит (Fe$_3$O$_4$) вторичный, как правило, развит по силикатам, часто связан с процессом амфиболизации, т.е. его возникновение происходит с действием флюидов. Температура образования такого магнетита 450-500°C [256].

3. Ильменит (FeTiO$_3$), крайний член серии твердых растворов гемоильменитов-пикроильменитов, представлен крупными зернами. При распаде ильменита образуются магнетит и рутил, а при низкотемпературном окислении — лейкоксен, гидроокислы железа, гематит [249].

4. Феррошинели — минералы группы шпинели, образуют непрерывные ряды твердых растворов: магнетит (Fe$_3$O$_4$), ульвошинель (Fe$_2$TiO$_4$), якобсит (MnFe$_2$O$_4$), треворит (NiFe$_2$O$_4$), магнезиоферрит (MgFe$_2$O$_4$), маггемит (γFe$_2$O$_3$), франклинит (ZnFe$_2$O$_4$) [249].
5. Пирротин (FeS_{1+x}) распространен в небольших концентрациях в протерозойских и архейских метаморфических породах [140, 191, 192].

6. Железо самородное (α-Fe) встречается в базитах и ксенолитах гранулитов [82, 205, 221, 249, 273 и др.]

7. Сплавы металлов, в частности железа и кобальта, железа и меди, железа и никеля, образующиеся в высоковосстановительных условиях [401, 402].

Отметим, что существование минералов титаномагнетитового ряда в условиях повышенных температур приводит к их распаду и гетерофазному окислению на всех этапах "жизни" пород. Гемоильмениты устойчивы при высоких давлениях и температуре (900⁰С), при меньших они распадаются с образованием гематита и ильменита. То есть в глубинных зонах коры наиболее вероятно существование магнитных минералов в виде магнетита или близких к нему фаз (T_c ≥ 500⁰С) [249, с.9].

Остановимся детальнее на возможности присутствия в низах коры и верхней мантии металлического железа как потенциального источника намагниченности глубинных пород. В природе известны три модификации железа: α-Fe, γ-Fe и δ-Fe. α-Fe-модификация устойчива до 910⁰С, γ-Fe — в интервале между 910 и 1400⁰С и δ-Fe — выше 1400⁰С. α-Fe ферромагнитно (T_{кюри} = 769⁰С), а γ-Fe и δ-Fe — парамагнитны. Минерал, представляющий собой модификацию α-Fe, известен в виде зерен, губчатых скоплений, шариков в базальтовых породах встречается в перидотитах, серпентинитах, гранитах, обнаружен в платиноносных россыпях, каменных углях и в болотных железных рудах (И.Н. Горяинов [83], Магниторазведка [184], Ю.П. Мельник, Ю.М. Стебновская [196], Минералы СССР [205], Очерки сравнительной планетологии [216], В.В. Рябов, А.А. Павлов, Г.Г. Лопатин...
[273], Д.С.Штейнберг, М.В.Лагутина [340] и др.). В верхней части коры сохраняется редко в связи с переходом в окислы и гидроксиды железа. В низах коры и верхней мантии в связи с низкой фугитивностью кислорода и восстановительным характером геохимической обстановки его наличие вполне вероятно. Так, в лунных базальтах с $f_0^2=10^{-13}$ (при $T=1150^\circ$ С практически нет соединений трехвалентного железа, но зато присутствует металлическое α-Fe [216]. По геохимическим данным для земных условий такая фугитивность возможна на глубинах 60 — 100 км [190].

Отметим стабилизирующее влияние давления на существование α-Fe. С его повышением устойчивость самородного железа расширяется в области более высоких значений относительного химического потенциала кислорода: $\mu_0^P =RT \ln P_0^2$. Наряду с этим в сильно восстановительной среде при наличии, например, графита парагенезис Fe и С стабилен при относительно низком и умеренном давлении только в низкотемпературной области. С повышением температуры и давления эти минералы реагируют на образование когенита ($T_{\text{крит}}= 210—230^\circ$ С).

$$3\text{Fe} + \text{C} = \text{Fe}_3\text{C}.$$

В области низких давлений и температур ($P=1, 10$ кбар, $T=600^\circ$ С) устойчивым является парагенезис Fe — Fe$_3$O$_4$, и только при более высоких значениях давления и температуры появляется немагнитный вюстит — FeO. Другими словами, в низах коры и верхней мантии при прочих равных условиях большее количество железа (α-Fe) должно приурочиваться к зонам относительно пониженных давлений (зонам растяжений). Этот факт представляется важным, так как согласно А.А.Маракушеву [189, 251] магнетит также кристаллизуется и сохраняется в зонах растяжений.
В дальнейшем изложении будет широко использоваться модель флюидного режима, имеющего в основе первично-восстановительный характер мигрирующих из мантии флюидов, основными компонентами которого является водород, окись углерода и метан. Взаимодействие восстановительных флюидов с различными соединениями железа и горными породами может приводить к восстановлению α-Fe (А.А.Гантимуров [54], Флюидный режим земной коры и верхней мантии [321], Флюидный режим ... [322]). Идеализированно это можно записать следующим образом:

$$Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO \rightarrow Fe.$$

Обратим внимание на тот факт, что при температуре выше 672°C восстановление проходит через закисную фазу $Fe_3O_4 \rightarrow FeO \rightarrow Fe$, а при температуре ниже 672°C — минуя закисную фазу FeO \rightarrow Fe [54].

Возможны следующие пути образования самородного железа.

1. Из разложения вюстита при температуре ниже 570°C [196]:

$$4FeO \rightarrow Fe_3O_4 + \alpha$-Fe$

2. Восстановление вюстита углеродом или окисью углерода, протекающее при относительно низких давлениях и $T = 700°C$ [340]:

$$FeO + C \rightarrow \alpha$-Fe + CO,$$

$$FeO + CO \rightarrow \alpha$-Fe + CO_2$$

3. При наличии гематита могут протекать реакции вида [196]:

$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2 \ (T=400°C),$$

$$Fe_3O_4 + CO \rightarrow 3Fe + 4CO_2 \ (T=700°C).$$

4. Восстановление железа водородом либо природным газом при $T=400 — 500°C$ [215]

$$FeO + H \rightarrow \alpha$-Fe + HO,$$
FeO + 3H\rightarrow 2Fe + 3H₂O.

5. При серпентинизации, очевидно, за счет возникновения восстановительной среды по реакции типа [321]:

\[3\text{MgFe(SiO}_4\text{)}+3\text{H}_2\text{O}\rightarrow\text{Mg}_3\text{(OH}_4\text{)}\text{[Si}_2\text{O}_5\text{] + Fe}_3\text{O}_4 + SiO}_2 + \text{H}_2. \]

Fe₃O₄ + 3H₂\rightarrow 2Fe + 3H₂O.

6. Восстановление самородного железа из минералов [54]:

\[\text{Fe}_2\text{[SiO}_4\text{]} + \text{H}_2 \rightarrow \text{Fe} + \text{FeO} + \text{SiO}_2 + \text{H}_2\text{O}, \]

\[\text{Fe}_2\text{[SiO}_4\text{]} + \text{CO} \rightarrow \text{FeO} + \text{SiO}_2 + \text{CO}_2 + \text{Fe}, \]

\[2\text{Fe}[\text{SiO}_4] + \text{CH}_4 \rightarrow 2\text{SiO}_2 + \text{CO}_2 + 2\text{H}_2\text{O} + 4\text{Fe}, \]

\[\text{FeSiO}_3 + \text{H}_2 \rightarrow \text{Fe} + \text{SiO}_2 + \text{H}_2\text{O}. \]

По данным [54], при P=1 атм. фаялит не восстанавливается под воздействием CO, CH₄, H₂ вплоть до 1000°C. Ферросилит начинает восстанавливаться при T=500-600°C. Наиболее реакционным по отношению к водороду является магнетит (от 600°C и выше), на втором месте — пироксен, оливин в этих условиях устойчив. Отметим также, что водород является более сильным восстановителем по сравнению с окисью углерода. Так, при температуре 400°C окислы в 10 раз быстрее восстанавливаются H по сравнению с CO.

В опытах по взаимодействию подвижного флюида разного состава с образцами сильномагнитного габбро, содержащего 5—40% расплавшегося титаномагнетита при T=800—950°C, изменение магнитных минералов происходило в соответствии с окислительно-восстановительным режимом: с
понижением fo_2 титаномагнетит гомогенизировался (падала намагниченность) вплоть до появления металлического железа (намагниченность резко возрастала). С повышением fo_2 гомогенизированный титаномагнетит вновь гетерофазно окислялся (распадался), что отмечалось ростом намагниченности. В образцах немагнитного габбро при этих температурах намагниченность не возрастала, т. е. новообразование магнитных минералов из силикатов не происходило, а только преобразовывалось в зерна титаномагнетита и продукты его распада [249, 256].

α-Fe может возникать также в верхней части коры за счет прорывающихся углеродсодержащих пород или нефтегазоносных залежей, но оно вряд ли представляет интерес как источник намагниченности консолидированной коры и верхней мантии. Нельзя также исключать возможность существования в верхней мантии стабильных древних областей с наличием металлического железа ранне-архейского возраста, так как по мнению некоторых исследователей первичная верхняя мантия содержала его в значительных количествах.

2.2. Прогноз намагниченности в термодинамических условиях земной коры. Полная намагниченность горных пород (I), обусловленная суммарным эффектом индуктивной (I_i) и остаточной (I_r) намагниченностями, зависит от содержания и вида ферромагнетика, а также воздействия изменяющихся с глубиной температуры (T) и давления (P) (Т.С.Лебедев, Б.Я.Савенко [168]). Следовательно, изменение полной намагниченности коры с глубиной связывается с термодинамическим режимом и изменением ее состава, а соответственно, концентрацией магнитных минералов. К настоящему времени выполнены работы, где исследовано изменение
магнитных свойств либо от давления, либо от температуры, и на их основании рассчитано изменение полной намагниченности (Т.С.Лебедев, Б.Я.Савенко [166], А.А.Логачев [176], Физические свойства ... [318, 319], С.Е.Хагерти [351] и др.). Как известно, индуктивная намагниченность определяется магнитной восприимчивостью минерала или породы (κ) и величиной внешнего поля (He):

$$I_i = \kappa H_e.$$

Типичные кривые изменения магнитной восприимчивости от температуры свидетельствуют о том, что наиболее существенное возрастание к наблюдается для железа (до 900.0 ед. СГС при температурах вблизи температуры Кюри), для магнетита она увеличивается в 2.5-3.0 раза, а для большинства минералов и пород либо остается постоянной, либо возрастает, но не более чем в 1.5-2.0 раза [176,310]. Другими словами, при воздействии на минералы и породы лишь температуры индуктивная намагниченность пород для одинаковой концентрации ферромагнетиков по разрезу коры оставалась бы постоянной либо немного увеличивалась в соответствии с увеличением магнитной восприимчивости при приближении к температуре Кюри.

На породу в естественных условиях воздействует также давление. Согласно [7,165], уже при давлениях 0.4 кбар магнитная восприимчивость магнетита уменьшается на 20-30%, при одноосном давлении 1.6 кбар уменьшение составляет 50%, а при Р=10 кбар — около 90% первоначальной величины.

Необходимо отметить, что экстраполяция экспериментальных данных на естественные условия континентальной коры не совсем корректно и
вызывает много затруднений. Основным является то, что экспериментам подвергаются образцы пород, отобранных в верхней части коры, в то время как магнитные характеристики глубинных образований сформированы при соответствующих термодинамических условиях изначально. Кроме того, экспериментальные данные свидетельствуют об очень больших вариациях изменения магнитной восприимчивости и остаточной намагниченности с повышением температуры и давления в зависимости от состава пород, условий их образования и типа остаточной намагниченности, что требует большой статистики для установления средних величин по крупным блокам. Таким образом, приведенные в данном разделе расчеты следует рассматривать как очень приближенные и отражающие скорее тенденцию, а не достоверно установленные данные. И единственная их цель — это посмотреть, не будут ли они принципиально противоречить значениям намагниченности глубинных горизонтов коры, полученным на основании интерпретации региональных магнитных аномалий. На рис. 2.1 приведены рассчитанные автором [221] изменения магнитной восприимчивости магнетита и базальта с учетом зависимости от давления по В.И.Трухину [307] и от температуры по O.Dunlop [356] для средних PT-условий континентальной коры. Установлено, что за счет давления магнитная восприимчивость резко уменьшается до 15 км, достигая 0,3-0,4 первоначальной величины, глубже уменьшение замедляется и на глубине 40 км сохраняется 0,15 к0. При увеличении к за счет температуры для магнетита до 20 км никаких изменений не происходит, глубже наблюдается возрастание магнитной восприимчивости с максимумом, соответствующим 2,8 к0 на глубине 45 км. Для базальта и других пород минимальное
Рис. 2.1. Зависимость магнитной восприимчивости магнетита от одноосного давления (а); изменение магнитной восприимчивости магнетита и базальта для “нормальных” термодинамических условий земной коры (б); изменение с учетом увеличения основности пород (в); поведение изотермической намагниченности для УЩ по Т.С. Лебедеву, Н.Ф. Познанской [165] и рассчитанное изменение полной намагниченности с глубиной (г). 1-изменение магнитной восприимчивости от давления, 2-от температуры для однодоменного магнетита; 3-от температуры для базальта, 4-от температуры и давления для магнетитсодержащих пород, 5-от температуры и давления для базальта, 6-усредненное изменение магнитной восприимчивости в зависимости от основности пород, 7-поведение магнитной восприимчивости магнетитсодержащих пород с глубиной, 8-то же самое для базальта, 9-зависимость магнитной восприимчивости магнетита от глубины для УЩ по Т.С. Лебедеву и др. [166], 10-изменение полной намагниченности магнетитсодержащих пород с глубиной при условии сохранения $0,2I$, при $P=12,5$ кбар, 11-то же самое для $0,7I$, 12-зависимость полной намагниченности базальта от глубины при условии сохранения $0,2I$, при 12.5 кбар, 13-то же самое для $0,7I$.

Увеличение восприимчивости меньше (максимум 1,5 κ_0) [309, 310]. Необходимо отметить, что при наличии титаномагнетита пик максимального возрастания (будет смещаться в область более низких температур, что предопределяется температурой Кюри ферромагнетика.
Суммарная кривая для магнетита приведена на рис. 2. 1. б, из которого следует уменьшение магнитной восприимчивости до 20 км, где \(k=0,25k_0 \), на глубине 45 км она достигает 2\(k_0 \). Магнитная восприимчивость пород испытывает уменьшение до глубин 20 км (\(k=0,45+0,60k_0 \)), далее следует увеличение до 0,70\(k_0 \) на глубине 45 км. Следовательно, при индуктивной природе намагниченности максимальный вклад в аномальное магнитное поле при одинаковой концентрации магнетита во всем разрезе коры будут вносить верхняя и нижняя части коры. Расчеты показали, что на глубине 50 км изменение давления на 2 кбар слабо влияет на \(k \), вызывая в верхней части коры отклонение \(k \) на \(\pm 0,14k_0 \), а с увеличением глубины разница уменьшается. Более существенно влияние температуры в нижней части коры: уменьшение или увеличение температуры на глубине 50 км на \(\pm 100^\circ C \) смещает положение максимума магнитной восприимчивости на \(\pm 10 \) км. Из вышеизложенного следует, что в верхней части коры (до глубины 10-20 км) большое влияние на \(k \) будет оказывать давление, а в нижней части (более 20 км) — температура.

В предположении индуктивной природы намагниченности нижней части коры оценена ее намагниченность с учетом увеличения основности пород с глубиной. Для этого использовались скоростные колонки по геотраверсам II и IV [169,170], связь скорости с плотностью согласно С.С.Красовского [142] и плотности с намагниченностью по З.А.Крутиховской, И.К.Пашкевич, И.М.Силиной [155]. На рис. 2.1 в, г приведены кривые изменения \(k \), связанные с изменением состава и термодинамических условий для магнетитсодержащих пород и базальта. Остаточная намагниченность, по имеющимся данным, существенно уменьшается до глубин 15 км [167,168]. На рис.2.1г приведена зависимость остаточной намагниченности \(I_r \) при
воздействии давлений и температур, которую согласно К.А. Валееву и В.И. Максимочкину [37,38] можно считать типичной. Правда, имеются сведения о разной скорости уменьшения остаточной намагниченности для многодоменных и однодоменных ферримагнитных зерен и большей стабильности термоостаточной намагниченности по отношению к изотермической [38]. Так, квазивсестороннее давление 12,5 кбар разрушает на 80 и 20-40% естественную остаточную намагниченность термоостаточной природы горных пород, содержащих, соответственно, много- и однодоменные ферромагнитные зерна [38]. В этом случае, кроме индуктивной намагниченности, в нижней части коры определенный вклад может вносить термоостаточная. На рис. 2.1г приведены оценочные кривые изменения полной намагниченности породы ($I = I_i + I_r$) для $I_{i0} = I_{r0}$ в случае сохранения при 12,5 кбар — 0,2I_{r0} и 0,7I_{r0}. Намагниченность магнетитсодержащих пород уменьшается до 0,25 I_0 на глубине 20 км, а на глубине 42-45 км увеличивается до 1,1 I_0 в первом случае и, соответственно, до 0,5 I_0 и 1,3 I_0 — во втором (без учета изменения состава пород с глубиной). Для базальтовой породы намагниченность интенсивно уменьшается до 10-15 км, сохраняя глубже 0,4 и 0,6 своей первоначальной величины. По-видимому, кривые на рис. 2.1г отражают минимально возможное уменьшение I с глубиной, поскольку здесь не учтено уменьшение термоостаточной намагниченности за счет повышения температуры.

Из предыдущего раздела следует, что основными носителями намагниченности нижней части коры могут быть магнетит и самородное железо, которые, являясь магнитомягкими минералами, предопределяют вязкую намагниченность коры (В.Н. Завойский, В.С. Марковский [111]). Согласно В.Н. Завойского [106] принципиальная возможность изменения
намагниченности породы за счет вязкого намагничения будет существовать до тех пор, пока внутреннее поле ферримагнетика не станет равным 0. Конечным результатом вязкого намагничения будет равновесное состояние намагниченности породы [106]. В настоящее время существуют сведения о том, что определенный вклад в вязкую намагниченность может давать диффузия частиц в кристаллической решетке ферримагнетика (В.И. Трухин [300]). Если это так, то вязкая намагниченность должна увеличиваться не только с ростом температуры, но и с ростом давления. Специальными экспериментальными исследованиями В.С. Марковского и С.А. Таращана [249] установлено, что величина равновесной намагниченности многодоменных зерен магнетита остается практически неизменной вплоть до температуры Кюри магнетита и квазивсестороннего давления 700 МПа. Следовательно, этим подтверждено положение В.Н. Завойского о том, что равновесная намагниченность пород не зависит ни от температуры, ни от давления, а определяется концентрацией ферромагнитных минералов и коэффициентом размагничивания зерен [7,111]. По данным В.Н. Завойского [7] изменение концентрации ферромагнетика в пределах 1-6% будет соответствовать равновесной намагниченности 1,2-7,2 А/м.

2.3. Петролого-тектонические условия формирования и существования источников магнитных аномалий. Анализ вещественного состава ряда докембрийских и более молодых метаморфических и магматических формаций показывает, что во всех образованиях, включая породы кислого состава, имеется достаточное количество железа и кислорода для образования 0,1 — 3,0% магнетита либо другого ферримагнетика, определяющего магнитную характеристику пород (Петрография, [251]). Однако в одних формациях почти все железо входит в состав силикатных
минералов, в других — частично кристаллизуется в ферримагнетиках. Ведущими факторами, определяющими кристаллизацию магнетита, титаномагнетита и других ферро-ферримагнитных минералов, являются термодинамический режим, т.е. глубина образования первичных магматических очагов, окислительно-восстановительные условия и PT-условия начала раскристаллизации магм.

Согласно многочисленным исследованиям (И.И.Абрамович, И.Г.Клушин [1], В.В.Белоусов [11], Н.А.Беляевский [12], Глубинное строение ... [71,72], А.Рингвуд [268], В.Б.Соллогуб [285], С.И.Субботин [287] и многие другие) земная кора и верхняя мантия по геолого-геофизическим данным, по крайней мере до астеносферы, является неоднородной как в горизонтальном, так и вертикальном направлениях. Н.Л.Добрецовым [98] выделено восемь типов верхней мантии по данным изучения глубинных ксенолитов. Эти типы отражают эволюцию мантии от более основного, неистощенного, к максимально истощенному ультраосновному составу.

Необходимо подчеркнуть, что состав верхней мантии особенно интенсивно изменяется по периферии платформ и в складчатых областях. Предположительно это связано с тем, что в одних случаях в верхней зоне мантии накапливаются кумуляты или даже продукты кристаллизации основной магмы, поднявшейся из глубины, а в других преобладает процесс рестирования в результате удаления расплавов и даже промывания ими мантии.

Известные механизмы перемещения расплава в верхней мантии приводят к сходному эффекту дифференциации верхних оболочек, поскольку в поднимающемся расплаве концентрируются легкоплавкие, а в твердом остатке (рестите) — тугоплавкие компоненты. При зонном плавлении,
например, в тыловой части колонки возникает дунит-гарцбургитовая зона. Тип пород головной зоны зависит от давления и состава системы (габбро и анортозиты при низких, клинопироксениты -- при средних, эклогиты или гранатовые пироксениты при высоких давлениях) [98].

Дифференциация вещества происходит при различных геодинамических режимах, в связи с чем для понимания природы источников региональных магнитных аномалий важным является выяснение связи между тектонической обстановкой и формированием определенных ассоциаций магматических пород. Формации магматических (и метаморфических) горных пород в первом приближении подразделяются на три большие группы — тектонически активных зон, промежуточного (переходного) типа и устойчивых областей [97]. Рассмотрим зависимость магматизма от геодинамической обстановки на примере развития формаций активных зон, охватывающих магматические и метаморфические проявления, сопровождающие геосинклинальное развитие земной коры, в котором различаются собственно геосинклинальная и последующие переходная и орогенная стадии. Типичные ассоциации магматических (и метаморфических) пород, свойственные этой стадии, варьируются по составу в зависимости от стадии геосинклинального режима (Петрография [243]).

Отчетливо проявляется закономерное изменение характера магматизма и метаморфизма в зависимости от геодинамической обстановки: для условий преобладающего растяжения земной коры характерна гипербазит-толеитовая ассоциация, переход к режиму преобладающего сжатия приводит к изменению характера вулканизма в сторону появления лейкократовых разностей базальтов, чему в интрузивных сериях соответствует смена габбро — габбро-анортозитами и анортозитами. В развитых островных дугах,
содержащих сиалическую (континентальную) кору, эволюция пород щелочно-
земельного ряда продолжается дальше в сторону андезитов и более
кремнекислых пород, а лейкократовые базальты выступают в качестве
промежуточного звена между толеитовыми базальтами и андезитами.

Важным моментом для расшифровки природы региональных магнитных
анomalyй является существенное различие данных серий по интенсивности
накопления железа. Серия толеитовых базальтов характеризуются быстрым
развитием железистых составов — возникают железистые породы основного
(ферробазальты, феррогабро), среднего (исландиты) и кислого
(ферролипариты, феррограниты) составов. Переход к складчатости и
формированию внутренних поднятий знаменуется изменением характера
магматической эволюции (исландитовый тип сменяется андезитовым с
умеренным накоплением железа). Дальнейшее развитие в условиях сжатия
(орогенная и позднеорогенная стадии) приводит к усиленнию кислого
магматизма. В интрузивной фации (согласно Н.Л.Добрецову [98] и
В.В.Белоусову [299]) развиваются плагиограниты и нормальные калиевые
граниты.

Отметим еще один важный момент — интрузии гранитоидов в своем
большинстве размещаются в антиклинальных поднятиях и срединных
массивах, а также в рамках складчатых областей [11,299].

Такой же тип эволюции магматизма, в зависимости от геодинамической
обстановки, характерен вообще для процесса становления континентальной
коры. На начальных стадиях процесса корообразования господствует
обстановка растяжения, способствующая широкому проникновению
мантийных расплавов в верхнюю часть Земли. Внедряющиеся мантийные
магмы имеют исключительно толеитовый характер. Средняя стадия
становления коры знаменуется широким развитием андезитового магматизма. Это начальная стадия вовлечения коры в орогенез. Глубокометаморфизованные комплексы, слагающие ее нижние горизонты, в процессе поднятия (в определенных зонах) выводятся на более высокий гипсометрический уровень. Начинается преобразование этих пород в условиях более низких температур и давлений, а также изменявшегося флюиодного режима. Большое значение для этих преобразований имеет увеличение давления воды в зонах средней глубинности, способствующих развитию процессов мигматизации [98].

Заключительный этап формирования континентальной коры характеризуется мощными процессами гранитизации коры в зонах средней глубинности, где давление воды достигает наибольшей величины.

Н. Л. Добрецовым [98] выделены следующие активные зоны Земли, в которых происходит дифференциация и преобразование вещества.

1. Срединно-океанические хребты.

2. Внутриконтинентальные рифты.

3. Окраинные и средиземные моря.

4. Островные дуги и желоба.

5. Желоба и кордильеры Андийского типа.

6. Орогенные зоны гималайского типа.
7. Зоны сдвиговых дислокаций.

С тектонической точки зрения важно, что первые три типа зон представляют собой области растяжения, а активные зоны 4-6 типа — сжатия. С петрологической точки зрения важно, что первых три случая сопровождаются базальтовым вулканизмом (с вариациями от толеитов до щелочных базальтов), вторые три — андезитовым вулканизмом и (или) гранитным магматизмом. Зоны сдвиговой дислокации могут либо сопровождаться базальтовым вулканизмом или андезит-гранитным магматизмом, либо не сопровождаться магматизмом вообще.

Количественные оценки величины избыточных напряжений, существующих в земной коре, по данным разных авторов весьма различны. Еще в 1960 г. В.С. Соболев высказал предположение о возможности возникновения даже на умеренных глубинах давлений, которые могут более чем в 10 раз превышать соответствующие давления нагрузки. Р.Аффен и А.Жессоп исследовали возможные пределы отклонений от гидростатического давления, используя данные Е.А. Любимовой и С. Мацушимы по распределению прочности пород коры и верхней мантии в зависимости от давления и температуры. Оказалось, что максимальная прочность, выраженная в предельных касательных напряжениях, возрастает от 1,5 кбар от поверхности до 10 кбар на глубинах 20—40 км и падает до 0 на глубине 200 км. Примерно по такому же закону изменяется и величина вероятных отклонений от гидростатического давления, составляющих в интервале глубин 20—40 км 13,5—14,1 кбар. Измерения подтверждают существование довольно существенных горизонтальных напряжений, которые нельзя
объяснить влиянием рельефа, а следует отнести за счет тектонических факторов (П.Н.Кропоткин, Б.Н.Фролов [146]). По данным этих же авторов избыточные напряжения достигают максимума ($P=2,0—3,5$ кбар) на глубинах 10—40 км. Приведенные данные не вызывают сомнения в существовании на глубинах 20—40 км зон, отличающихся на несколько килобар (а может быть, и более) от гидростатического давления, которые могут оказывать существенное влияние на образование и существование ферримагнитных минералов. Но все-таки главным здесь, по-видимому, является не сама величина избыточных давлений, а связь магматизма с определенным типом геодинамического режима (сжатия и растяжения) и дальнейшее преобразование пород в ослабленных зонах литосферы. Убедительным подтверждением этому могут служить результаты изучения магнитности земной коры океанов. Так, в ряде трансформных разломов (Мендосино, Хизена, Атлантис, Кейн и т.д.) с косой ориентировкой к направлению спрединга, где развита система кулисообразных трещин, обусловленных растяжением, за счет проникновения воды в нижние части коры происходит серпентинизация и наращивание магнитноактивного слоя снизу мощностью в несколько километров (А.М.Городницкий, Д.М.Печерский [81], Петротематная модель литосферы [249].

По данным А.В.Лыкова, Д.М.Печерского [181, 249] в недрах Земли по окислительно-восстановительным условиям выделяются четыре термодинамические зоны:

1) "гематитовая" — в приповерхностной части земной коры;

2) "магнетитовая", где образуются минералы, содержащие трех- и двухвалентное железо (титаномагнетиты и др.). Типичные тектонические
представители этой зоны — структуры растяжения (эвгеосинклинали, рифтовые зоны, глубинные разломы участков активизации платформ и т.п.);

3) "силликатная", где образуются минералы, главным образом силикаты, содержащие только двухвалентное железо. Ферримагнитные минералы отсутствуют. Типичные тектонические представители — структуры сжатия, магматические и метаморфические образования времен складчатости;

4) "железо-металлическая" — наряду с двухвалентным железом появляется металлическое железо (зона не типична для земной коры и верхней мантии).

В связи с вопросом об источниках РМА, обратим внимание на следующие сведения. Независимо от взглядов разных авторов на развитие тектоносферы Земли, для структур растяжения (активные зоны первых трех типов) признано наличие в нижней части коры или верхней мантии очага (одного или нескольких) основной магмы базальтового состава, системы трещин (даек) в средней части коры и излившихся на поверхность фундамента базальтов. На стадии регressiveного развития структур данного типа происходит отмирание или опускание мантийного диапира и общее остывание системы. В результате нижняя часть земной коры базальтоидного состава данной области будет обладать повышенной намагниченностью и обуславливать региональные магнитные аномалии. Повышенной намагниченностью будет обладать также самая верхняя часть коры благодаря излившимся вулканитам. Ее вклад в магнитное поле будет зависеть от типа и объема излившихся базальтов, а также степени изменения их в процессе дальнейшего преобразования. Намагниченность средней части коры обусловливается степенью проработки (инъецирования) ее магматическими расплавами. Если учесть тот факт, что данные зоны являются
благоприятными по окислительно-восстановительным условиям для кристаллизации ферримагнитных минералов, то вполне уверенно можно связывать с ними определенный класс региональных аномалий.

В противоположность данным структурам, активные структуры 4-6 типов принадлежат к зонам сжатия и сопровождаются в большинстве случаев кислым магматизмом. В работе Н.Л. Добрецова [98] приведено много примеров, позволяющих утверждать, что утолщение континентальной коры или коры промежуточного типа в результате сжатия и покровообразования приводит к ее плавлению и массовому внедрению гранитоидов. Там, где увеличивается мощность океанической коры, массового появления гранитоидов не происходит. В частности, именно поэтому многие крупные офiolитовые пояса и прилегающие зоны лишены гранитоидов или бедны ими. Таким образом, учитывая состав магм и тот факт, что зоны сжатия являются запретными для кристаллизации ферримагнитных минералов, можно говорить о низкой намагниченности данных участков, характеризующихся пониженным магнитным полем. Причем, необходимо подчеркнуть, что речь идет лишь о гранитоидах, сформированных в геодинамическом режиме сжатия

Следует отметить, что предельная глубина между "магнетитовой" и "силикатной" зонами в термодинамических условиях литосферы Земли соответствует глубинам 50—60 км, а в складчатых областях она поднимается иногда до 10 км [181]. Имеются сведения о возможной потере намагниченности блока "магнетитовой" зоны в РТ-условиях "силикатной". Так, по данным В.А.Тюремнова и В.П.Мирошникова [7], при нагревах пород выше 800°C отмечается ряд фазовых переходов, после которых существенно изменяются первоначальные магнитные параметры. Нагрев оливинитов
приводит к образованию лейкоксена и уменьшению содержания фаялитовой молекулы от 17 до 1%. Для силикатно-карбонатных железистых кварцитов магнетит находится в равновесии с другими минералами при \(P=3\div8 \text{ кбар} \) в температурном интервале 450—550\(^\circ\text{С} \). Выше этих \(PT \)-условий магнетит сменяется фаялитом.

Таким образом, область возникновения и существования магнитных минералов (и, соответственно, магнитных пород) — источников положительных региональных магнитных аномалий еще более сужается — это могут быть области земной коры, формировавшиеся в условиях геодинамического режима растяжения и не испытавшие в дальнейшем инверсионного этапа развития (орогенеза и гранитизации). Относительные минимумы магнитного поля должны характеризовать зоны земной коры, формировавшиеся в условиях геодинамического режима сжатия, часто сопровождающегося поднятием рельефа фундамента. Подтверждением такого вывода может служить тот факт, что для Восточно-Европейской платформы В.Н.Зандером и др. [103] установлена приуроченность преобладающего пониженного поля к положительным структурам современного рельефа фундамента. С использованием результатов геологических исследований Г.Г.Доминиковского и Д.А.Доминиковской [100] для территории Беларуси показана приуроченность положительных аномалий к зонам синклиниорного, а отрицательных — антиклиниорного типов. Автором [221] показано выделение западной части Украинского щита относительно пониженным региональным фоном по отношению к краевой, погруженной части Восточно-Европейской платформы. Убедительным подтверждением выводов данного раздела являются результаты анализа расположения источников региональных магнитных аномалий в связи с
геолого-тектонической обстановкой. При этом рассмотрены региональные магнитные аномалии, подвергшиеся наиболее детальным исследованиям по их выделению и интерпретации, и, не вызывающие поэтому, сомнений в глубинности их источников.

Выводы.

1. Основными минералами — носителями намагниченности глубинных частей коры и верхней мантии являются титаномагнетит, магнетит и, предположительно, самородное железо. Сплавы железа могут рассматриваться наравне с самородным железом, носителями магнетизма в низах коры и верхах мантии.

2. Намагниченность глубинных зон континентальной коры с учетом влияния термодинамических условий и изменения состава с глубиной от гранитоидного до базальтоидного равна или больше в 1,1—2,0 раза по сравнению с намагниченностью ее верхов. Согласно концепции о равновесном намагничении величина полной намагниченности пород в определенном интервале глубин земной коры зависит только от концентрации ферримагнитных минералов. Следовательно рассмотрение разных концепций изменения величины намагниченности пород под влиянием высоких давлений и температур показало, что физические условия на глубинах 20-45 км не накладывают жестких ограничений и, тем более, запрета на ее значения, достаточные для создания региональных магнитных аномалий.

3. Магнитные и высокомагнитные образования — источники положительных региональных магнитных аномалий, согласно данным петрологии, окислительно-восстановительных условий и тектонического режима, приурочиваются к структурам режима преобладающего растяжения земной коры. Немагнитные и слабомагнитные образования характерны для структур режима сжатия земной коры.
3. Методика построения магнитных моделей земной коры

Методика анализа аномального магнитного поля, техноло-гия выделения и интерпретации региональных магнитных аномалий довольно детально рассмотрены в работе З.А.Крутиховской, И.К.Пашкевич и И.М.Силиной "Магнитная модель и структура земной коры Украинского щита" [155] (рис. 3.1).

Методика создания магнитной модели земной коры состоит из ряда звеньев:
— анализ геомагнитного поля Земли исследуемого региона;
— фильтрация геомагнитного поля Земли и выделение его аномальной (литосферной) части;
— фильтрация аномального магнитного поля и выделение его региональной (длинноволновой) компоненты;
— интерпретация региональной (длинноволновой) компоненты аномального магнитного поля;
— выбор начального приближения;
— решение обратной задачи;
— создание магнитной модели земной коры.

Техническое решение каждого звена этой цепочки представляет самостоятельную задачу и требует разработки и применения соответствующих методов и методик. Так для корректного выделения региональных магнитных аномалий связанных с глубинными горизонтами земной коры необходимо исследовать вероятностно-статистические и функциональные связи аномального магнитного поля с составом, строением и рельефом фундамента, составить карты намагниченности фундамента и т.д.
Автор, поэтому, направил свои усилия на углубление, разработку и численную реализацию ряда положений отдельных звеньев приведенной схемы, а именно: усовершенствование методики выделения и выделение региональной компоненты аномального магнитного поля по площади путем учета влияния верхней части коры; разработку методики трехмерного моделирования крупных регионов с использованием разновысотных съемок; выбор начального приближения для моделирования, предопределяющего получаемое решение, а также на моделирование аномального магнитного поля без разделения его на отдельные составляющие.

Анализ аномального магнитного поля сводится к исследованию морфологии аномалий, их частотного состава и интенсивности; районированию территорий по типу аномалий и их концентрации;
выяснению соотношений между локальными, региональными и аномалиями МАГСАТ (аномалии полученные в результате съемок с искусственных спутников Земли). В связи с изучением глубинных горизонтов земной коры остановимся детально на технологии выделения региональной компоненты магнитного поля, а краткая характеристика аномального магнитного поля будет приводится при построении магнитных моделей исследуемых регионов и структур.

Прежде, чем перейти к изложению методики выделения региональной компоненты аномального магнитного поля необходимо остановиться на технологии построения карт аномального магнитного поля, которые для этого используются.

Наблюдаемое на поверхности Земли магнитное поле T является суммой нескольких полей, имеющих различные причины (Б.А.Яновский [332]):

\[T = T_o + T_m + T_a + T_v + \delta T \]

где \(T_o \) — поле, создаваемое однородной намагниченностью земного шара (поле осевого диполя расположенного в магнитном центре Земли); \(T_m \) — поле, обусловленное внутренними причинами, связанными с неоднородностями глубоких слоев земного шара, называемое недипольным (или полем мировых аномалий) ввиду большого пространства, которое они охватывают; \(T_a \) — поле, обусловленное намагниченностью земной коры (или литосферы); \(T_v \) — поле, вызываемое внешними причинами; \(\delta T \) — поле вариаций, причины которого также связываются с источниками, расположенными вне земного шара.
Сумма полей дипольного и недипольного \((T_o + T_m = T_g) \) образуют главное магнитное поле Земли.

Часто сумму полей \(T_n = T_o + T_m + T_v \) называют нормальным полем. Поскольку \(T_v \) очень мало и практически им можно пренебречь то нормальное поле в этом случае совпадает с главным магнитным полем.

Поле земной коры \(T_k \) — представляет собой аномальное поле, которое подразделяется на поле регионального характера \((T_r) \), распространяющееся на большие площади, и поле местного (локального) характера \((T_l) \). Региональные аномалии поперечником обычно в несколько десятков километров, реже до 100 — 200 км, имеют амплитуду не более 1000 нТл вблизи земной поверхности (на высоте 200 — 300 м) (Т.Н.Симоненко [277]). Эти аномалии были выделены и описаны в магнитном поле различных континентов и их подводных окраин и описаны в многочисленных публикациях, часть из которых приведена в разделе 2.

Задача разделения наблюденного магнитного поля на поверхности Земли на составляющие — нормальное и аномальное — с математической точки зрения является неопределенной, так как такое разделение возможно бесконечным числом способов. Для однозначного решения необходимыми являются сведения об источниках каждой из составляющих магнитного поля.

Существует несколько методов разделения поля на составляющие, позволяющие строить карты аномального магнитного поля, как правило \((\Delta T)_a \), содержащих информацию о магнитных неоднородностях коры.

1. Согласно экспериментальным данным построена математическая модель магнитного поля Земли, основанная на формальном изучении его структуры. Математически эта задача решена К.Гауссом в 1838 г. И она имела целью представить магнитное поле Земли как функцию координат,
оставляя совершенно в стороне физические причины возникновения этого поля.

Основанием теории Гаусса является предположение о том, что магнитное поле Земли вызывается источниками, которые находятся внутри земного шара и поэтому имеют потенциальный характер, т.е.

\[T = -\nabla U. \]

Магнитный потенциал, создаваемый магнитными массами, расположенными внутри него, выражается рядом Гаусса в виде двойной суммы с бесконечным числом слагаемых

\[U = R_E \sum (R_E/r) \sum (g^n_m \cos m\lambda + h^n_m \sin m\lambda) P^n_m (\cos \theta), \]

где каждое слагаемое представляет собой и функцию

\[\cos \lambda \]

\[P^n_m (\cos \theta) \]

\[\sin \lambda \]

от \(\theta \) и \(\lambda \) с постоянными коэффициентами \(g^n_m \) и \(h^n_m \).

Теория Гаусса позволяет вычислить элементы земного магнетизма для любой точки земной поверхности и вне ее (\(r >> R_E \)), если известны постоянные коэффициенты \(g^n_m \) и \(h^n_m \).
Следовательно сущностью формального разделения геомагнитного поля на разные составляющие является представление нормального поля Земли сферическим рядом с определенным количеством гармоник (достаточных для представления нормального поля) и дальнейшим вычитанием этого поля из наблюденного T. Для аналитического представления главного геомагнитного поля согласно В. И. Колесовой [139] достаточно длины ряда с n = m = 9. Заметим, что связь между наибольшей длиной волны λ, которая сохраняется в карте аномального магнитного поля, и наивысшей гармоникой порядка n, которая включается в главное поле Земли определяется выражением \[\lambda = \frac{C}{n} \], где C - длина окружности Земли. Если 9-я гармоника включена в нормальное поле, то наиболее длинноволновая часть аномального магнитного поля должна быть представлена 10-й гармоникой, которой соответствует длина волны 4000 км. В случае представления нормального поля Земли большим числом гармоник (14) наиболее длинноволновая компонента в аномальном магнитном поле будет, соответственно, около 2850 км.

2. Вторым распространенным методом выделения поля коры (литосферы) является метод осреднения. Сущность метода осреднения основана на теореме Гаусса, из которой следует, что для любой поверхности, окружающей намагниченное тело

Это свидетельствует о том, что среднее значение нормальной составляющей напряженности магнитного поля, взятое по всей замкнутой поверхности, равно 0. Для конечных по размерам тел коры интегрирование по всей поверхности земного шара заменяется суммированием по некоторой ее части, так как вдали от тел магнитное поле, создаваемое ими, будет ничтожно мало.
Согласно теории в зависимости от площади, на которой производится осреднение элементов земного магнетизма, исключаются те или иные аномалии, источники которых залегают не глубже определенной глубины h.

В плане рассматриваемой проблемы следует отметить, что сглаженное (нормальное) поле, полученное скользящим осреднением, уже при длине интервала осреднения около 400 км, с точностью ± 80 нТл совпадает по величине с главным полем Земли, представленным рядом длиною в 9 гармоник [342].

3. Последним распространенным в бывшем СССР методом построения нормального поля является метод графического сглаживания изолиний, построенных по данным наблюдений в отдельных точках. Построенное М.С.Рябковой и З.А.Макаровой [372] вдоль опорных профилей методом графического сглаживания нормальное поле в пределах погрешности его построения соответствует главному полю Земли, полученному аналитическим путем.

В заключение этой части раздела необходимо остановиться на точности выделения нормального поля Земли, которая в случае аналитического его представления определяется точностью аппроксимации магнитного поля сферическим рядом. Спутниковые анализы представляют измеренные в космическом пространстве значения ΔT со среднеквадратической погрешностью ±10±50 нТл, представление компонент при этом хуже. Как следует из сопоставления вычисленных по спутниковым анализам значений H, D, Z с данными наземных съемок и обсерваторий, среднеквадратическая погрешность возрастает до ± 200±250 нТл [342]. Примерно с такой же погрешностью современные “компонентные” анализы аппроксимируют H, Z, T. Естественно, не меньшими являются погрешности
представления нормальных полей методами осреднения и графического сглаживания.

Следовательно, в случае "включения" в нормальные поля крупных региональных аномалий их величина может быть порядка погрешности построения нормального поля. Столь обстоятельный анализ построения нормального геомагнитного поля Земли и карт \((\Delta T)_{a}\) обусловлен с одной стороны, сложностью выделения слабоинтенсивных региональных магнитных аномалий, и с другой — их интерпретацией совместно с аномалиями МАГСАТ. Последние обладают длинами волн в первые тысячи километров и формально включаются в нормальное поле Земли, что, как будет показано в дальнейшем неприемлемо с физической точки зрения, поскольку такие длины волн определяются суперпозиционным эффектом более высокочастотных аномалий, в частности региональных, источники которых расположены в пространстве земной коры.

3.1. Выделение региональной компоненты аномального магнитного поля \((\Delta T)_{a}\). Под региональной (длинноволновой) компонентой аномального магнитного поля подразумевается поле, обусловленное магнитными неоднородностями и структурой глубинных частей земной коры, в предположении, что локальная компонента исчерпывается влиянием магнитных неоднородностей верхнего слоя консолидированной коры мощностью порядка 5—10км [155]. Существует много различных способов разделения поля на отдельные составляющие: пересчет поля в верхнее и нижнее полупространство, разложение в ряд Фурье, осреднение, представление поля сплайн-функциями, сглаживание и метод геологического редуцирования. Необходимо подчеркнуть, что во всех способах разделения
(за исключением последнего) в связи с непрерывностью частотного спектра аномального магнитного поля подавление мешающих особенностей высокочастотной компоненты в большинстве случаев осуществляется не полностью, а остается в отфильтрованной части в виде некоторого искажающего влияния. Применение формальных методов оправдано только в случае скрупулезного анализа физической природы трансформированных полей. Так, например, автором [221] для оценки частотного состава поля и определения среднестатистической глубины залегания источников длинноволновой составляющей по геотраверсу II были вычислены выборочные спектральные характеристики энергетического спектра по программе, созданной на основе алгоритма [240]. В результате спектрального анализа уверенно выделяется длинноволновая составляющая поля. Однако разрыва или существенного минимума между длинноволновой и локальной составляющей не отмечается. С использованием модели и методики, предложенной И.К.Пашкевич и В.Д.Соловьевым [250], была определена глубина до верхней кромки источника длинноволновой составляющей поля. Она составляет 7—10 км. Совместный анализ спектра и магнитного поля по геотраверсу II и в его окрестностях показывает, что второй этаж магнитных тел (глубина до верхних кромок которого оценивается в 2.0—2.5 км [157]) является, по всей видимости, фиктивным, вызванным "нетипичными" для обнаженной части щита локальными аномалиями, обусловленными телами, выходящими на поверхность фундамента и имеющими большие поперечные размеры, а также аномалиями, обусловленными источниками докембрийского фундамента в погребенной его части. Фиктивность этого этажа обусловливается также тем, что профиль пересекает часть аномалий не вкрест их простирания и, естественно, получаемые длины волн в этом случае
будут завышены по сравнению с истинными. Необходимо также подчеркнуть, что полученные глубины до верхней кромки глубинного источника являются оценочными, так как при равномерном шаге выборки и отсутствии разрыва в спектре не известно, какой вклад в региональную компоненту вносится за счет суперпозиции локальных источников и степени затухания поля на участках глубокого залегания докембрийского фундамента. Для геотраверса II данная глубина, по всей видимости, определяется вкладом Львовской региональной магнитной и отрицательной ветви Новоград-Вольнской региональной магнитной аномалии (Коростенская региональная магнитная аномалия). Этот вывод подтверждается в некоторой степени глубиной до верхней кромки глубинного источника Львовской региональной магнитной аномалии (10—15 км), полученной для этой аномалии путем решения обратной задачи декомпозиционно-итерационным методом Завойского-Неижсала [112]. Следовательно, такого рода анализ показывает, что спектральный анализ “имеет право на жизнь” только как “индикаторный” метод обнаружения и предварительного анализа поля, дающего “информацию к размышлению”.

Другим, широко применяемым методом выделения региональных магнитных аномалий, является пересчет поля на разные высоты (А.А. Андреев, В.М. Воробьев [3], А.А. Борисов, Г.И. Круглякова [21], З.А. Крутиховская, Э.В. Мельничук, С.Г. Слоницкая, М.И. Орлюк [150], З.А. Крутиховская, И.К. Пашкевич, И.М. Силина [155] и др.). В качестве примера на рисунке 3.2 приведены фрагменты карт аномального магнитного поля (ΔT)а на высотах 20 и 40 км. Для подтверждения и обоснования либо опровержения такого подхода автором выполнены оценки затухания поля с высотой от реальных моделей с дальнейшим сопоставлением с результатами
наблюдения поля \(T \) и его градиента на стратисферных высотах (28-30 км) (Ю.П. Цветков [316]). Отметим, что полученные значения аномалий и их градиентов на высотах 10 и 28—30 км существенно больше получаемых по результатам трансформации поля в верхнее полупространство или оценки их затухания согласно оператору \(e^{-wh} \), где \(w = 2\pi/\lambda \), \(\lambda \) — длина волны. Так, для источника с длиной волны на поверхности 70 км на дневной поверхности и интенсивности поля 600 нТл, пересчитанное на высоту согласно оператору, поле должно быть 245 нТл на высоте 10 км и 40 нТл на высоте 40 км, в то время как рассчитанное от модели имеет величины 320 и 145 нТл соответственно. Если пересчитать поле с высоты 10 на 30 км, то в этом случае расхождение будет существенно меньшим — 122 нТл по сравнению со 145. Все это свидетельствует о том, что даже для пересчета поля на высоту от изолированного источника необходимо учитывать изменение длины волны с высотой пересчета. В подтверждение этому на рисунке 3.2 представлено поле \((\Delta T)\) района Курской магнитной аномалии на высоте 20 и 40 км, из которого следует, что эффект от локальных источников (железистых кварцитов) на этих высотах затухает полностью. В связи с этим просчитана самая простая модель, а именно: железистые кварциты верхней части коры аппроксимированы источником мощностью в 4,5 км, протяженностью 450 км, верхней кромкой на глубине 0,5 км, нижней на глубине — 10 км и намагниченностью 100 А/м.
Рис. 3.2. Фрагменты карт аномального магнитного поля (\(\Delta T\)а) на высотах 20 (а) и 40 (б) км [20,21] и графики аномального магнитного поля (\(\Delta T\)а) по профилю КМА – Южный Сахалин [179].
Для такой модели на высоте 0,4км в максимуме значение поля составляет 40 000 нТл, на высоте 20 — более 1200. И даже на высоте полета спутника (350—450км) в максимуме сохраняется 5-6 нТл. Эти величины от довольно грубой, оценочной, модели неплохо соответствуют полю (\(\Delta T\)а), полученному
В.Н. Луговенко [178] на стратисферных высотах вдоль профиля КМА — Южный Сахалин. Так, на высоте 30 км в максимуме наблюдала аномалия более 1000 нТл, что близко к расчетным величинам. Таким образом, в случае использования регионального поля, пересчитанного на высоту, необходимо учитывать данные повысотных съемок, как это сделано частично в работах З.А. Крутиховской с соавторами [155,157].

Обоснованная критика выделения региональной компоненты аномального магнитного поля путем осреднения наблюденных значений или расчета их на высоту порядка 10, 20 и более километров приведена в работах К.Ф. Тяпкина и Г.Я. Голиздры [311, 312]. Ими показано, что аномальные значения осредненного по площади S магнитного поля, если его рассматривать в качестве исходной функции, будут соответствовать новому распределению магнитных источников, при котором каждый элементарный объем магнитных масс растягивается в горизонтальный диск площадью S. Магнитная масса диска равна магнитной массе элементарного объема, а распределение намагниченности в нем будет определяться взвешивающей функцией $F(x,y)$ [311]. Такие же выводы следуют и в отношении использования в качестве региональных аномалий наблюденных полей, рассчитанных на высоту h. Как и при осреднении, в результате расчета локальных аномалий на высоту h их источники приобретают свойства источников региональных аномалий. Из этого следует вывод, что никакими формальными приемами нельзя разделить источники локальных и региональных аномалий или, соответственно, “поверхностные” и “глубинные” источники между собой.

Следовательно, единственным методом, позволяющим объективно, с учетом геологической ситуации, производить разделение полей от разных
источников, является метод геологического редуцирования, т.е. решение прямой задачи магниторазведки от известных источников с дальнейшим вычитанием его из суммарного поля. Применение других формальных методов оправдано только в случае скрупулезного анализа физической природы трансформированных полей, что часто требует существенных усилий.

Применение метода геологического редуцирования требует знания намагниченности верхней части коры и геометрических параметров источников локальных аномалий. Оценка намагниченности верхней части земной коры производится двумя путями: использованием определений магнитных свойств по отдельным образцам с последующей их корреляцией и привязкой к стратиграфическим комплексам; а также определением намагниченности в результате интерпретации локальных магнитных аномалий.

Необходимо отметить, что при оценке эффективной намагниченности геологического тела по аномальному полю для установления его принадлежности к какому-либо петрографическому комплексу, как это практикуется при составлении петромагнитных карт, невозможно отделение индуктивной намагниченности от остаточной. При определении намагниченности образцов пород, отобранных с поверхности массива, возможна ошибка, связанная с недостаточной представительностью отбора и большой измененностью поверхностных образцов. Как показано многими авторами [155, 218, 240, 367], локальные аномалии характеризуют намагниченность коры до глубин 5—15 км, в то время как намагниченность образцов несет информацию только о верхних первых километрах. Следовательно, необходимо сочетание двух методов оценки:
непосредственного измерения намагниченности образцов пород; оценки намагниченности по аномальному полю, которая позволяет утверждать, что сделанные определения распространяются на весь массив по глубине, а не только на приповерхностные части. Та или иная методика имеет преимущества в зависимости от глубины залегания докембрийского фундамента. В частности, для щитов при достаточной представительности коллекции образцов достоверные сведения можно получить путем изучения магнитных свойств пород. В закрытых частях платформы, где имеются лишь немногочисленные скважины, предпочтение следует отдавать величине намагниченности, полученной путем интерпретации локальных магнитных аномалий.

Продемонстрируем применение метода геологического редуцирования на примере Волыно-Подольской окраины Восточно-Европейской платформы [221] и запада Украинского щита [382]. Для западного склона Украинского щита и Львовского прогиба в связи с тем, что фундамент закрыт осадочным чехлом (местами довольно мощным, достигающим 3—8 км), имеется ограниченное количество непосредственных измерений намагниченности или магнитной восприимчивости. Прежде всего необходимо отметить, что терригенные и карбонатные образования платформенного чехла на исследуемой территории практически не магнитны.

Магматические и эффузивные образования волынской серии (мощностью от первых до 650 м) обладают высокой магнитной восприимчивостью.

Н.П. Михайловой и А.М. Глевасской получено [204], что для базальтов из карьеров Берестовца, Яновой долины, Мутвицы и Полицы векторы
намагниченности имеют направление, близкое к направлению современного поля. В дальнейшем эти данные использовались при оценке магнитного эффекта от толщи волынской свиты. В последнее время для некоторых скважин получены и другие направления намагниченности. Отложения волынской свиты также представляют собой толщу из переслаивающихся пластов базальтов и туфов. Для одной из скважин (определения намагниченности Н.П. Михайловой) просчитан суммарный эффект от пачки, состоящей из семи пластов, с различной величиной и направлением намагниченности. Верхняя кромка толщи залегает на глубине 40, а нижняя — 173 м, векторы намагничения и их величины показаны на рисунке 3.3. Для нас важным было сравнение эффектов переслаивающейся толщи и этой же толщи с однородной намагниченностью с направлением по полю Земли. Как видно, над центром модельного разреза напряженность поля от двух моделей практически одинакова и составляет 80—90 нТл. Основные различия наблюдаются в краевых частях, но это можно считать недостатком модели, так как в случае поочередного выклинивания пластов градиенты поля будут намного меньше. Следовательно, замена такой слоистой модели с различным направлением намагниченности и направлением вектора по современному полю вполне правомерна при оценке эффекта покровных эфузивов волынской свиты.

Среди магматических и метаморфических пород кристаллического фундамента присутствуют кислые, средние и основные разности. Максимальное количество определений магнитной восприимчивости произведено для западной части УЩ, его западного склона и Припятского вала. Подробная сводка о магнитных свойствах пород района исследований приведена в работах В.И. Клушина [135], З.А. Кругиховской с соавторами.
Суммируя все эти сведения, среди образований докембрийского фундамента можно выделить следующие группы пород с определенными величинами намагниченности:

1) слабо намагниченные (0.0-0.7 A/m) метаморфические (гнейсы, сланцы) и ультраметаморфические (граниты и мигматиты) образования амфиболового и биотитового состава: гнейсы, граносиениты того же состава, амфиболиты;

2) ультраметаморфические породы (граниты, гранодиориты и диориты) средней намагниченности (0,7—1,53) высокомагнитные образования: (1,5—4,0 A/m) габбро-анортозиты, габбро-нориты, пироксен-амфиболовые, биотит-амфиболовые гнейсы, в различной степени гранитизированные до чарнокитов и амфиболовых гранитогнейсов, метаморфические образования пироксен-плагиоклазового состава, габбро-диориты, интрузивные образования основного состава (габбро, габбро-диориты, габбро-амфиболиты), пироксен-амфиболовые и амфибол-пироксеновые гнейсы.

Как уже указывалось, для закрытых территорий необходимо вычисление намагниченности путем интерпретации локальных аномалий. По методике Л.В.Булиной [27] и В.Н.Зандер и др. [114] определены величины намагниченности для локальных аномалий. Большинство из них, интенсивностью 300—1500 нТл, обусловлены образованиями с намагниченностью 1,0—3,0 A/m, что соответствует средне- и высоконамагниченным образованиям. Как показали результаты расчета глубин залегания нижних кромок (вычисления проводились по методике Л.В.Булиной [27] и графо-аналитическому методу К.А.Гуры [87]), тела с такой намагниченностью распространяются до глубин не более 12—15 км. В районе Новоград-Волынской региональной магнитной аномалии и западной
Рис.3.3. Аномальное магнитное поле (ΔT)a от пачек переслаивающихся базальтов и туфобазальтов с различными величинами и направлениями векторов суммарного намагничения (А) и этой же толщи со средневзвешенной намагниченностью 2,7 А/м с направлением по современному полю Земли (Б).

части Украинского щита нижние кромки находятся на глубинах 6—10 км, такие же глубины характерны и для юго-западного склона щита. Следовательно, намагниченность верхней части земной коры, полученную путем измерений на образцах и по результатам интерпретации локальных аномалий, можно распространить до глубин порядка 10 км.

С использованием этих данных выполнено геологическое редуцирование верхней части земной коры для геотраверсов II и IV.
Учитывая, что глубины залегания нижних кромок источников локальных аномалий в районе геотраверсов II и IV изменяются от 6—8 до 12—15 км и слабо влияют при таких глубинах (см. [155]) на величину \((\Delta T)\alpha\), нижняя граница намагниченных тел была принята постоянной и равной 10 км. В дальнейшем оценка вклада верхней части земной коры заключалась в решении прямой задачи для заданного распределения намагниченных тел по программе В.Н. Завойского и И.Н. Иващенко для двухмерного варианта [108]. Для запада Украинского щита в районе геотрансекта “Евробридж” просчитан также эффект верхней части коры в трехмерном варианте.

Осадочный чехол в районе исследований, как было указано, немагнитен, за исключением волынской серии, представленной вулканогенно-осадочными образованиями, базальтами и туфобазальтами. Мощность данной толщи принята согласно схеме, приведенной в работе Б.И. Власова [44]. Максимальное значение эффекта такой толщи на дневной поверхности составляет 30—40 нТл.

В результате исключения эффекта верхней части коры на геотраверсе II выделены две региональные магнитные аномалии: Новоград-Волынская и Львовская (рис.3.4). Первая из них расположена в пределах щита и его западного склона. Максимальная напряженность разностной компоненты в районе геотраверса — 200—250 нТл. Львовская РМА интенсивностью в 300—350 нТл расположена в юго-западной части геотраверса и частично находится в области максимальных траппових излияний. В районе геотраверса IV данная аномалия имеет интенсивность 500—550 нТл.

Построенная трехмерная магнитная модель верхней части коры в районе геотрансекта “Евробридж” позволила подтвердить наличие Новоград-Волынской региональной магнитной аномалии и доказать реальность
существования глубинного источника Винницкой региональной магнитной аномалии. Интенсивность последней аномалии при этом составляет 350—400 нТл.

В связи с большой трудоемкостью трехмерного моделирования локальной компоненты аномального магнитного поля для получения региональной составляющей региона по площади использована специальная методика сглаживания поля в минимумах с разными размерами палеток [128]. Разработанная Г.И.Каратаевым и И.К.Пашкевич [127-129] программа выделения региональной компоненты из наблюденного магнитного поля состоит из следующих операций:

1 — предварительного сглаживания наблюденного поля с малым радиусом осреднения с целью подавления мелких по размерам минимумов;

2 — выделения минимумов и определения веса каждого из них;

3 — построения огибающей значений минимумов по неравномерной сети с учетом их веса;

4 — сглаживания огибающей с учетом введенного размера минимальной региональной аномалии и вычисления значений региональной составляющей в узлах равномерной сетки;

5 — корректировки найденных значений регионального поля за счет предположения (основанного на результатах моделирования) о повышении уровня регионального поля в областях существенной концентрации положительных аномалий.
Рис.3.4. Учет влияния верхней части коры по геотраверсам II и IV: 1 — наблюдаемое поле \((\Delta T)а\); 2 — поле \((\Delta T)а\) от верхней части коры; 3 — региональная компонента магнитного поля, полученная путем интегрального параболического сглаживания с \(R=50\) км [128]; 4 — региональная компонента магнитного поля \((\Delta T)а,рег.,\) полученная методом редуцирования влияния верхней части коры; 5 — эфузивно-пирокластические образования волынской серии венда.

Полученная таким образом региональная компонента поля с размерами осредняющей палетки 50 х 50 км с точностью 50—70 нТл соответствует остаточной кривой магнитного поля, полученной путем исключения влияния верхней 10-ти километровой толщи коры и принятой в качестве эталонной. Это дает возможность отнести ее источники к разряду глубинных и перейти к истолкованию их природы.
Выводы.

На основании оценок и расчетов показано, что из множества способов разделения поля на отдельные составляющие, в частности для выделения региональной компоненты аномального магнитного поля, объективным и геологически содержательным является метод геологического редуцирования. Использование полученного таким образом регионального поля на отдельных площадях позволяет получать соответствующую компоненту для больших территорий формальным методом осреднения поля в минимумах. Для ограниченных по размерам территорий при детальных построениях моделирование выполняется без разделения полей на отдельные составляющие. Такая методика в частности использована при моделировании земной коры западной части Украинского щита и Днепровско-Донецкого авлакогена.

3.2. Анализ взаимосвязи регионального магнитного поля с основными физико-петрологическими границами и выбор начального приближения. Рассмотрение корреляционных связей между региональным магнитным полем и глубинами залегания различных границ коры показали прямую связь с мощностями коры для щитов (З.А. Крутиховская и др. [150,155], Л. Холл [365]), континентального типа (Пашкевич и др. [124] и переходных областей от океана к континенту (Е.В.Кочергин, Ю.А.Павлов,
К.Ф. Сергеев [141]. Эта зависимость в целом подтверждается и в пределах Волыно-Подольской окраины Восточно-Европейской платформы для геотраверсов II и IV (М.И. Орлюк [219]). При этом использовались сейсмические разрезы по данным [291]. Отмеченная в работе [155] сильная корреляционная связь между (ΔT)a, рег. и Нм для части геотраверса II в пределах Украинского щита (коэффициент корреляции составляет 0.92) в целом для всего геотраверса более слабая, так как юго-западной части интенсивной Львовской региональной аномалии соответствует относительный подъем поверхности М до 40 км. В юго-западной части профиля изотерма Кюри магнетита, как по данным В.В. Гордиенко [78, 79], так и по данным Р.И. Кутаса [161], располагается выше поверхности Мохоровичича, т.е. выяснение корреляционной связи не совсем корректно. Более благоприятная ситуация наблюдается при исследовании связи РМА с рельефом М в районе геотраверса IV, где изотерма Кюри магнетита залегает глубже раздела М. Так как в районе профиля выделяется зона перехода от коры к мантии, то корреляционная связь магнитного поля с глубинами исследовалась до нижних и верхних отражающих площадок М. Коэффициент корреляции между глубиной до поверхности нижних площадок границы Мохоровичича и интенсивностью региональной составляющей поля равен 0.58, для верхних площадок он находится на уровне значимости 0.35 (см. рис. 3.5 и рис. 3.6). Отметим, что в разных геологических регионах при глубокоэшелонированном характере отражающих площадок на границе между корой и мантией положение современной границы неопределимо. Согласно имеющимся данным для щитов, где большей глубине залегания Мохо соответствуют более интенсивное поле [155], и данным А.В. Чекунова [327] просчитана корреляция до разных площадок М, а именно до ПК 860 по
верхним отражающим площадкам, а восточнее ПК 860 — по нижним площадкам. В данном случае коэффициент корреляции увеличился и составил 0,84. Графики корреляционных зависимостей несут и дополнительную информацию. Возьмем, например, связь между глубинами до нижних площадок М и региональным полем. Если рассматривать корреляцию "покусочно", то обнаружится интересная закономерность: тесная зависимость в областях градиентов зоны прогибания границы Мохоровичича (ПК 660—790 и 900—980). В областях максимальных глубин до раздела М эта связь нарушается (см.рис.3.5 и 3.6). Обращает внимание тесная прямая корреляция между (ΔТ)а,рег. и глубиной до поверхности кристаллического фундамента — 0.96. Эта зависимость характерна для всех участков профиля IV. Данный факт можно проинтерпретировать следующим образом: для юго-западного края Восточно-Европейской платформы причины образования прогибов в рельефе Мохо и кристаллического фундамента одна и та же, но процессы, приведшие к этому, более интенсивно протекают в низах коры и, возможно, верхней мантии. Об этом же говорят относительные амплитуды прогибов — 6—8 км для кристаллического фундамента и 20—30 для границы Мохо. Различие в амплитудах прогибов разных этажей земной коры позволяет предполагать градиентную картину проработки коры с затуханием процесса к поверхности [219].
Рис. 3.5 Сейсмические разрезы вдоль IV и II геотраверсов ГСЗ [29] : 1-подошва флишевого комплекса в Карпатах, 2-поверхность древнего фундамента со значениями граничной скорости [км/с], 3-4- отражающие границы в консолидированной коре, 5-проплывающие горизонты и значения граничной скорости, 6-молодая граница М в районе горных Карпат, 7-поверхность М, 8-участки поверхности М, построенные по преломленным волнам, 9-отражающие площадки, 10-осадочный слой, 11-разломы менее крупные, 12-глубинные и другие крупные разломы по данным ГСЗ, 13-профили ГСЗ II и IV, 14-государственная граница Украины.
Рис. 3.6. Графики корреляционных зависимостей по геотраверсу IV между полем \((\Delta T)\) и глубиной залегания фундамента \(h_f\) (1); нижними и верхними отражающими площадками поверхности Мохоровичича(2,3); 4 — нижними отражающими площадками до ПК 860 и верхними правее ПК 860(4); поверхностями \(K_2 — K_3\) (5).
Отличные от описанных зависимостей между региональной компонентой аномального магнитного поля \((\Delta T)_{a}\) и глубинами залегания поверхности консолидированной коры и Мохоровичича установлены для Днепровско-Донецкого авлакогена. Обнаруженная взаимосвязь между \((\Delta T)_{a,\text{рег}}\) и \(h_{\phi}\) подтверждена и для данной структуры. Так для района Черниговского магнитного максимума характерен прогиб фундамента с глубинами 5,0 — 5,5 км. Больши́ми по сравнению с окружающими регионами глубинами фундамента (до 10 — 11 км) характеризуется область Лохвицкой положительной региональной магнитной аномалии.

Корреляционная зависимость между \((\Delta T)_{a,\text{рег}}\) и \(H_{m}\) противоположна установленной для Украинского щита З.А.Крутиховской с соавторами [155]. А именно, максимальные значения региональной компоненты аномального магнитного поля соответствуют не прогибам поверхности \(M\), а ее подъемам. Так при слабовыраженном для северо-западной части авлакогена рельефе поверхности \(M\), для района Черниговского максимума намечается все-таки ее слабый подъем до 42 км по сравнению с 45 км для окружающих регионов Украинского щита и Воронежского массива. А для области Центральной депрессии, к которой приурочена Лохвицкая региональная магнитная аномалия характерен подъем поверхности Мохоровичича до 35 км. Причем такие глубины восточнее Полтавы тяготеют к северному борту, как и относительно повышенные значения региональной компоненты аномального магнитного поля. В пределах Донбасса (в районе профиля ГСЗ \(X\)) характерно иное соотношение \((\Delta T)_{a,\text{рег}}\) с поверхностью Мохоровичича. Только для Северного Донбасса наблюдается корреляция максимума магнитного поля с подъемом поверхности \(M\), как и для Приднепровской части авлакогена. В Центральном складчатом Донбассе, для которого характерен прогиб \(M\),
ситуация осложнена подъемом изотермы Кюри магнетита в консолидированную кору, чем, по-видимому, определен минимум \((\Delta T)_{а,рег.}\).

Обнаруженные корреляционные зависимости между \((\Delta T)а, рег.\) и глубинами залегания поверхности кристаллического фундамента \((h_ф)\), Конрада \((H_к)\), а также Мохоровичича \((H_м)\) позволяют достаточно уверенно связывать региональную компоненту поля в первом приближении с мощностью консолидированной коры, а в ряде случаев с мощностью нижней ее части.

Достоверность количественной интерпретации региональной компоненты в рамках принятой модели, в первую очередь, определяется вкладом в магнитное поле рельефа верхнего и нижнего ограничений магнитоактивной границы и погрешность его получения. Для наглядности, при оценке эффекта изотермы Кюри магнетита, величина намагниченности верхней мантии принята 3.5 А/м. Изотерма Кюри магнетита вдоль геотраверса II по В.В. Гордиенко [32] находится на глубинах 20—100 км, по Р.И. Кутасу [161] она залегает на меньших глубинах (70 км). Несмотря на колебания поверхности Кюри, согласно В.В. Гордиенко, в 20-30 км и довольно высокую намагниченность данной толщи в расчетном поле она практически не проявляется (рис.3.7) и лишь в юго-западной части профиля, где изотермы Кюри резко поднимаются в сторону Карпат, наблюдается аномалия с амплитудой 500 нТл. Отметим следующий факт: в случае существования длинноволновых аномалий, связанных с колебанием залегания поверхности Кюри магнетита, у них должны быть слабые амплитуды и форма типа аномалии над краем тонкого пласта бесконечного простирания, так как мощность данной толщи в сотни раз меньше...
горизонтальных размеров. В качестве примера можно привести область перехода к Карпатскому региону, где на расстоянии в 80 — 90 км.

Рис.3.7. Сопоставление эффектов от границ раздела К, М и изотермы Кюри магнетита по геотраверсу II: 1 — региональная компонента поля (ΔT)a, рег.; 2 — эффект от рельефа поверхности Мохо (I=3,5 A/м); 3 — эффект от рельефа поверхности К (I=3,5 A/м); 4 — суммарный эффект от границ К и М; 5 — граница К; 6 — граница М; 7 — изотерма T=580°C по В.В. Гордиенко [33]; 8 — изотерма T=600°C по Р.И. Кутасу [161]; 9 — эффект рельефа изотермической поверхности Кюри магнетита по В.В. Гордиенко при I=3,5 A/м.
изотерма Кюри поднимается от 60 до 20 км, создавая резкий контакт магнитной и немагнитной толщ. Кривая \((\Delta T)\), полученная для части мантии, заключенной между границей Мохо и изотермой Кюри магнетита и имеющей намагниченность 3,5 А/м, имеет более дифференцированный вид благодаря большему влиянию конфигурации границы \(M\), залегающей ближе к поверхности. Для этой же толщи при намагниченности ее в 0,5 А/м (вполне вероятной для верхней мантии) вклад не превышает 40—45 нГл. Граница Конрада и Мохоровичича — основные разделы земной коры с глубинами, для которых проводится корреляция с магнитным и другими полями. Для оценки влияния границы Конрада намагниченность нижней части коры принята 3,5 А/м. При такой намагниченности отклонение глубины залегания границы на ±6 км вызывает изменение поля на ±(120—140) нГл (т.е. ± (20—23) нГл/км) (см.рис.3.7).

Для границы Мохоровичича при таком же значении намагниченности перепад глубин в ±15 км дает аномалию в ±180 нГл (12 нГл/км). Другими словами, при однородной намагниченности нижней части коры рельеф поверхности Конрада в поле примерно в два раза сильнее поверхности \(M\). Тот факт, что региональная составляющая поля в большинстве случаев коррелирует с границей \(M\), свидетельствует о том, что намагниченность вблизи \(M\) больше, чем вблизи \(K\), или же об их конформности.

Для Новоград-Волынской РМА положительная часть поля практически полностью обусловлена отрицательной формой рельефа \(M\). Совпадение достигается при суммировании эффекта рельефа поверхности Конрада и Мохо. В отрицательной части кривой такого совпадения при однородной намагниченности нижней части коры не отмечается. Удовлетворительный
эффект получается при уменьшении намагниченности во всем разрезе коры до верхней ее части.

Вопросом проверки допущения связи региональной составляющая поля с глубиной до изотермы Кюри магнетита занимались З.А.Крутиховская, И.К.Пашкевич и В.В.Гордиенко [7,78,155,183 и др.]. В результате для Украинского щита получено, что статистическая связь региональной компоненты магнитного поля значительно слабее с глубиной до поверхности Кюри магнетита, чем до поверхности М. Учитывая погрешности региональной составляющей поля и изотермы Кюри магнетита (как показано в [78], из-за неточности оценки температур изотермы ошибка составляет 40% средней величины расчетных аномалий), а также латеральную неоднородность коры, можно сделать вывод, что построение мощности магнитоактивной оболочки с нижним ограничением — изотерма Кюри магнетита, носит характер первого приближения [78].

С другой стороны, существует много предпосылок для того, чтобы нижним ограничением магнитоактивного слоя Земли можно было считать поверхность Мохоровичича. Данная граница в большинстве случаев представляет собой резкий отражающий и преломляющий горизонт, разделяющий области литосферы с разным вещественным составом. Несмотря на обилие гипотез о природе рельефа М, рассмотренные, например, Р.А.Деменицкой [97], большинство исследователей склоняется к минералогической и (или) фазовой природе поверхности М. В случае фазовой природы границы М (переход базальт-эклогит) он является нижним ограничением магнитоактивной толщи, так как эклогит является немагнитным или слабомагнитным. В последнее время И.Ш.Рахимовой и А.Д.Альтман показана возможность фазовой природы границы М для
складчатой области Карпат и Днепровско-Донецкой впадины [266]. Более сложная картина возможна при минералогической границе Мохо. В большинстве случаев магнитные минералы в глубинах мантийных пород практически отсутствуют, а сами породы немагнитны или обладают очень слабой намагниченностью, что хорошо продемонстрировано на примере альпинотипных перидотитов Д.М.Печерским [256]. Согласно данным [249], неизмененные гипербазиты слабомагнитны и их намагниченность составляет в среднем не более 0,5-0,7 А/м. Исключение составляют гипербазиты, образовавшиеся в платформенный этап развития. Отметим, что в условиях стабилизированной коры характерным является щелочной магматизм, завершающий тот или иной магматический цикл. С увеличением щелочности пород происходит увеличение в них содержания окислов железа. Происходит также рост содержания в них титана и отношения Fe/Mg, т.е. общей железистости пород [258]. Следовательно, в случае минералогической природы границы М часть мантии до изотермы Кюри магнетита может иметь повышенную намагниченность в протяженных линейных зонах активизации платформенных областей.

Выводы

1. Обнаруженная для юго-западного края Восточно-Европейской платформы прямая корреляция региональной компоненты аномального магнитного поля с глубиной до поверхности кристаллического фундамента, а также прямая и обратная — с глубиной до поверхности Мохоровичича свидетельствуют о том, что в первом приближении намагниченные образования могут быть распределены на всю мощность консолидированной коры.
2. Более слабая корреляция региональной компоненты аномального магнитного поля с глубиной до поверхности К2 (не повсеместно распространенный отражающий горизонт) по сравнению с корреляцией до границы М свидетельствует о большей намагниченности земной коры вблизи последней границы.

3. Нижним ограничением магнитоактивной толщи является граница Мохоровичича как поверхность, разделяющая породы разного состава или фазового состояния и обусловливающая региональные аномалии одного порядка с аномалиями, выделенными методом геологического редуцирования или поверхность Кюри магнетита, в случае ее залегания выше М.

4. При глубине границы М в 40 км и намагниченности нижней части коры 1,2—3,5 А/м ее отклонение на ±5 км дает в поле (ΔT)a величину (20 — 60) нТл. Следовательно, при интенсивности региональных магнитных аномалий в первые сотни нанотесл ошибка в задании нижнего ограничения ±5 км не вносит существенных искажений в расчетные величины намагниченности коры.

5. Анализ корреляционных зависимостей и количественные оценки магнитных эффектов основных разделов земной коры по геотраверсам ГСЗ свидетельствуют о том, что кора неоднородна по латерали. Большие величины намагниченности коры могут приурачиваться как к прогибам, так и к подъемам поверхности М.

3.3. Теоретические магнитные модели палеорифтов и субдукционно-обдукционных зон как первоначальные приближения для построения и истолкования магнитных моделей коры. Выбор начального приближения и тектонотипа источников региональных магнитных аномалий
является важным звеном для интерпретации и истолковании их природы. При интерпретации локальных изолированных источников аппроксимирующее источни геометрическое тело (пластина, многоугольник и т.д.), как правило, адекватно по форме геологическому объекту, что позволяет получать истинные (полные) величины намагниченности, а значит, и геологически содержательную информацию по верхней части коры, чтобы использовать ее для картирования. В случае же интерпретации региональной компоненты аномального магнитного поля в связи с увеличением расстояний до аномалиеобразующих объектов степень неоднозначности решения обратной задачи магниторазведки возрастает и начинает действовать правило: “получил то, что задал”, естественно в уточненном виде. Поэтому выбор начального приближения является предопределяющим для дальнейшей интерпретации и усовершенствование этого элемента может, в конечном итоге, привести к получению объективной информации о глубинных этажах коры по геофизическим исследованиям (Аномалии геомагнитного поля ... [7], В.М.Егоров, С.К.Швайберов, Т.П.Егорова, А.Н.Заворотько [104], Т.П.Егорова, Л.В.Курганова, В.И.Старостенко [105], В.Н.Завойский, З.А.Крутиховская, Ю.Е.Неижсал [110], Исследование региональных магнитных аномалий ... [124], Г.И.Каратаев, И.К.Пашкевич [128], А.И.Кобрунов [137], С.С.Красовский [143], З.А.Крутиховская, И.К.Пашкевич, И.М.Силина [155], М.И.Орлюк [223], В.И.Старостенко, А.С.Костюкевич, В.Г.Козленко [287], В.Н.Страхов [289] и многие другие).

При выборе начального приближения для интерпретации региональной компоненты аномального магнитного поля необходимо иметь в виду два вида начальных приближений. Первый — это формальный выбор геометрии
разреза для подбора величин намагниченности. В этом случае задаются основные границы распространения намагниченных образований — поверхность кристаллического фундамента и Мохоровичича, а также изотерма Кюри магнетита. В некоторых районах выделяется еще одна граница внутри земной коры (Конрада), выше которой располагаются толщи преимущественно гранитоидного состава, а ниже — базальтоидного. Эта граница согласно А.А. Трипольскому и О. М Харитонову часто сопровождается повышенной расслоенностью земной коры [304, 305]. Второй вид — когда первоначальное приближение представляет собой, обоснованную геолого-геофизическими данными грубую модель какого-либо тектонотипа. Такое условное первоначальное приближение пригодно как для построения детальной магнитной модели, так и для истолкования природы источников региональных магнитных аномалий.

З.А.Крутиховской и И.К.Пашкевич [155,157] в качестве тектонотипов положительных региональных аномалий предложены блоки фемического типа (ядра древнейшей кристаллизации коры), а для отрицательных аномалий — сиалического типа. Первые характеризуются проявлением магматизма основного и ультраосновного составов, развитием куполовидных структур, обнажением на поверхности фундамента пород, представленных образованиями меланократового состава гранулитовой фации метаморфизма, приуроченностью к их периферическим и центральным частям железисто-кремнистых формаций, расслоенностью разреза коры и наличием переходной зоны кора — мантия.

Сиалические блоки характеризуются проявлением магматизма преимущественно кислого состава, преобладающим антинклинарным
строением фундамента, “прозрачностью” земной коры и отсутствием мощной переходной зоны от коры к мантии [237, 304, 305 и др.].

Обособление этих двух тектонотипов, согласно [155], предопределено изначальной неоднородностью коры. Фемические блоки формировались на базальтовой протокоре, возникшей по габброидам, толеитам, ультрабазитам, а сиалическая — на коре базальт-андезитового типа. Такой же вывод можно сделать для территории Белоруссии, где из работ А.А. Доминиковского [100] следует, что кора положительных РМА на всех этапах своего развития, начиная с самых ранних, имела более основной состав по сравнению с корой, отвечающей областям отрицательных аномалий. Но выделение таких тектонотипов, детализированных в дальнейшем в работах М.И. Орлюка [221] и И.К. Пашкевич с соавторами [243-245], применимы для истолкования источников дорифейских этапов развития.

Анализ петромагнитных данных и структурного положения источников региональных магнитных аномалий позволяет сделать наиболее общий вывод об их приуроченности к структурным режимам растяжения коры [218, 219]. Кроме того, реализация условий растяжения возможна в структурах определенного типа либо в отдельных их частях. Так, по данным разных авторов тектонотипом источников региональных магнитных аномалий могут быть рифты (палеорифты), зоны древнейшей консолидации континентальной коры и области сочленения океанической и континентальной литосфер [141, 150, 155]. Аналоги этих структур обнаружены в пределах древних платформ и щитов. Поэтому рассмотрим более детально возможность генетической связи источников аномалий с указанными структурами.

Теоретическая модель континентального рифта. Остановимся на характере магматизма палеорифтовых зон на разных этапах развития, как
определяющего, в основном, магнитные свойства пород. В условиях рифтового режима проявление магматизма всегда опережает процесс рифтогенеза, отражающегося в рельефе фундамента, структуре коры и осадконакоплении на всех стадиях развития рифта (А.Ф.Грачев, А.И.Поляков [84], Е.Е.Милановский [199, 200], А.В.Разваляев [264]). Отмечается направленность типа магматизма и его состава от ультращелочных продуктов к толеитовым базальтам (ультращелочные породы — щелочные и слабощелочные базальты, а также щелочные риолиты — базальты переходного типа с более выраженным толеитовым характером — толеиты). Перечисленные комплексы пород представлены, как правило, магнитными и высокомагнитными образованиями [103].

Необходимо остановиться на предрифтовой стадии развития литосферы, как одном из возможных ее состояний, в случае затухания процесса рифтообразования. По данным А.В. Разваляева [264], на предрифтовом этапе отмечается приподнятое положение основных слоев литосферы, которая служит ареной очень длительного процесса становления щелочно-гранитоидных вулкано-плутонических комплексов, сохранившихся в современном срезе в виде кольцевых интрузий центрального типа. Такие комплексы отмечены в Восточно-Африканской, Западно-Африканской, Байкальской кайнозойской системах, пермском грабене Осло [160, 200, 264]. В пределах хорошо изученной Аравийско-Нубийской провинции около 100 кольцевых структур представлены ассоциацией пород, представленных тремя комплексами: габбро-гранитоидные, или щелочноземельные; щелочно-габброидные, или щелочные; щелочно-гранитоидные. Некоторые кольцевые образования имеют сложное строение. Так, большая часть кольцевой структуры Саса (75 км к западу от Красного моря) сложена габброидами,
постепенно переходящими в краевых частях через габбро-диориты к диоритам. Такая структура известна в разрезе докембрия западного склона Украинского щита.

Продолжительность процесса рифтогенеза может варьировать от десятков до сотен миллионов лет. В пределах древних платформ он часто выражен несколькими циклами. Эндогенный процесс рифтогенеза, обуславливающий глубинную перестройку, как правило накладывается на уже сформированный структурный план, приспосабливается к нему,

используя, в первую очередь, структурные неоднородности и ослабленные зоны разломов [264].

Согласно экспериментальным данным Г.Рамберга [265], поднимающаяся пластическая масса (диапир), встречая слои, плотность которых меньше плотности поднимающегося материала, стремится распространиться в горизонтальном направлении, порождая соответствующие напряжения в вышележащей толще коры благодаря фрикционному сцеплению. Согласно В.Г.Гутерману и В.Г.Козленко [92, 93] и С.С.Красовскому [143] вышележащие блоки могут погружаться на различную глубину (вплоть до полного погружения) в зависимости от соотношения плотностей блоков коры и поднимающегося пластического материала. Применительно к реальным обстановкам такие построения несут важную информацию о процессе рифтообразования в разных по строению областях литосферы. Так, по данным [264] в кратонах с мощной гранитной корой внедрение базальтовых даек и расплавов на поверхность возможно лишь на начальной стадии развития рифта вдоль ослабленных зон. В дальнейшем в низах коры появляется низковязкий, подплавленный слой, в
котором происходит мигматизация и зарождение очагов гранитной магмы. Этот слой препятствует излиянию базальтов. На стадии растекания мантийного диапира образуется анортозит-перидотитовая серия пород и прекращается гранитообразование. На заключительном этапе происходит утолщение коры кратона за счет базальтового вещества "отмершего" диапира. Таким образом, полный разрыв коры, по-видимому, не происходит вследствие значительной ее мощности и вязкости, хотя при значительных горизонтальных напряжениях образование рифта в существенно гранитоидной коре отрицательно, вероятно, не стоит. Под древними подвижными поясами при наличии в основании коры тугоплавких чарнокит-гранулитовых пород низковязкий слой не образуется, в связи с чем при растекании диапира наиболее вероятен раскол с заложением рифта.

Отсюда можно сделать более общий вывод о различной реакции блоков коры в зависимости от их состава (тугоплавкости) на одно и то же воздействие со стороны мантийного диапира. Так, при образовании крупного диапира, захватывающего блоки с различным составом и т.д., одни из них будут проницаемы для базальтоидов на всех этапах развития и погружаться, другие же будут всплывать, образуя при этом в низах коры слой, препятствующий попаданию на поверхность базальтоидных расплавов. Блоки же с тугоплавкими породами будут раскалываться с проникновением в них базальтоидных пород и, по-видимому, погружаться в зависимости от соотношения плотностей блока и диапира. Рассмотрим возможность формирования магнитных неоднородностей в процессе образования рифтов на коре разных составов (рис.3.8).

Первую — образование рифта на континентальной коре с наличием гранитного и базальтового слоев (условные названия слоев коры
«гранитный», «андезитовый» и «базальтовый» применяются здесь в отношении характеристики основности и намагниченности слагающих их пород. Для расчета теоретической кривой от данной модели гранитный слой принят немагнитным, а базальтовый — с намагниченностью 2.0 A/m. Вторая возможность — это образование рифта на менее основной коре гранит-андезитового состава. В этом случае гранитный слой также немагнитен, а намагниченность нижней коры принята равной 0.3 A/m, т.е. вся кора практически немагнитна. Третий случай — образование рифта на границе двух типов коры: существенно основной (с базальтовым нижним слоем) и менее основной (с андезитовым составом низов коры).

Рис. 3.8. Теоретические магнитные модели рифтов, формирующихся на коре преимущественно основного состава в низах коры (а), среднего состава (б), на стыке блоков с разной основностью и намагниченностью (в): 1—3 — слои коры преимущественно кислого, среднего и основного составов; 4 — дайкобразные тела с намагниченностью (а — 3,0—5,0 A/m, б — 10—12 A/m; 5 — разломы; 6 — значения намагниченности слоев, A/m; 7 — магнитное поле (ΔT)a моделей.
Для построения теоретических магнитных моделей принята схема А.В. Разваляева, предложенная им для Красноморского рифта [264]. Для упрощения расчетов принято, что до начала процесса рифтообразования кора по латерали однородна. Магнитные модели рифта просчитаны в порядке, обратном его развитию на прогрессивной стадии развития, соответственно, с охлаждением системы и достижением породами температур ниже 580° С, при которых породы, имеющие ферромагнитные минералы (титаномагнетит, магнетит), приобретают намагниченность и вносят определенный вклад в магнитное поле. На рис. 3.8 представлено поле от модели рифта, заложенного на коре с гранитным (немагнитным) и базальтовым (магнитным) слоями на разных этапах развития. Поле от модели 1 соответствует этапу системы, когда область рифтовой долины прогрета практически до поверхности коры. Как видим, в этом случае рифт проявляется в расчетном поле ярко выраженным минимумом. Поле от модели 2 соответствует включению в магнитоактивный слой локальных дайкообразных источников. Следующая, третья, модель отражает влияние источников с намагниченностью 2,5—3,0 А/м, а четвертая — почти полному остыванию системы, когда в магнитном пол задействована также область коры с намагниченностью 2,0 А/м. При дальнейшем остывании системы могут быть намагниченными еще более глубинные части. В окончательном варианте данной модели центральный грабен рифта проявлен несколькими локальными аномалиями и слабо отражается в региональной аномалии интенсивностью 100—200 нТл, так как, согласно данным о намагниченности пород, образуемый источник близок по магнитным свойствам к породам базальтового слоя коры. В этом варианте возможно либо полное отсутствие аномалий от рифта, либо отрицательная аномалия, если намагниченность
остывающей породы близка или меньше по намагниченности более древних образований коры, на которой образуется рифт.

Формирование рифта на менее основной и практически немагнитной коре приводит к другому типу аномального магнитного поля над рифтовой системой (на рис.3.8 значение намагниченностью в квадратных скобках). В этом случае фиксируется четкая региональная и локальная компоненты аномального магнитного поля. По-видимому, реальным представляется и вариант развития рифта на границе стыка двух типов коры — магнитного (преимущественно основного состава) и немагнитного (среднекислого) (на рис.3.8 значения намагниченности в круглых скобках). В этом случае наблюдается хорошо выраженная аномалия от рифта, расположенная в градиентной зоне более длинноволновой компоненты, связанной с разной намагниченностью двух типов исходной коры.

С целью проверки такого рода построений на рис.3.9 представлены упрощенные модели коры структур, имеющих по мнению З.А. Крутиховской, Э.В. Мельничука, С.Г. Слоницкой, М.И. Орлюка [150], В.Б. Соллогуба, А.В. Чекунова и А.А. Трипольского [285, 286] рифтогенную природу. Здесь приведены разрезы вкрест Одесско-Ядловской зоны и Днепровского грабена. Отметим хорошее морфологическое соответствие (на качественном уровне) магнитного поля Одесско-Ядловской зоны полю от рифта, развитого на стыке двух типов коры. Упрощенная магнитная модель в общих чертах сходна с теоретической, что позволяет использовать ее в качестве первоначального приближения для более детального исследования структуры коры исследуемого региона.

Упрощенное строение Днепровского грабена (палеорифта) представлено на трех профилях на которых выполнено ГСЗ: Яготин-Батурин,
Рис. 3.9. Примеры проявления палеорифтовых структур Украины в магнитном поле: а — упрощенная магнитная модель Одеско-Ядловской зоны; б—г — сейсмические разрезы вкрест Днепровского палеорифта (б — Яготин — Батурин, в — Пирятин — Талалаевка, г — Синельниково — Чугуев) [331]: 1 — наблюдаемая и региональная компоненты поля (ΔT); 2—4 — слои с преимущественно кислым, средним и основным составом соответственно; 5 — осадочный слой; 6— сейсмические горизонты и отражающие площадки; 7 — поверхности K_2 (а) и M (б); 8 — значения намагниченности слоев, A/м; 9— дайкообразные тела с намагниченностью 5,0—10,0 A/м.
Пирятин-Талалаевка, Синельниково-Чугуев (В.Б.Соллогуб [285], А.В.Чекунов, В.В.Науменко [331]. Два первых из них пересекают палеорифт, образованный на немагнитной (либо слабомагнитной) коре. Как видно из рис.3.9, в этом случае палеорифт отмечается повышенным региональным полем — до 100—150 и 200—250 нТл на отрицательном фоне. Противоположная картина наблюдается в районе профиля Синельниково-Чугуев, где рифт заложен на магнитном основании. В этом случае он четко выражен минимумом регионального магнитного поля. Это не значит, что кора палеорифта немагнитна, просто она менее магнитна, чем древняя кора, на которой образуется рифт.

Построенные теоретические магнитные модели свидетельствуют о том, что недоразвитые рифты могут сопровождаться самыми разнообразными магнитными полями, в связи с чем аномалии магнитного поля не могут служить однозначным критерием выделения структур данного типа. На примере Днепровского палеорифта показано, что одна и та же структура проявляется в магнитном поле как положительными, так и отрицательными аномалиями в зависимости от намагниченности субстрата, на котором заложен рифт. В пределах Украины найдены аналоги теоретическим моделям рифтов, в связи с чем при построении детальных магнитных моделей этих структур и тектонических реконструкций в качестве первоначального приближения можно использовать данные модели.

Кроме такого детального рассмотрения взаимосвязи источников региональных магнитных аномалий с процессом рифтогенеза отметим, что по данным Е.Е.Милановского благоприятными зонами для локализации древних и молодых рифтовых структур являются архейские или даже
катархейские (?) чарнокит-гранулитовые пояса [199]. Наблюдается также взаимосвязь процессов платформенного рифтообразования с соседствующими геосинклинальными областями либо с процессами океанообразования [199]. Другими словами, процессам рифтогенеза, связанным с крупными тектоническими циклами, подвержены области преимущественно основного состава высоких ступеней метаморфизма.

Теоретическая магнитная модель субдукционной зоны (островной дуги). Как известно, субдукционная зона является вторым основополагающим звеном концепции новой глобальной тектоники, аналоги которых, как и рифтов, обнаруживают в континентальной коре и с которыми, по аналогии с современными, могут связываться источники региональных магнитных аномалий.

За основу при построении теоретической модели приняты схемы сочленения океанской и континентальной литосферы Дж.Дьюи, Дж.Берда [211], Г. Митчела и Дж. Белла [374] трех типов:

1) океаническая литосфера поддвигается под островные дуги;

2) океаническая литосфера поддвигается под континентальную окраину;

3) контinent сталкивается с островной дугой;

На рисунке 3.10 приведены схематичные разрезы, иллюстрирующие модель развития горных поясов кордильерского (андского) типа при поддвигании океанической плиты под континент.

Согласно [211, с. 209] эта последовательность включает перемещение в сторону океана клиньев океанической коры и мантии, аккумуляцию флишевых осадков (с увеличением мощности в сторону океана) и образование голубосланцевого меланжа. Когда океаническая плита
опускается под континентальным подножием на глубину более 100 км, позади вулканического фронта начинаются вулканические извержения. При увеличении теплового потока, генерируемого подъемом базальтовой и известково-щелочной магм, на расширяющемся своде, ядро которого занято

Рис. 3.10. Схематичные разрезы, иллюстрирующие модель развития горных поясов кордильерского типа при поддвигании океанической плиты под континент (По Дж.Дьюи и Дж.Берду [211]).
подъемающейся габбровой и гранодиоритовой магмой, возникает эмбриональный орогенический шов (см. рис. 3.10, Б). По мере расширения и разрастания в сторону континента подвижного ядра (см. рис.3.10,В) осадочные толщи нижней части континентального подножия начинают подвергаться высокотемпературному метаморфизму и деформации. Метаморфизм и деформация охватывают также грубообломочные осадки и вулканиты, которые образовались в ранние стадии раскалывания континента. Когда разрастающийся орогенический шов подымается выше уровня моря, он образует ось осадочной полярности (см. рис. 3.10, Б). В конечном счете волна деформации, сопровождаемая смещением флишевой аккумуляции к континенту, достигает континентальной окраины. Примерно к этому времени относится погружение континентального шельфа (см. рис. 3.10, В) с образованием на нем прогиба, в котором накапливаются турбитиды (флиш), глинистые сланцы и массивные гравитационные чешуи, принесенные с орогенического шва (см. рис. 3.10, Г). Гравитационные чешуи перекрывают зоны хаотических осадков (дикий флиш), образованные за счет “сдирания” ими как бульдозером, глыб подстилающей коры. Когда при движении материала к континенту режим образования флиша, дикого флиша и гравитационных чешуй сменяется условиями надвигового перемещения твердых пород, во внешних прогибах начинают накапливаться мощные речные толщи (молассы). Главным фактором перемещения надвиговых покровов, помимо подъема и приближения к континенту экструзий магмы мобильного ядра (см. рис. 3.10, Г), могут служить также экструзии магмы в латеральном направлении за счет спрединга орогенического шва. В конечном счете вся орогеническая система становится устойчивой, преодолевая дальнейшие интенсивные сжимающие усилия и в орогеническом шве на
высоких уровнях под разбитыми сбросами базальтами и известково-щелочными вулканитами происходит внедрение посткинематических гранитов.

Такая же картина распределения структурно-формационных комплексов характерна и для образования островодужных систем. Так согласно [211, с. 202] источниками известково-щелочной магмы, извергающейся в Японской островной дуге в виде андезитов и дацитов и базальтовых (толеитовых, высокоглиноземистых) серий является частичное плавление эклогита, амфибола и пиролита над погружающейся литосферной плитой. Экспериментальные работы Д. Грина и А. Рингвуда [85] показывают, что кварцевые толеинты и высокоглиноземистые базальты образуются при фракционном плавлении пиролита на глубинах меньше 35 км, а щелочные базальты возникают на глубинах между 35 и 70 км. Вулканическая деятельность на севере Хонсю полностью ограничена областью, лежащей к западу от линии вулканического фронта, в 130 км от желоба. Это говорит о том, что частичное плавление амфиболита и кварцевого эклогита не начинается до тех пор, пока опускающаяся плита не достигнет глубины около 120 км. Если глубина, на которой эклогит и амфиболит начинают испытывать частичное плавление, контролируется в основном величиной давления нагрузки и температурой, то положение вулканического фронта должно зависеть от угла наклона опускающейся плиты.

В области, расположенной между вулканическим фронтом и желобом, заключена утолщающаяся к океану призма преимущественно морских осадков, принесенных с вулканической части дуги. Наблюдается довольно хорошая прямая корреляция между мощностью земной коры и изменением
объема вулканизма, что может свидетельствовать об образовании земной коры главным образом за счет вулканической аккумуляции.

Следовательно, предопределение типов структурно-формационных комплексов переходных областей между континентальной и океанической литосферами (как в случае их непосредственного контакта, так и через островную дугу, причлененную к континенту) наличием субдукционной зоны позволяет предложить "усредненную" теоретическую магнитную модель таких областей.

За основу для ее построения приняты схематические разрезы, иллюстрирующие модель развития горных поясов при поддвигании океанической плиты под континент Дж. Дьюи, Дж. Берда [211] и схема островной дуги по Г. Митчеллу и Дж. Беллу [374].

Эти геологические схемы обладают всеми необходимыми данными (типы пород, разломы и т.д.) для параметризации и расчета теоретической магнитной модели. Значения намагниченности пород приняты согласно данным о средних их величинах для определенного типа пород [318, 319]. Верхнее ограничение магнитоактивной толщи, соответствующее современному эрозионному срезу, принято горизонтальным, а неучтенная часть геологической модели показана пунктиром (рис. 3.11). Как видно, в расчетном поле можно выделить региональную составляющую (обусловленную "базальтовым корнем"), максимум которой находится над областью поддывга коры. Относительным минимумом характеризуется область меланжа и глаукофановых сланцев (океанический желоб), с одной стороны, и континентальной коры, с другой. Правда, минимум, обусловленный в данной модели континентальной корой, предопределен выбором ее магнитной характеристикой, так что в реальный ситуации
магнитное поле континента может быть произвольным, так как оно не детерминируется зоной субдукции, а определяется структурой и составом...
земной коры. Необходимо отметить, что эта модель рассматривается как один из вариантов развития структур данного типа (М.И. Орлюк, И.К. Пашкевич [231]). Так, на практике возможно развитие структуры зоны сочленения океанической и континентальной коры при большей мощности последней, чем в рассмотренной модели. В этом случае общая мощность магнитных тел в области поддвига коры (или отдельных ее слоев согласно Л.И. Лобковского [175]) будет больше и, естественно, магнитная аномалия интенсивнее. Аномалия будет также интенсивнее в случае глубокого поддвига коры вплоть до ее погружения в мантию. Обратим внимание на возможность существования в таких областях намагниченных образований глубоко в мантии в связи с заталкиванием намагниченных блоков коры, температура которых ниже точки Кюри магнетита. Как показывают расчеты Р.И.Кутаса, В.А.Цвященко и И.Н.Корчагина [164], блоки коры размерами в первые десятки километров будут прогреваться от первых до десятков миллионов лет, т.е. возможно в течение некоторого времени существование магнитных источников в разогретой мантии в области поддвига холодных блоков коры.

Приведенную теоретическую модель можно сравнить с некоторыми структурами на щитах, которые в своем развитии прошли, предположительно, островодужную стадию либо характеризуются какими-то данными, позволяющими отнести их к такому типу. На рис.3.12 приведена часть геотраверса VIII, пересекающая Западно-Ингулецкую шовную зону, которую можно отождествить с субдукционной зоной (палеоостровной дугой?). Как видно из рис.3.11 и 3.12, характер поля, основные структурные элементы, состав коры и падение разломов очень похожи. Главное, конфигурация источника теоретической модели сходна с полученным по
Рис. 3.12. Магнитная модель Западно-Ингулецкой шовной зоны вдоль геотраверса VIII (По М.И. Орлюку и И.К. Пашкевич [231]): 1 — структуры, сложенные метаосадочными и метавулканическими породами; 2 — архейские граниты; 3 — протерозойские граниты; 4 — разломы; 5—6 — зоны пологих срывов в коре (5) и мантии (6); 7—8 — магнитные источники с указанием величин намагниченности; 9 — поверхность M.
результатам интерпретации, особенно размещение магнитных тел по отношению к разлому, по которому происходил поддвиг коры. То есть получено принципиальное подтверждение характера поля над сравниваемыми разрезами.

Отметим, что сходная субдукционная природа глубинного источника Западно-Ингулецкой региональной магнитной аномалии предложена также Ю.П. Оровецким [238]. В данном случае предполагается субдиурирование под Кировоградскую протоплатформу намагниченных магнетитсодержащих пород криворожской серии, причем роль упора при этом выполняла восточная воронкообразная часть Кировоградского мантийного диапира [237].

Близость позиций в истолковании природы данного глубинного источника (М.И.Орлюк, И.К.Пашкевич [231] и Ю.П.Оровецкий [238] может служить подтверждением истинности такой интерпретации.

Необходимо отметить, что подобный характер магнитного поля наблюдается и в районе современных субдукционных зонах (островных дугах) [141]. При этом увеличение мощности базальтового слоя можно объяснить как поддвигом слоев коры друг под друга, так и его наращиванием за счет переплавления коры, попадающей в мантию согласно описанному выше механизму.

Выводы

Выбор первоначального приближения для моделирования представляет необходимый элемент получения истинных величин намагниченности коры по результатам расчетов. Для локальных источников и структур верхней части коры эта процедура не вызывает особых затруднений. Для построения моделей источников региональных магнитных аномалий и их дальнейшего
истолкования в качестве первоначальных приближений предлагается использовать теоретические магнитные модели континентальных палеорифтов и субдукционно-обдуциональных зон (островных дуг).

3.4. Построение магнитной модели континентальной коры. Методика построения магнитных моделей земной коры является предопределяющей в получении истинных значений величин намагниченности глубинных ее частей и возможности их дальнейшего использования для построения комплексной модели и прогнозирования вещественного состава.

Под магнитной моделью консолидированной коры подразумевается такое распределение намагниченности в ее разрезе, которое:
— включает характеристику намагниченности пород, полученную по измерениям образцов из обнажений и скважин;
— не противоречит петромагнитным и данным других геолого-геофизических методов о физических параметрах и структуре глубинных частей коры;
— с наперед заданной точностью удовлетворяет интерпретируемое поле.

В связи с этим возможны несколько равноправных подходов к построению магнитных моделей коры.

1. Решение прямой задачи магниторазведки с использованием априорных данных, заданных на основании предварительной интерпретации, петромагнитных и сведений других методов о верхнем и нижнем ограничении магнитоактивной толщи (А.Н. Василевский [38,39], З.А. Крутиховская, И.К. Пашкевич, И.М. Силина [155], М.И. Орлюк [218]).
2. Интерпретация аномального магнитного поля одним из методов решения обратной задачи магниторазведки и дальнейшая увязка полученных значений намагниченности с сейсмической, гравитационной и т.д. моделями (Л.В.Булина [27,28], В.Э.Волк [47,48], В.Н.Завойский, З.А.Крутиховская, Ю.Е.Неижсал [110], В.А.Шапиро и др. [336]).

3. Построение магнитной модели при наличии и использовании зависимостей намагниченность — плотность и намагниченность — скорость (Г.И.Каратаев, И.К.Пашкевич [129].

При построении магнитной модели коры в целом важное значение имеет построение магнитной модели ее верхней части. Задача облегчается тем, что верхние 10-15 км разреза коры изучены довольно детально геолого-геофизическими методами. В результате обнаженности и разбуренности этого этажа можно использовать первый подход, т.е. решить прямую задачу для заданных геометрических параметров и величин намагниченности (полученных, как правило, измерениями на образцах). Такие модели построены, в основном, в двумерном варианте для ряда сейсмических профилей Украинского, Балтийского и Алданского щитов. Намагниченность при этом не противоречит измеренным значениям, а глубины нижних кромок залегают на глубинах 7-15 км. Магнитные модели верхней части коры и позволили исключить их эффект из суммарного магнитного поля и выделить региональные магнитные аномалии с длинами волн от 60 до 350 км, источники которых связаны с более глубокими этажами земной коры. Эти модели, а также их эффекты, как эталонные, являются необходимым звеном при выделении региональной компоненты по площади формальными методами, так как позволяют контролировать и корректировать трансформанты магнитного поля [129, 130].
При построении магнитной модели среды использовались первый и второй подходы, третий выполнял функцию контроля. Методика построения магнитных моделей континентальной коры разрабатывалась при построении модели земной коры УЩ [155], Вольно-Подольской плиты [221] (с использованием Z- и T- аномалий по данным приземных съемок) и юго- западной части Восточно-Европейской платформы [234] (с использованием приземных и спутниковых съемок). Поэтому в качестве “материала” и примеров, в основном, использованы данные по этим регионам.

Для определения ориентировочных оценок глубин залегания и величин намагниченности источников региональных магнитных аномалий для региональной компоненты геотраверса II была решена обратная задача с использованием спектральных оценок наблюденного поля, декомпозиционно- итерационного метода Завойского-Неижисала [110], эквивалентных семейств решений А.В.Цирульского и др. [336] и Л.В.Булиной [29, 30]. Все эти методы дают глубины залегания верхней (Н1) и нижней (Н2) кромок нижнего магнитоактивного этажа, соответственно близкие к глубинам до горизонта K и границы M, и еще раз подтверждают сделанный в разделе 3.2 вывод об обусловленности региональной компоненты поля средней и нижней частями коры (рис.18) [218—222].

Исходя из такой предварительной интерпретации (представляющей, по сути, первый путь построения магнитной модели литосферы), для юго- западной части Восточно-Европейской платформы и окружающих регионов выполнен значительный объем работ по моделированию магнитного эффекта коры в 2- и 3-мерном вариантах с использованием в качестве априорных данных ГСЗ, гравитационного и теплового полей (Атлас геологических и
геофизических карт СССР [8], Геология запада ... [61], Гравитационная модель коры и верхней мантии Земли [83], В.С.Заика-Новацкий, А.В.Чекунов [113], В.Н.Зандер и др. [114], Х.Б.Заяц [115], Т.В.Ильченко [121,122], Г.И.Каляев и др. [125], Р.И.Кутас [161,162], Литосфера Центральной и Восточной Европы [169—174], В.Б.Соллогуб [285,286], Структура земной коры Центральной и Восточной Европы [292], С.И.Субботин [294, 295], Тектоносфера Украины и других регионов СССР [300], А.А.Трипольский [305], В.И.Хоменко [324], А.В.Чекунов [327-333]). Для расчетов использовались алгоритмы и программное обеспечение В.Н.Завойского, Ю.Е.Неижсала и И.Н.Иващенко [107—109], позволяющие рассчитывать поля от сложных анизотропных сред. Предложенная геометризация возмущающих объектов позволяет достаточно детально аппроксимировать сложные объекты и разрезы. Так как среда принималась однородной по намагниченности для каждого отдельного тела, в качестве параметра, характеризующего магнитные свойства, использована магнитная восприимчивость пород вдоль и поперек слоистости, равная в обоих направлениях.

Как было показано в разделе 3.2, с использованием программы В.Н.Завойского и И.Н.Иващенко [108] по двум международным геотраверсам II и IV оценено и исключено влияние верхней части коры до глубин 10 км. В дальнейшем проводился подбор намагниченностей ее нижней части, поле от которой удовлетворяло бы региональную составляющую, полученную как разность:

\[(\Delta T)_{a.\text{рег.}} = (\Delta T)_{a.\text{набл.}} - (\Delta T)_{a.\text{в.ч.}} \]

где \((\Delta T)_{a.\text{набл.}} \) – наблюденная составляющая поля, \((\Delta T)_{a.\text{в.ч.}} \) – эффект верхних 10 км разреза коры. Согласно расчетам [221], при моделировании эффекта источников региональных магнитных аномалий разность наблюденного и модельного
полей может достигать 50-70 нТл, что соответствует точности получения региональной компоненты аномального магнитного поля методом исключения влияния верхней части земной коры. Применение второго подхода к построению магнитной модели литосферы Земли вызвано необходимостью опробовать различные модельные представления о строении земной коры с максимальным привлечением косвенной априорной информации о распределении намагниченности в коре и, в частности, о нижней границе магнитоактивного слоя. Учитывая неоднозначность решения обратной задачи [7], проблема "воссоздания" одновременно формы источников и их намагниченности только по полю является неразрешимой. При подборе регионального поля были использованы разные модельные представления, что позволило получить различные количественные характеристики намагниченности изучаемой среды. При моделировании магнитного эффекта земной коры использованы сейсмические разрезы по геотраверсам II, III и IV. Нижним ограничением ферромагнитного слоя для областей, в которых изотерма Кюри глубже границы М, принималась поверхность Мохоровичича, а верхней границей — либо глубина 10 км, либо протяженный отражающий горизонт в земной коре — К2. Намагниченность гранитного слоя ниже 10 км принималась равной 0,3—0,5 А/м, что примерно соответствует средней намагниченности докембрийского фундамента, изученной в пределах Украинского щита З.А.Крутиховской и др. [157], а намагниченность нижней части коры оценивалась как однородная или нарастающая с глубиной согласно априорным данным других методов.

В связи с тем, что построение магнитных моделей с использованием регионального магнитного поля должно производиться с учетом влияния источников на расстоянии соответствующих длин волн, рассмотрим
целесообразность, допустимость и область применения двумерного моделирования. Рассмотрим это на модельных примерах, приближенных к реальным магнитным моделям континентальной коры. Согласно расчетам (Орлюк [221]) для изометричных аномалий в двумерном варианте значения поля в 1,2—1,3 раза меньше по сравнению с трехмерным (соответственно, при расчетах будем получать значения намагниченностей в случае двумерного варианта в 1.2-1.3 раза больше). Для вытянутых в плане тел эта погрешность увеличивается для профилей, проходящих по простиранию (при отношении длины тела к его ширине a/b=2 эффекты отличаются в 1,6, а при a/b=4 — в 2,7 раза), и уменьшается для профилей вкрест простирания (a/b=2 — в 1,12 раза и при a/b=4 — в 1,03—1,04 раза).

Эти два профиля (поперечное и продольное расположение расчетных профилей) представляют собой минимально и максимально возможные разности поля (ΔΤ)a от двумерных и трехмерных источников для приземных высот. Моделировались простейшие случаи, когда верхняя грань тела имеет правильную форму (квадрат, прямоугольник с горизонтальной верхней гранью). Если это условие не соблюдается, эффекты будут иметь больше различий (особенно в зонах градиентов аномалии), поэтому в каждом конкретном случае необходимо определять конкретную погрешность для каждой конфигурации источника.

Сравнение результатов моделирования в дву- и трехмерном вариантах для Новоград-Волынской и Львовской региональных магнитных аномалий показывает, что для профилей, пересекающих эти аномалии вкрест их простирания, различие эффектов составляет, соответственно, 50 и 50—70 нТл. Для профиля, проходящего вдоль Новоград-Волынской региональной магнитной аномалии, максимальное расхождение поля составляет 50 нТл при
I=3,0 А/м (геометрические параметры модели приведены на рис.3.13). Немногим больше зменение поля (60—70 нТл) в случае трехмерной

Рис. 3.13. Сопоставление результатов моделирования в дву- и трехмерном вариантах по части геотраверса II [221]: 1 — наблюдаемое поле (ΔТ)а; 2 — поле (ΔТ)а от двумерной модели при намагниченности регионального источника в 3,5 А/м; 3 — поле от двумерной модели при намагниченности регионального источника 3,0 А/м; 4 — эффект от трехмерной модели при I=3,0 А/м; 5 — региональная компонента поля (ΔТ)а; 6 — контуры тел.
модели при закрепленных геометрических параметрах вызывается изменением намагниченности на 0,5 А/м. Для субпродольного профиля вдоль Львовской РМА расхождение поля составляет уже около 100 нТл (в трехмерном варианте данному изменению поля соответствует изменение намагниченности I=1,0 А/м). Выполнено также моделирование для оценки бокового влияния тел, не пересекаемых профилем, а находящихся на некотором удалении от него.

1. Изолированный источник с поперечными размерами 5 км, верхней кромкой на глубине 3, нижней — 40, с длинной осью 150 км и намагниченностью 2,0 А/м на поверхности Земли имеет максимум в 230 нТл, минимумы интенсивностью 11 нТл находятся на расстоянии 25 км от края тела. С высотой аномалия затухает с одновременным увеличением длины волны. Так, на высоте 10 км интенсивность в максимуме составляет 10, а в минимумах, находящихся на расстоянии 50 км от края, достигает 3 — 5 нТл. На высоте 30 км минимум уже будет находиться на расстоянии 90 км от края тела, правда с интенсивностью, меньше 1 нТл. При меньших глубинах залегания нижней кромки минимум, естественно, будет находиться ближе к краю. Так при глубине в 20 км и тех же параметрах минимум интенсивностью 38 нТл будет на поверхности на расстоянии 15 км, на высоте 10 — 35 км и на высоте 30 — 75 км.

2. Крупный источник с поперечными размерами 160—280 км, глубинами верхней кромки на глубине 3 и нижней 40 км. На поверхности эффект от такого тела соответстует эффекту от пласта с 5 экстремумами. Так, для профиля, пересекающего тело в направлении север-юг для внешнего поля, соответствующего внешнему полю 60° СШ выделяются следующие экстремумы: −75 нТл на расстоянии от края тела, 375 над южным контактом,
285 над центром тела, 360 над северным контактом и –130 на расстоянии 25 км от тела. На высоте 30 км кривая имеет уже три экстремума: –17 нТл на расстоянии 75 км от южного края тела, 202 над центром тела и –21 на расстоянии 70 км от северного края тела.

Таким образом, при построении магнитных моделей в профильных вариантах необходим учет влияния источников, находящихся в полосе шириной около 200 км. В этом случае поле в районе профиля будет соответствовать полю от масс, расположенных на линии профиля с точностью максимум 10 нТл и, соответственно, получаемые величины намагниченностей будут ближе к реальным. В случае интерпретации повышенных съемок, например, на высоте 30 км [325] необходимо учитывать источники в полосе 200 — 300 км. При этом необходимо иметь ввиду, что выше 30 км магнитный эффект определяется только расположением центра магнитных масс и величиной магнитного момента. В подтверждение этому на рис. 3.14 представлена модель пласта, расположенного вертикально и горизонтально с одинаковым магнитным моментом и совмещенным центром масс. (Параметры вертикального пласта: верхняя кромка h_1 = 0,5, нижняя h_2 = 40,0, мощность d = 8,0, длина l = 500,0 км. Параметры горизонтального пласта h_1 = 16,25, h_2 = 24,25, d = 39,50, l = 500,0 км. Магнитная восприимчивость для моделей 1 и 1' равна κ = 0.01, для моделей 2 и 2' κ = 0.1 ед. СГС. Горизонтальная компонента внешнего поля равняется $H=0,012$, вертикальная $Z=0,612$ Э). Как видно, на поверхности Земли разница в расчетных полях существенна, но, начиная с высоты около 30 км, она незначительна и только по полю трудно судить о геометрических параметрах тела без привлечения априорных данных.
Рис. 3.14. Поле (ΔТ)а от вертикального и горизонтального пластов на разных высотах.
Для спутниковых аномалий (высоты 350 — 450 км) необходимо учитывать влияние источников на расстояниях соответствующих длин волн (первые тысячи километров). В связи с этим специфика совместной интерпретации приземных и спутниковых аномалий обусловлена нахождением разумного компромисса между детальностью магнитных моделей отдельных структур и регионов и необходимостью построения трехмерной магнитной модели крупных областей. В нашем случае, например, для построения магнитной модели юго-западной части Восточно-Европейской платформы в расчеты включены только источники регионального класса, но для всей платформы и смежных регионов.

Для вычисления магнитного эффекта от источников такого класса аномалий необходимо оценить влияние сферичности Земли. С этой целью рассчитан магнитный эффект от двумерного тела прямоугольного сечения поперечником 550 км (h₁ = 0,1 км, h₂ = 40,0 км) на плоскости (высоты 0 и –400 км) и на сферической поверхности, соответствующей кривизне геоида. Соответственно сечение тела в этом случае также построено с учетом сферичности (см. рис.3.15). Основные погрешности возникают при этом вследствие различных длин дуг верхнего и нижнего ограничений тела (т.е. в его краевых частях и на флангах аномалии), так как в случае “плоского” варианта при удалении от источника все более увеличивается разность по сравнению со сферическим вариантом. Максимальное различие на уровне земной поверхности наблюдается над краевыми частями сечения тела и при намагниченности источника I = 2,0 А/м разница достигает 195 нТл, что составляет около 80% интенсивности поля на этом участке. На высоте 400 км над центром тела различие достигает 1.2 нТл (около 4% интенсивности), а на флангах — 1.7 нТл (около 25%). Следовательно, оценка эффектов от
Рис. 3.15. Сопоставление эффектов (ΔТ)a от глубинных источников с учетом и без учета сферичности Земли на уровнях 100 м и 400 км: 1 — контуры тела; 2—3 — расчетное значение поля без учета (2) и с учетом сферичности (3) на высотах 100 м и 400 км (3); 4—5 — их разность на высотах 100м и 400км.
глубинных источников на высоте полета спутника с учетом и без учета сферичности Земли показывает, что ввиду малой мощности магнитоактивного слоя и точности получения аномалий МАГСАТ погрешность за сферичность Земли может оцениваться на стадии анализа полученных результатов (см.рис.3.15).

Для получения реальных (истинных) величин намагниченности среды в принципе необходимо моделирование в трехмерном варианте. Однако, как следует из приведенных расчетов, при интерпретации приземных локальных и региональных магнитных аномалий можно использовать двумерные магнитные модели. Это возможно в случаях, когда профиль сечет аномалию вкрест простирания и на расстоянии до 100 км в разные стороны от него нет источников, способных вносить в поле на профиле искажение в виде нефонового характера. В случае, если помеха от близлежащих тел носит фоновый характер, эффективные величины намагниченности будут зависеть, естественно, только от размаха аномалий. Двумерные варианты позволяют более детально задавать все нюансы строения земной коры, поэтому они использованы при построении магнитных моделей коры вдоль геотраверсов. Потеря информации в виде величин намагниченности (при соблюдении приведенных условий полученные намагниченности будут отличаться от истинных даже для изометричного источника на 20-25%) компенсируются воссозданием структурной части разреза. Трехмерное моделирование необходимо при построении магнитных моделей крупных регионов, получения полных, а не эффективных величин намагниченности, а также совместной интерпретации повышотных (включая стратисферные и
космические) и приземных данных. В связи с этим, а также наличием современных вычислительных машин все расчеты (включая построение детальных магнитных моделей по верхней части земной коры) выполнены в трехмерном варианте.

Выводы

Методика построения магнитных моделей земной коры предусматривает следующие элементы:

— анализ аномального магнитного поля, сводящийся к характеристике морфологии, частотного состава и интенсивности аномалий;

— выделение региональной компоненты поля (ΔТ)α;

— изучение взаимосвязи региональной компоненты поля с основными физико-петрологическими границами земной коры;

— обоснование и выбор начального приближения для моделирования;

— моделирование магнитного эффекта земной коры методом подбора в диалоговом режиме ЭВМ - интерпретатор.
4. Разномасштабные магнитные модели земной коры юго-запада Восточно-Европейской платформы.

Прежде всего, отметим, что под юго-западом Восточно-Европейской платформы подразумевается ее юго-западная половина, т.е. часть платформы, включающая Украинский щит, Воронежский и Белорусский массивы.

Магнитные модели земной коры построены в двух- и трехмерном вариантах согласно методологии и методике раздела 3. При этом для юго-запада платформы магнитная модель построена в масштабе 1 : 2 500 000, для территории запада Украины и Днепровско-Донецкого авлакогена — 1 : 500 000. Более крупномасштабные модели (масштабов 1 : 200 000, 1 : 50 000 и т.д.) строились для изучения строения верхней части коры и прогнозирования распределения углеводородов в земной коре. На них мы остановимся детально в разделе 8. В качестве априорных данных широко раздела литосферы Земли, результаты интерпретации теплового поля, в частности, положение изотермы Кюри магнетита, а также сведения о намагниченности пород, изученной на основании измерений на образцах из обнажений и скважин. При описании магнитных моделей вкратце будет охарактеризовано аномальное магнитное поле и сама модель, что в дальнейшем облегчит их геолого-тектоническую интерпретацию, изложенную в разделе 6.
4.1. Магнитная модель юго-запада Восточно-Европейской платформы. В данном разделе вкратце будут охарактеризованы аномальное магнитное поле и модель земной коры Восточно-Европейской платформы и окружающих структур в масштабе 1 : 5 000 000, как необходимых элементов для построения магнитной модели юго-запада платформы м-ба 1 : 2 500 000.

Аномальное магнитное поле. Общее представление о магнитном поле изучаемой территории дают карты аномального магнитного поля (ΔТ)а СССР м-ба 1 : 2 500 000 под ред. З. А. Макаровой [131], Европы м-ба 1 : 5 000 000 под ред. Т. Н. Симоненко и И. К. Пашкевич [132], H-, Z-, T- компонент по данным спутниковых съемок [355, 363, 369, 377] (рис. 4.1, 4.2).

Аномальное магнитное поле довольно детально рассмотрено в работах Р. А. Гафарова [56], В. Н. Зандера, Ю. И. Томашунаса, А. Н. Берковского и др. [114], З. А. Макаровой [131], И. К. Пашкевич, М. И. Орлюк и др. [243, 244]. Для мелкомасштабного анализа и представления взаимоотношений магнитного поля юго-западной части Восточно-Европейской платформы с полем всей платформы и окружающих регионов на рисунке 4.3 приведено его мелкомасштабное районирование. Суть районирования сводилась к выделению аномальных полос повышенных положительных значений поля (ΔТ)а. Как видно из рисунков 4.1 и 4.3, аномальное магнитное поле региона закономерно вписывается и является существенной частью поля Восточно-Европейской платформы. При визуальном анализе схемы обращает внимание различная степень насыщенности территории Восточно-Европейской платформы, а также платформенных областей Центральной и Западной Европы положительными аномалиями с существенным различием и в
Рис. 4.1. Сглаженные магнитные аномалии Восточно-Европейской платформы (по [132]) и Z-аномалии МАГСАТ (по [355]): 1 — граница Восточно-Европейской платформы; 2—4 — интенсивность положительных магнитных аномалий 0÷200 (2), 200÷1000 (3) и более 1000 нТл (4) соответственно; 5 — изолинии аномалий МАГСАТ (а — положительные, б — нулевые, в — отрицательные).
Рис. 4.2. T-аномалии МАГСАТ Восточно-Европейской платформы и окружающих регионов (по [355]): 1 — граница Восточно-Европейской платформы; 2 — изолинии аномального магнитного поля (а — положительные, б — нулевые, в — отрицательные).
интенсивности поля. В пределах древней платформы преобладают зоны высокой интенсивности поля, пространственно тяготеющие к ее краевым частям. Зоны низкой интенсивности относятся к ее центральным областям. За пределами древней платформы выделяются аномальные зоны слабой интенсивности. Отметим, однако, что по поперечным размерам аномальные зоны Центральной Европы аналогичны зонам Восточно-Европейской платформы, а их генеральные простирации или ортогональны ей, или субпараллельны юго – западной границе древней платформы.

Наиболее примечательной особенностью поля (ΔT)а платформы является наличие системы аномальных полос положительного поля, оконтуривающих овал Восточно-Европейской платформы (рис.4.3). Составными частями этого овала (по часовой стрелке) являются : Висленско-Днестровская зона (на юго-западе), Скандинавская (на северо-западе), Кольская и Мезенско-Вычегодская (на севере и северо-востоке), Эмбенская зона (на юго-востоке). Дальше эта система полосовых аномалий, закручиваясь через Восточно-Воронежскую и Курскую зоны, уходит на Эстонско-Псковскую зону, образуя таким образом спиралевидную структуру типа зародыши. Второй примечательной особенностью является возможность выделения аномальных полос внутри платформы и пересечение некоторых из них в пределах треугольника между гг. Брянск, Витебск, Тверь. Кроме вышеназванной части спирами (которая нарушается и теряется в этой области), это Черниговско-Одесская и Севско-Каркинитская субмеридиональные полосы, подходящие с юга, и Печенго-Ладожско- Тихвинская — с севера. В этом же районе проходит система полосовых аномалий Волынско – Центрально – Русского авлакогена, составными частями которого являются аномалии Вольно-
Полесской, и Бобруйско-Сожской (подходящих с юго-запада) и Московской (подходящей с северо-востока) зон.

В пределах платформы также выделяются области с разной насыщенностью выделенными полосами, характером строения и простирания последних. Так, наиболее “мощные” полосы характерны для юго-запада и самого крайнего севера-северо-востока платформы, а “раздробленные”, вплоть до полного исчезновения, — для северо-западной, центральной и юго-восточной частей платформы. Как видно из рис. 4.1 и 4.3, в отношении насыщенности частей платформы положительными магнитными аномалиями выделяется структура типа “бабочки”. Предполагаемые продолжения линеаментов, разделяющих магнитные и немагнитные части платформы, “отсекают” северную и юго-восточную части области Курско-Балтийской аномалии МАГСАТ. В данном случае они следятся как зоны смены простираний и подворота к ним аномальных полос. Для севера и юга платформы характерны меридиональные и субмеридиональные простирания полос, а для юго-запада и северо-востока — юго-запад—северо-восточные и северо-западные. На севере и северо-востоке платформы выделяется Кандалакшско-Курганская полоса с азимутом около 290°. Такое же простирание имеет часть Сарматско-Туранского линеамента в пределах от Донбасса до Каспийского моря и условный линеамент, прослеживающийся от Луна (Швеция) до Эмбы (Казахстан). Последний примечателен тем, что к нему как бы подворачиваются аномальные полосы, расположенные к северу от него. При этом они меняют простирание с северо-восточных до субширотных, и это касается только полос, расположенных между этим условным линеаментом и Кандалакшско-Курганской полосой.
К краевым частям древней платформы, где сконцентрированы наиболее интенсивные аномальные зоны по данным приземных съемок, приурочены интенсивные положительные аномалии Z- и T-составляющих Магсат: Курско-Прибалтийская, Северо-Скандинавская и Камско-Эмбенская (см.рис.4.1 и 4.2). В центре Восточно-Европейского кратона концентрация аномальных магнитных зон существенно меньше, чем в ее краевых частях. Это обстоятельство находит отражение в спутниковом аномальном магнитном поле в виде интенсивного минимума (Санкт-Петербургский).

На юге Восточно-Европейской платформы отрицательная Северо-Кавказско-Прикаспийская (Прикаспийская) спутниковая аномалия выходит за пределы древней платформы, не согласуясь с южной границей последней. Концентрация аномальных положительных зон здесь еще меньше, чем в пределах Санкт-Петербургского минимума, но они также секут минимумы и выходят за его пределы.

Аномальное магнитное поле района Курско-Прибалтийской аномалии МАГСАТ выделяется упомянутоими полосами аномалий северо-западного простирания (Висленско-Днестровской на юго-западе, Курской и Эстонско-Псковской — на северо-востоке) и в целом весьма дифференцировано по частотному диапазону и интенсивности. Интенсивность аномалий колеблется от первых нанотесел до десятков и сотен тысяч в районах железорудных месторождений (Курск, Кривой Рог и т.д.), при этом преобладающая интенсивность находится в интервале 100-500 нТл. Как и для платформы в целом наблюдается группирование аномалий в полосы разных простираний. Причем, в их пределах отдельные аномалии часто имеют простирания, не совпадающие с простиранием полосы в целом. Кроме субмеридиональных
Черниговско-Одесской и Севско-Каркинитской и северо-восточных Вольно-Полесской и Бобруйско-Сожской, в районе исследований можно выделить Лукувско-Ратновскую и Винницко-Днепропетровскую субширотные, Черновицко-Волынскую, Западно-Приазовскую и Восточно-Приазовскую субмеридиональные, Плоцко-Калининградскую, Люблинско-Вильнiскую и Новоград-Волынскую северо-восточные, Оскархамско-Сувалкскую и Киевскую северо-западные полосы (рис. 4.4).

Согласно изложенной методике, для юго-западной части платформы выделена региональная компонента аномального магнитного поля. Как видно из рисунка 4.5 выделяется 40 положительных региональных магнитных аномалий, интенсивностью от 100 до 400-500 нТл. Исключением являются Курско-Брянские и Купянская аномалии интенсивностью более 1000 нТл. Естественно, все выделенные аномалии размещены в пределах рассмотренных полос, а максимальной интенсивностью обладают аномалии, являющиеся частями “спирали”.

Рассмотрим вкратце региональные магнитные аномалии рассматриваемого района в плане величины их интенсивности и размера поперечника. Под интенсивностью аномалии здесь подразумевается размах аномалии (А= (ΔT)a,мак. – (ΔT)a,мин.), а под поперечником — расстояние (вкрест аномалии в случае ее вытянутости) между зонами максимальных градиентов поля (ΔT)a.

При описании аномалий мы будем продвигаться с северо-запада на юго-восток, при этом в скобках приводится значение размаха аномалии в нанотеслах и поперечник — в километрах.

Выделенные аномалии имеют следующие параметры:
1. Южно – Норвежская (Ю-Н) — (275-300 нТл; 75км); 2. Грабена Осло (Ос) — (275-300; 50); 3. Коппарберг (Кб) — (500; 125); 4. Карлскрунская (Кр) — (250; 75); 5. Южно – Шведская (Ю-Ш) — (400; 100); 6. Южно – Ботническая (Ю-Б) — (200; 80); 7. Ирбенская (Ир) — (300; 80);

8. Рижская (Рж) — (400; 80); 9. Ханкоская (Хн) — (100; 60); 10. Плоцкая (Пл) — (400; 65); 11. Калининградская (Кл) — (300; 100); 12. Тартуская (Тр) — (200; 75); 13. Псковская (Пс) — (400; 75); 14. Люблинская (Лб) — (400; 100); 15. Львовская (Лв) — (400; 100); 16. Брестская (Бр) — (250; 75); 17. Вильнюсская (Вл) — (300; 125); 18. Винницкая (Вн) — (400; 60); 19. Новоград – Волынская (Н-В) — (400; 70); 20. Бобруйская (Бб) — (300; 120); 21. Витебская (Вт) — (400; 140); 22. Верхнеднепровская (Вд) — (400; 60); 23. Одесская (Од) — (550; 140); 24. Ананьевская (Ан) — (500; 80); 25. Гайсинская (Гс) — (500; 75); 26. Киевская (Кв) — (300; 75); 27. Черниговская (Чн) — (300; 50); 28. Каховская (Кх) — (400; 100); 29. Западно – Ингулецкая (З-И) — (550; 60); 30. Лохвицкая (Лх) — (300; 60); 31. Сумская (См) — (400; 65); 32. Курско — Брянские (К-Б) — (1000—1500; 40—60); 33. Индоло – Кубанская (И-К) — (200; 70); 34. Западно – Приазовская (З-П) — (350; 110); 35. Синельниковская (Сн) — (300; 75); 36. Купянская (Кп) — (2500; 90); 37. Милославская (Мл) — (400; 90); 38. Восточно – Приазовская (В-П) — (250; 60); 39. Луганская (Лг) — (400; 65); 40. Донская (Дн) — (200; 50).

Магнитная модель по геотраверсу III. Региональная компонента для профиля получена методом редуцирования, отличие заключалось в том, что в связи с большой длиной профиля прямая задача для источников верхней части коры решалась не для всей суммы возмущающих объектов, а для отдельных изолированных аномалий. Этот эффект исключался из наблюдаемого поля, в результате чего получались как бы реперные значения региональной компоненты поля. Последние и невозмущенные участки исходного поля, принимаемые за региональную компоненту, служили основанием для графического построения региональной составляющей поля (ΔT)а для всего геотраверса (рис. 4.6). В результате выделены следующие региональные магнитные аномалии с длиной волны от 150 до 400 км и
размахом \(A \): 1 — Синельниковская с максимальным размахом в районе геотраверса 200 нТл; 2 — Купянская (Курская) — 1600–2000; 3 — Милославская — 400–450; 4 — Шуйская — 300–350; 5 — Никольская — 250; 6 — Предтиманская — 150; 7 — Печорская — 200 нТл. Визуальное сглаживание по минимумам полученных магнитных аномалий позволило выделить более длинноволновую составляющую интенсивностью в области минимума около \((-400)\) нТл с длиной волны \(\lambda > 1000 \) км (см.рис. 4.6). Обращает на себя внимание тот факт, что при наличии этой составляющей большинство выделенных региональных магнитных аномалий находятся в области минимума длинноволновой составляющей. Данный факт говорит о том, что при интерпретации региональных магнитных аномалий роль поля относимости (нормального поля) должна играть указанная длинноволновая составляющая. Это привело к необходимости использования эффективных, а не абсолютных значений намагниченности источников аномалий.

Региональные аномалии с длиной волны 150—400 км имеют обратную корреляционную связь с гравитационными аномалиями Буге этого же класса, в то время как длинноволновая аномалия имеет прямую зависимость с гравитационной аномалией.

С целью выбора первоначального приближения параметров модели проанализирована связь региональной компоненты магнитного поля с основными физико-геологическими границами и мощностями условно выделенных по скоростной характеристике слоев земной коры.

По аналогии с И.К. Пашкевич с соавторами [129, 237] и В.И. Шарова [337] земная кора разделена на три слоя: гранитный \((V_p = 5,9–6,3)\), промежуточный (диоритовый) \((V_p = 6,3–6,8)\) и базальтовый (толща,
Рис. 4.6. Магнитная модель вдоль геотраверса III: 1—поле (ΔТ)a; 2—региональная компонента поля (ΔТ)a с длиной волны 150—400 км; 3—длинноволновая компонента поля с длиной волны более 1000 км; 4—региональная компонента поля Δg; 5—длинноволновая компонента поля Δg; 6—9 — кривые мощности земной коры кристаллической части, гранитного, промежуточного (диоритового) базальтового слоев соответственно; 10—кривая суммарной намагниченности земной коры, объясняющая интенсивность региональной и длинноволновой компонент поля (ΔТ)a; 11—кривая намагниченности, объясняющая интенсивность длинноволновой компоненты (ΔТ)a; 12—кривая эффективных намагниченностей, объясняющих интенсивность региональной компоненты поля (ΔТ)a; 13—контуры тел со значениями намагниченностями, А/м; региональные магнитные аномалии (цифры в кружках): 1—Синельниковская, 2—Купянская, 3—Милославская, 4—Шуйская, 5—Никольская, 6—Предтиманская, 7—Печорская.
заключенная между изолинией Vp=6,8 км/с и поверхностью Мохоровичича). Из анализа следует, что ни один из выделенных слоев и ни одна из существующих границ не коррелируют с региональной компонентой поля на всем протяжении профиля, однако отдельные аномалии находят отражение в мощности того или иного слоя либо в аномальном поведении границ раздела литосферы. Так, например, район Купянской региональной магнитной аномалии представляет собой зону изменения мощности всех слоев земной коры, особенно резко изменяется мощность базальтового слоя, при резком уменьшении к северо-востоку общей мощности коры (см.рис.4.6). Милославская региональная магнитная аномалия имеет прямую корреляцию с мощностью промежуточного и базальтового слоев, при нормальной мощности гранитного слоя и увеличении общей мощности коры. Шуйская региональная магнитная аномалия характеризуется уменьшением мощности гранитного слоя (до 2 км) при увеличении мощности промежуточного и базальтового слоев и увеличенной мощности коры, а Никольская региональная магнитная аномалия расположена в зоне плавного изменения мощности гранитного и базальтового слоев и увеличении мощности промежуточного. Печорская региональная магнитная аномалия характеризуется резким увеличением глубины залегания кристаллического фундамента и увеличенной мощностью промежуточного слоя коры при уменьшенной мощности гранитного и базальтового слоев. Таким образом, как следует из вышеизложенного, практически все выделенные слои сказываются в той или иной мере в региональном магнитном поле, что является косвенным подтверждением магнитности всей кристаллической части коры. Последнее подтверждается наличием зависимости между длинноволновой компонентой магнитного поля и мощностью
кристаллической части коры: утолщение коры сопровождается понижением поля \((ΔT_a)\), а утонение — возрастанием значений длинноволновой компоненты. Такая же зависимость характерна и для гравитационной аномалии соответствующих значений. В области минимума длинноволновой компоненты мощность коры увеличена за счет гранитного и промежуточного слоев, при минимальных значениях мощности базальтового слоя. Исключением из такой закономерности являются Украинский щит и Днепровско-Донецкий авлакоген, где увеличение мощности коры сопровождается повышенными значениями длинноволновой компоненты. Однако следует обратить внимание, что в данном конкретном случае кора имеет повышенную мощность, в основном, за счет базальтового и промежуточного слоев. Следовательно, можно говорить о двух иерархических уровнях взаимосвязи магнитного поля и мощности коры: длинноволновая компонента имеет обратную зависимость напряженности поля от мощности коры, выделенные же на ее фоне региональные магнитные аномалии могут коррелировать с мощностью коры (Синельниковская, Милославская, Шуйская) и располагаться в зонах изменения мощности коры либо отдельных ее слоев.

Анализ распределения температур в коре вдоль геотраверса показал, что изотерма Кюри расположена близко к поверхности Мохоровичича (Р.И. Кутас [162,172]) и лишь в области Причерноморской впадины, Предтиманского прогиба, Тиманского кряжа и Печорской синеклизы залегает на 5-10 км выше, чем граница кора — мантия. Учитывая такую же точность определения изотермы Кюри (10—15 км [78]) и петромагнетизм этих глубин, нижним ограничением магнитоактивной толщи принят раздел M как граница резкого изменения состава и физических свойств. Верхней границей
магнитоактивной толщи принята глубина 5 км, поскольку большинство редуцируемых источников имеет нижние кромки на глубинах 5—7 км.

Одновременно проводился подбор величин намагниченностей источников, объясняющих региональные магнитные аномалии с длиной волны 150—400 км и длинноволновой компоненты с $\lambda>1000$ км. В дальнейшем для выделения величин намагниченностей, объясняющих региональные магнитные аномалии, построен график распределения полной намагниченности по профилю (см.рис. 4.6). Соответственно выделенной ранее длинноволновой компоненте поля методом сглаживания по минимумам, получена компонента намагниченности, отвечающая за эту составляющую, относительно которой и выделяются эффективные величины намагниченностей источников региональных аномалий.

Таким образом получено, что при описанных модельных представлениях о среде Синельниковская региональная магнитная аномалия объясняется намагниченностью 0,4 — 1,2, Курская — 1,0÷10,0, Милославская — 0,3÷1,5, Шуйская — 0,3÷1,3, Никольская — 0,4÷1,2, Предтиманская — 0,2÷0,4, Печорская — 0,8÷1,3. Следует отметить, что нет ни одной аномалии, которая подбиралась бы однородно намагниченным блоком. Во всех случаях необходимым является увеличение намагниченности по латерали к центру аномалии.

Выполнена также оценка величин намагниченности источников региональных магнитных аномалий в предположении их приуроченности не ко всей коре, а исходя из рассмотренной корреляции к отдельным либо сумме определенных слоев. Так, Синельниковская региональная магнитная аномалия в случае ее объяснения намагниченностью гранитного и промежуточного слоев может быть обусловлена намагниченностью $I=0,85—1,2$ A/м. Для Курской аномалии при объяснении ее каким-либо из слоев
требуются величины намагниченности в 12—15 А/м и более. Для Милославской региональной магнитной аномалии источник, расположенный в пределах гранитного и промежуточного слоев должен обладать намагниченностью 1,8—2,3 А/м, в случае обусловленности аномалии промежуточным и базальтовым слоями их намагниченность достигает 2,8—3,0 А/м. Попытку объяснить данную аномалию влиянием лишь базальтового слоя нельзя считать успешной, так как в этом случае необходима намагниченность 7—8 А/м. Источник Шуйской региональной магнитной аномалии, расположенный в пределах гранитного и промежуточного слоев, имеет намагниченность 1,5—1,7, промежуточного и базальтового 1,4—1,6 и базальтового 5,0—5,5 А/м, а Никольская региональная магнитная аномалия для той же комбинации слоев объясняется намагниченностями 1,5—1,7 А/м, 1,4—1,6 А/м и 4,0—5,0 А/м. Печорская аномалия расположена в области отсутствия скоростей, характерных для базальтового слоя и если объяснять ее влиянием гранитного слоя, то в этом случае она составляет 2,0—2,5 А/м, а в случае ее обусловленности промежуточным слоем намагниченность равняется 1,8—2,0.

Объемная магнитная модель. Первый вариант региональной трехмерной магнитной модели юго-запада платформы (включительно территории Белоруссии, Латвии, Литвы и Эстонии) был построен автором в рамках апробации алгоритма решения прямой задачи магнитометрии с учетом сферичности Земли (алгоритм и программное обеспечение В.И.Старостенко, А.Г.Манусяна, А.Н.Заворотько [288]). Сечение данной модели вдоль профиля ГСЗ VI представлено на рисунке 4.7. Значения эффективных величин намагниченности блоков земной коры (Iэфф.) изменяются для данной геометрии источников в пределах от (−2.0) до (+2.0) А/м.
Рис.4.7. Региональная магнитная модель земной коры вдоль геотраверса VI: 1 - поле \((\Delta T)_{a}\); 2 - региональная компонента поля \((\Delta T)_{a,reg}\), полученная Г.И. Каратаевым и И.К. Пашкевич [128]; 3 - методом сглаживания по минимумам; 4 - региональная компонента поля \((\Delta T)_{a,reg}\), полученная путем исключения влияния верхней части коры; 4 - расчетное поле \((\Delta T)_{a,расч., от модели}; 5 - учтённая часть коры; 6 - разрезы тел вдоль геотраверса с указанием эффективных величин намагниченности в А/м.
Отметим при этом, что величина намагниченности предопределена выбором глубин залегания верхних и нижних кромок тел, а также вертикальностью их боковых ограничений. Как следует из рисунка 4.7 максимальная в магнитном отношении дифференцированность глубинных частей коры земной коры (глубже 10 км) приурочена к Украинскому щиту.

Специфика построения объемной магнитной модели по данным наземных и спутниковых съемок заключалась в нахождении разумного компромисса между детальностью моделей отдельных структур и регионов, а также необходимостью построения модели области, сопоставимой по размерам с длинами волн спутниковых аномалий (первые тысячи километров).

В качестве априорных использованы петромагнитные данные о намагниченности пород верхней части коры, глубины залегания дорифейского фундамента и Мохоровичича по сейсмическим данным, а также сведения о глубине изотермы 580°C, отвечающей изотерме Кюри магнетита [71, 72, 153, 163, 169-174, 195, 198, 291, 404 и др.].

Как было показано, источники локальных магнитных аномалий, за исключением уникальных аномалий типа Курских, не вносят существенный вклад в аномальное магнитное поле на высоте полета спутника. В связи с этим за основу были взяты региональные магнитные аномалии с длинами волн от 100 до 200—300 км, выделение которых не зависит от уровня нормального поля Земли, поскольку градиенты этих аномалий на один — два порядка выше градиентов поля относимости [183, 276—278]. В качестве критерия качества подбора использовался параметр размаха аномалий А как для региональных аномалий на поверхности Земли, так и для спутниковых аномалий на высоте 350—400 км. При этом "подгонка" модели выполнялась
путем изменения геометрии тел и величин их намагниченности до минимизации расхождений между величинами региональной компоненты поля \((\Delta T)_{a,reg}\) на поверхности Земли и расчетными значениями поля от модели. Магнитное поле подобранной таким образом модели расчитывалось на спутниковые высоты для сравнения с аномалиями МАГСАТ.

Источники региональных магнитных аномалий отнесены к коре с верхним ограничением на глубинах 10 км, а нижние — на 30 — 55, в зависимости от теплового режима и мощности коры. При этом магнитные образования намагниченны по современному полю. Объемная магнитная модель консолидированной коры региона, которому отвечает Курско-Прибалтийская аномалия МАГСАТ, и рассчетное поле от нее представлены на рис. 4.8 и рис. 4.9. Данная аномалия МАГСАТ состоит из двух частей — северо-западной Прибалтийской, приуроченной к западной границе Восточно-Европейской платформы, и Курской, занимающей ее юго-западный угол и отвечающей крупной тектонической единице — Сарматии [347, 348]. Для учета влияния удаленных источников на высоте полета спутника сумма источников Северо-Скандинавской и Камско-Эмбенской аномалий аппроксимированы несколькими крупными телами с намагниченностью \(I=1,0\) А/м, размещенными в пределах коры.

Согласно модели в регионе выделяются крупные участки земной коры с намагниченностью 0,5 — 1,0 А/м и максимальными размерами до 300×500 км. Источники региональных магнитных аномалий с намагниченностью 2,0—4,0 А/м и поперечником 40—100 км размещены в пределах этих участков. Исключением являются источники, относящиеся к Курско-Брянским и Купянской аномалиям, обладающие более высокой намагниченностью (10,0 — 12,0 А/м).
Рис. 4.8

Региональная магнитная модель юго-запада платформы и окружающих регионов: 1-изолинии расчетного (на рисунке) и наблюдаемого (на вставке) поля (ΔТ)а (нТл) аномалий Магсат (а-положительные, б-нулевые, в-отрицательные); 2-контур источников региональных магнитных аномалий с указанием величин их намагниченности (А/м); 3-граница Восточно-Европейской платформы; 4-границы магнитных сегментов.
Рис. 4.9

Рис. 29. Изолинии расчетного поля (ΔT) на поверхности Земли (1) в сотнях mГл и аномалий Магсат (2) в mГл — модели, представленной на рис. 35. (а-положительные, б-нулевые, в-отрицательные).
Региональное расчетное поле от модели юго-запада платформы представлено на рис. 4.9, а суммарное поле на высоте полета спутника от комбинированной модели (детальный подбор региональных источников Курско-Прибалтийской аномалии МАГСАТ и аппроксимации несколькими крупными источниками источников двух других спутниковых аномалий) — на рис. 4.10. На рисунке 4.11 приведено расчетное поле на высоте полета спутника (400 км) для региональной модели всей платформы и окружающих регионов.

Как следует из сопоставления рисунков 4.5 и 4.8, наблюдается соответствие морфологических особенностей и интенсивности аномалий (размаха) расчетного поля и региональной компоненты аномального магнитного поля на поверхности Земли. Полученные в результате расчета эффекта трехмерной магнитной модели на высоте полета спутника длины волн и местоположение экстремумов аномалий соответствуют или близки к таковым, измеренным со спутника. А на несоответствии интенсивности расчетных и наблюденных аномалий остановимся при истолковании разномасштабных магнитных моделей.

Характерной чертой модели региона является его насыщенность магнитными телами разных размеров, так что более 60% объема коры имеет намагниченность более 1,0 А/м.

Если все источники Северо-Скандинавской и Камско-Эмбенской аномалий аппроксимировать крупными телами, то, как следует из расчетов, средневзвешенная намагниченность этих крупных блоков при верхнем ограничении 10, а нижнем — 40 км, не превышает 1,0 А/м. Такую же величину эффективной намагниченности для Санкт-Петербургской отрицательной аномалии МАГСАТ получили Нолт и Хан [377]. Средневзвешенная намагниченность земной коры региона
Рис. 4.10. Региональная магнитная модель Восточно-Европейской платформы: а) 1 — изолинии поля (ΔT)а Магсат (наблюдаемые и расчетные): а—положительные, б—нулевые, в—отрицательные; 2 — контуры глу́бинных источников длинноволновых магнитных аномалий, 3 — контуры источников для Северо-Скандинавской и Камско-Эмбенской аномалий Магсат, 4 — граница Восточно-Европейской платформы; I-I — интерпретационный профиль; (КП — Курско-Прибалтийская аномалия Магсат, СС — Северо-Скандинавская, КЭ — Камско-Эмбенская, С-П — Санкт-Петербургская, П — Прикаспийская).
Рис. 31. Расчитанные Т-аномалии (в нанотеслах) на высоте 400 км от региональной магнитной модели Восточно-Европейской платформы и окружающих регионов (см. рис. 30).
немного выше за счет источников Курских аномалий, но составляет при этом не более 1,5 А/м.

Магнитная модель земной коры вдоль Белорусско-Украинской части геотрансекта ЕВРОБРИДЖ. Геотрансект пересекает с севера-запада на юго-восток Белорусско – Балтийский гранулитовый пояс, Центрально-Белорусский пояс, Осницко-Микашевичский вулканический пояс, Припятский прогиб, Коростенский плутон (с Овручским грабеном на севере плутона), Волынский и Подольский блоки с расположенной между ними Днепро-Лабской зоной активизации [155, 348]. Магнитная модель построена для суммы источников верхней и нижней частей коры в рамках работы автора по проекту “ЕВРОБРИДЖ” (рис. 4.12).

Согласно модели в верхней и нижней частях земной коры распространены источники с намагниченностью (0,0 — 3,5) А/м, причем в пространстве их распределение неравномерно. Магнитная кора в пределах Белорусско-Балтийского гранулитового пояса (1,0 или 2,0 А/м в зависимости от нижнего ограничения глубинного источника), Осницко-Микашевичского вулканического пояса и Припятского прогиба (2,0 А/м), Новоград-Волынского (2,0 А/м) и Подольского (3,0 А/м) блоков, а немагнитная или слабомагнитная кора характерна для Центрально-Белорусского пояса, северной и северо-восточной частей Коростенского плутона, Овручского грабена и Днепро-Лабской зоны. Источники верхней части коры (с глубинами верхних ограничений на глубинах от 0,0 до 4,5 и нижними — на 3,5÷15,0 км) с намагниченностью 0,5 — 3,5 А/м) располагаются, как правило, над глубинными магнитными источниками. Весьма интересным представляется падение источников верхней части земной коры либо боковых ограничений глубинных источников. Как можно увидеть с рисунка 4.12 источники
На верхней части коры имеют северо-западное падения на всем протяжении исследуемой части геотрансекта.

Юго-восточный контакт глубинного источника Белорусско-Балтийского гранулитового пояса и северо-западный — Осницко-Микашевичского вулканического пояса имеют юго-восточное падение (50—70°), а южный контакт Припятского прогиба и северный — Подольского блока падают на север (70—80°). Предложенная модель является одной из возможных магнитных моделей земной коры вдоль геотрансекта.

Следует однако заметить, что такие параметры как протяженность источников верхней и нижней частей коры по латерали, верхние кромки и углы падения источников верхней части коры, а также углы падения контактов глубинных источников определяются однозначно и устойчиво (с точностью 10—15% [155, 220, 240]) по сравнению с верхними и нижними ограничениями последних. Данная достоверность предопределена наличием информации о магнитном поле на горизонтальной плоскости (как минимум одной) вблизи источников верхней части коры и ее полным отсутствием для вертикальных плоскостей. Отсюда и получаемые величины намагниченности верхней и нижней частей земной коры определяются с разной степенью достоверности. Однако с учетом теоретических оценок влияния нижних кромок глубинных источников в суммарное поле на поверхности Земли можно утверждать, что получаемые величины их намагниченностей не отличаются от истинных более чем на 40% (для случая ошибки задания глубины нижних кромок глубинных источников в 10—15 км).

Выводы

1. В результате районирования аномального магнитного поля Восточно-Европейской платформы выделены: система аномальных полос положительного поля, оконтуривающая ее овал и образующая...
спиралевидную структуру типа зародыша; аномальные полосы разного простирання внутри платформы, пересекающиеся в районе между гг. Брянск, Витебск, Тверь; области с повышенной насыщенностью выделенными полосами (юго-запад и север-северо-запад платформы, отвечающие Курско-Прибалтийской, Северо-Скандинавской и Камско-Эмденской положительным аномалиям МАГСАТ);

2. В пределах юго-запада платформы (Курско-Прибалтийская аномалия МАГСАТ) выделены 40 положительных региональных магнитных аномалий с поперечниками 50—140 км и интенсивностью от 100 до 400—500 нТл, исключением являются Курско-Брянские и Купянская аномалии интенсивностью более 1500 нТл.

3. Источники региональных магнитных аномалий с верхним ограничением на глубинах 10 км, а нижним — на 30—55 км имеют величины намагниченности 0,5—4,0 А/м. Источники Курско-Брянских и Купянской аномалий имеют намагниченность 6,0 — 12,0 А/м.

4. Построенная региональная магнитная модель платформы удовлетворяет основные особенности региональной компоненты поля (ΔТ) на поверхности Земли и аномалий МАГСАТ, что показало их обусловленность источниками одного класса. Данная модель свидетельствует о латеральной неоднородности распределения магнитных источников в пределах платформы.

5. Магнитная модель земной коры вдоль Белорусско-Украинской части геотрансекта ЕВРОБРИДЖ показала наличие источников в верхней (с верхними ограничениями на глубинах от 0,0 до 4,5 и нижними — на 3,5—15,0 км, и намагниченностью — 0,5—4,0 А/м) и нижней частях земной коры. Глубинные источники имеют намагниченность 1,0—3,5 А/м.
4.2. Магнитная модель земной коры запада УЩ и смежных регионов.

В геологическом плане район находится в сфере влияния двух разновозрастных зон сочленения крупных тектонических структур: докембрийской между Фенноскандией и Сарматией (северо-восточного простирания) и последокембрийской между Восточно-Европейской платформой и Альпийским поясом (северо-западного простирания). К настоящему времени здесь выделены следующие более мелкие тектонические элементы: Украинский щит, Волыно-Подольская плита, Волыно-Оршанский (Волыно-Полесский) прогиб, Львовский палеозойский и Стрыйский юрский прогибы, Львовско-Люблінская меловая впадина, Карпатское складчатое сооружение, Припанинонский прогиб, Ковельский выступ с Ратновским горстом и Северо-Молдавское поднятие (Р.Г. Гарецкий, Г.В. Зиновенко, И.Б. Вишняков и др. [55]). В пределах запада Украинского щита выделены Волынский, Подольский и Белоцерковско-Одесский геоблоки, разделенные глубинными разломами и разломными зонами. Волынский геоблок представлен Тетеревско-Житомирским, Новоград-Волынским и Осницким блоками, Сущано-Пержанской зоной, Овручской впадиной и Корстенским плутоном (Н.П. Щербак и др. [341]). Поверхность Мохоровичича в исследуемом регионе согласно В.Б. Соллогуба [285] и Р.И. Кутаса с соавторами [163] залегает на глубинах от 35 км в пределах Припятского прогиба до 60 км в области Складчатых Карпат и Предкарпатского прогиба (рис. 4.13).

Магнитная модель земной коры Волыно-Подольской плиты построена автором (М.И. Орлюк [218]) и изложена в кандидатской диссертации [221]. В дополнение к этому к настоящему моменту построена детальная магнитная модель северо-запада Украинского щита в районе прохождения геотрансекта “Евробридж” (М. И. Орлюк [379], М. И. Орлюк, И. К. Пашкевич [383])
Рис. 4.13. Схема основных тектонических структур запада Украины [163,285,385]: 1 — граница Восточно-Европейской платформы, 2 — граница сочленения Фенноскандии (Фск) и Сарматии (См), 3 — Складчатые Карпаты (СК), 4 — Львовский палеозойский прогиб (ЛПП), 5 — глубинные разломы, 6 — Осницко-Микашевичский вулканический пояс, 7 — южное ограничение Припятского прогиба, 8 — Украинский щит, 9 — изолинии глубины поверхности Мохо, 10 — геотраверсы ГСЗ, 11 — Евробридж.

и региональная магнитная модель юго-запада платформы и окружающих областей (М.И. Орлюк [226, 381], М.И. Орлюк, И.К. Пашкевич [232, 383]), что позволяет предложить магнитную модель запада УЩ и смежных регионов.

Аномальное магнитное поле. Сглаженное аномальное магнитное поле региона и его региональную компоненту можно увидеть на рис. 4.1. и 4.5.
Для исследования его частотного состава по геотраверсам II и IV вычислены выборочные оценки спектральной мощности поля (шаг выборки — 2 км, окно Тьюки — шириной 100, 50, 25 км). Высокочастотные аномалии, как следует из анализа исходного поля и его спектра, обладают длинами волн от первых километров до 20—40 км. В спектре поля присутствует длинноволновая составляющая на участках частот менее 0,02 км$^{-1}$. Но разрыв между локальной и региональной составляющей не отмечается, в связи с чем возможности однозначного разделения поля на компоненты ограничены (М.И.Орлюк [218, 221]).

Исследованием характера локальных особенностей магнитного поля занимались многие исследователи. Автором в результате многолетних экспедиционных исследований выполнены работы по картированию дайковых поясов и отдельных крупных даек (Звездаль - Залесская, Городницкая и др.) запада Украинского щита и профильные наблюдения в районе Львовской региональной магнитной аномалии. В результате съемок и интерпретации (В.И.Кlushин [135], Платформенные структуры ... [255], С.И.Субботин [293, 294], В.И.Хоменко [324] и др.) выяснено пространственное распределение локальных аномалий, определены глубины до верхних кромок некоторых источников.

Согласно С.И.Субботина [293, 294] Карпатский регион характеризуется отчетливо выраженным интенсивным аномальным полем, состоящим из довольно крупных локальных аномалий, поперечники которых составляет 15—20 км и даже более. Характерной особенностью геомагнитного поля является значительное уменьшение интенсивности локальных аномалий в юго-западном направлении. Так, если в районе Трембовли и Тернополя наблюдаются аномалии интенсивностью 500—00 нТл, то у борта платформы
значения локальных аномалий в максимумах падают до 200—300 нТл, за исключением Островецкой аномалии, имеющей интенсивность 650 нТл.

Второй существенной чертой аномального поля является группирование локальных аномалий в линии северо-западного простирания: Перемышлянско-Монастьырскую [293], продолжающуюся на северо-запад за пределы Украины с максимальными значениями 400-600 нТл, и Жидачевско-Черновицкую, также уходящую далеко на северо-запад с интенсивностью аномалий 250-350 нТл.

Поле северной, северо-восточной и восточной части территории, включая запад Украинского щита, имеет более сложный характер [135, 154, 157]. Здесь наблюдаются локальные, небольшого площадного распространения, изометричные, значительной амплитуды, положительные магнитные аномалии, которые находятся, главным образом, на склоне и в пределах щита. Как показал анализ карт осей проистрания магнитных аномалий наблюденного поля, здесь выделяются в основном северо-восточные и субширотные направления (Б.Л.Гуревич, А.Б.Коган, М.Г.Распопова, Ю.П.Хитаров [90, 91]). Последние приурочены к Припятскому валу, ограничением которого по В. И.Кlushину [135] является линия Любешов-Малорита на севере и Ратно-Камень-Каширский — на юге и зоне сочленения Припятского прогиба с Коростенским плутоном. Высокоинтенсивные аномалии изометрической формы характерны для Подольского блока Украинского щита, а линейно вытянутые — для Коростенского плутона и областей его сочленения с соседствующими структурами, в частности с Припятским прогибом.

В пределах региона выделены Львовская, Новоград-Волынская, Винницкая и Гайсинская положительные региональные магнитные аномалии и Коростенская — отрицательная (см. рис. 4.5). Львовская региональная
магнитная аномалия имеет северо-западное простирание, Новоград-Волынская и Винницкая — северо-восточное, Гайсинская — широтное простирание. Между Новоград-Волынской региональной магнитной аномалией с одной стороны — Винницкой и Гайсинской аномалиями с другой — расположен широтный региональный минимум, сливающийся на северо-востоке с Коростенской региональной магнитной аномалией, а на юго-востоке — через своеобразный пережим — с Кировоградской региональной магнитной аномалией.

Как уже указывалось в разделе 3 для характеристики интенсивности локальных аномалий использована величина их размаха

\[A = \Delta T_{\text{max}} - \Delta T_{\text{min}}, \]

позволяющая исключить из рассмотрения региональную компоненту поля. Указанный параметр, характеризующий амплитуду локальных источников верхней части коры (до 10 км) в пределах исследуемой территории изменяется от 100—150 нТл до 2000 нТл и более (М.И.Орлюк [218]. Интересным представляется пространственное распределение приведенной величины. Так минимальные значения \(A \) характерны для районов максимумов и минимумов региональных магнитных аномалий, а максимальные значения - для их градиентных зон. Для района Львовской РМА данный параметр имеет значения 150—400 нТл, в то время как в градиентной зоне достигает 600—850 нТл (восточный склон Львовского прогиба — западный склон Украинского щита). Аналогичная картина наблюдается для Новоград-Волынской РМА, где указанные величины имеют соответственно, значения 200—500 и 600—1000 нТл и более. Для Винницкой и Гайсинской региональных магнитных аномалий максимальные размахи
локальных аномалий приурочены к максимумам региональных аномалий и их градиентам, что делает их (по соотношению региональных и локальных аномалий) отличными от Львовской и Новоград-Волынской аномалий.

Таким образом, выделяется два преимущественных направления простирания локальных и региональных магнитных аномалий - северо-западное (характерное в основном для юго-запада территории) и северо-восточное (северо-восточная часть территории). Менее четко проявлена широтно-меридиональная система. Интенсивность локальных аномалий изменяется от 100 до 2000 нТл при средней величине 200—500. Интенсивность положительных региональных аномалий составляет 200—400 нТл.

Магнитная модель. Магнитная модель исследуемого региона создана по геотраверсам II и IV в двумерном (М.И. Орлюк [221]) и для всей территории в трехмерном варианте (М.И. Орлюк [218, 221]. Для этого согласно методике, изложенной в разделе 3, использованы априорные данные ГСЗ-КМПВ о глубинах залегания основных границ литосферы [115, 169, 174, 291], результаты магнитного моделирования верхней части коры [218, 219] и предварительной интерпретации региональной компоненты поля с учетом теплового режима территории [33, 161 и др.]. В полосе геотрансекта “Евробридж” построена детальная магнитная модель верхней и нижней частей коры с учетом влияния глубинных источников сопредельных структур.

Четыре варианта магнитной модели по геотраверсу II и два варианта по геотраверсу IV рассмотрены ранее [218, 221], что позволяет автору в пределах “разумной достаточности” рассмотреть модели с послойным увеличением намагниченности с глубиной (рис. 4.14).
Рис. 4.14. Варианты магнитной модели земной коры по геotraverse II: 1 — региональная компонента аномального магнитного поля, полученная путем исключения влияния верхней части коры; 2 — расчетное поле от модели 1; 3 — расчетное поле от модели 2; 4 — отражающие площадки от поверхности Мохоровичича; 5 — осадочный чехол; 6 — изотерма Кюри магнетита по В.В. Гордиенко [33]; 7 — изотерма T=600ºС по Р.И. Кутасу [161]; 8—13 — значения намагнитенности: 0,25—0,5; 1,0—1,5; 1,5—2,0; 2,0—3,0; 3,5—4,0; 5,0 А/м и более, соответственно.

В данном случае нижняя кора разбита на три неоднородных по латерали слоя, намагниченность которых изменяется по горизонтали и вертикали. В районе Новоград-Волынской региональной магнитной аномалии намагниченность по вертикали изменяется от 2,0 до 5,0, а для Львовской — от 4,0—4,5 до 8,0—8,5 А/м. Необходимо отметить, что не внося больших
искажений в модельное поле, однородную намагниченность нижней части коры можно заменить дискретным ее увеличением с глубиной. Например, для Львовской региональной магнитной аномалии разница между этими эффектами составляет 50—60 нТл, а достоверность той или другой модели определяется дополнительной информацией [221].

Согласно литературным и геологическим данным и предварительной интерпретации в районах региональных магнитных аномалий могут быть намагниченными и верхние горизонты земной коры. В этом случае намагниченность нижнего слоя должна быть соответственно меньшей интенсивности и большей однородности. В районе Львовской аномалии при таком допущении она составляет 4,0 А/м при намагниченности гранитного слоя 1,5—1,75 А/м, т.е. при указанном распределении намагниченности аномалия в районе ПК 80—110 объясняется эффективной намагниченностью 1,0 А/м с верхней кромкой на глубине 10 и нижней — 40 км (см.рис. 4.14). При слоистой модели подбор региональной составляющей магнитного поля достигается изменением намагниченности с глубиной от 1,0—1,25 до 5,5—6,0 А/м.

Данная модель хорошо согласуется с гравитационными моделями ряда авторов (В.Б.Бурьянов и др. [34], В.С.Гейко и др. [57], С.С.Красовский [142], А.В.Чекунов, К.А.Болюбах [320], М.Бокалетти и др. [351]. Для перехода от плотностных моделей к магнитным при этом использована зависимость между намагниченностью и плотностью, предложенная З.А. Крутиховской с соавторами [155]:

\[I = (4.00 \sigma - 9.50) \text{ A/m} \]

Получаемые при этом величины намагниченности \((I = 1,5—3,0 \text{ A/m})\) близки к расчетным и являются независимым подтверждением достоверности выбранных ограничений магнитоактивной толщи.
Трехмерная магнитная модель земной коры, эффект которой удовлетворяет региональную компоненту поля с точностью ±50 нТл свидетельствует, что в пределах Львовской региональной магнитной аномалии нижняя часть коры имеет намагниченность 3,0—4,0 А/м, а верхняя часть коры в пределах максимума аномалии — 1,75 А/м. Юго-западный контакт магнитных тел падает в северо-восточном направлении, как и по данным двумерного моделирования (см. рис. 4.14). В пределах северо-запада Украинского щита по латерали выделяются три области с различной намагниченностью. Блок второго порядка, к которому приурочена Новоград-Волынская региональная магнитная аномалия, обладает намагниченностью гранитного слоя 0,5, а нижней коры — 3,0 А/м. Далее следует область, имеющая намагниченность гранитного слоя 0,3 и нижнего — 2,0 А/м. Наконец, выделяется практически немагнитная на всю мощность земная кора, окаймляющая Новоград-Волынский блок с юга, востока и северо-востока. При этом южный и юго-восточный контакты источника Новоград-Волынской региональной магнитной аномалии падают на север-северо-запад, то есть под магнитный блок, как и в районе Львовской аномалии. Такая принципиальная картина распределения намагниченности и падения контактов сохраняется и для варианта верхнего ограничения глубинных источников глубиной 10 км (М.И. Орлюк [221]). Для такого варианта намагниченность источников Винницкой и Гайсинской региональных магнитных аномалий составляет 3,0—3,5 А/м, а их северные контакты имеют северное падение.

В полосе украинской части геотрансекта “Евробридж” построена трехмерная магнитная модель верхней части земной коры. Предварительно параметры источников локальных аномалий были определены по простым формулам [87, 176]. В магнитной модели верхней части земной коры запада Украинского щита отражены магнитные источники трех типов:
изометричные или вытянутые тела поперечными размерами от первых километров до 25—30 км с вертикальными или наклонными боковыми контактами, часто группирующимися в полосы, сильно вытянутые (до 10 км); тела дайкоподобного типа с поперечными размерами меньше 1,5 км; маломощные (первые десятки и редко сотни метров) вытянутые источники — дайки (рис. 4.15). Многие из тел всех типов не обнажаются на дневной поверхности, нижние кромки имеют глубины залегания от 3÷4 км до 12÷15 км. По данным З.А. Крутиховской с соавторами [157] особенностью разреза земной коры Волынского блока является наличие второго яруса намагниченных тел, верхние кромки которого располагаются на глубинах 2,5—3,0 км [157]. Наиболее крупное из этих тел имеет простирание аналогичное Тетеревскому разлому и намагниченность 1,6 А/м. Согласно результатам трехмерного моделирования эффект от данных источников на фоне региональной составляющей от глубинных неоднородностей может быть объяснен эффективной намагниченностью 0,7—0,8 А/м при верхней кромке на глубине 3,0 и нижней 12,0 км. Близкими величинами намагниченности и геометрическими параметрами характеризуется Букинский массив. Аномалии Шепетовского массива (нижние кромки 8—10 км) объясняются средней намагниченностью 1,0 А/м. Большие величины
Рис. 4.15. Аномальное магнитное поле (ΔT)а (а) и магнитная модель верхней части коры (б) запада Украинского щита в районе геотрансекта “Евробридж”.

1 — положительные (а), нулевые (б), отрицательные (в) изолинии поля в сотнях нанотесла; 2 — контуры источников верхней части коры: выходящие (сплошными линиями) и не выходящие (пунктиром) на поверхность фундамента.

намагниченности (до 1,0—4,0 А/м) имеют изометричные и вытянутые магнитные источники, связанные с Коростенским плутоном. При этом их
нижние ограничения имеют глубины от 3,5 до 10,0 км и более. В восточной и юго-восточной частях Коростенского плутона (западнее Звездаль-Залесской дайки) на глубине 4,0—8,0 км выделено субгоризонтальное магнитное тело с намагниченностью 1,5 А/м. Звездаль-Залесская дайка (как и ряд других источников в юго-восточной части плутона) при этом имеет нижнее ограничение на глубинах 3,5—4,0 км и западное падение, что может свидетельствовать о некоторой ее связи с горизонтальным телом. Магнитные источники на западе плутона (в районе его пересечения геотрансектом “Европридж”) имеют северо-восточное падение, так что немагнитные гранитоиды лежат на них, в то время как на юго-западе плутона (в районе геотраверса II) они залегают на гранитоидах в виде покрышки, утончающейся в северо-восточном направлении (см. рис. 4.15). Субширотные локальные источники (расположенные между Хмельницким и Андрушевским разломами) имеют величины намагниченности 0,3—4,0 А/м и наклонные к северу и северо-западу их северные (а в некоторых случаях и южные) боковые грани.

Для Подольского блока характерны наиболее крупные и наиболее интенсивные изометричные и вытянутые магнитные тела. При этом следует отметить, что в пределах блока отмечается приуровоченность вытянутых интенсивных источников к разломам северо-восточного и северо- западного простираний (см. рис. 4.15 и 4.16).

Пространственно наблюдается повышенная насыщенность локальными магнитными телами Волынского и Подольского блоков Украинского щита.

Для Львовской региональной магнитной аномалии построена менее детальная модель позволившая, однако, выяснить общую картину
Рис. 4.16. Магнитная модель земной коры в районе геотрансекта “Евробридж” (построена совместно с И.К. Пашкевич [379, 382, 385]).
распределения намагниченности верхней части коры в районе геотраверсов II и IV и одновременно зафиксировать уменьшение намагниченности
глубинной части на юго-запад при одновременном подъеме нижнего ограничения магнитоактивной толщи [218].

Выводы

1. Установлено двухэтажное распределение магнитных тел. Источники верхнего этажа при этом представлены изометричными, вытянутыми и дайкоподобными телами разных размеров, падений и простираний с нижними ограничениями на глубинах 4,0 ÷ 12,0—15,0 км. Наблюдается их повышенная концентрация (своего рода “зараженность” верхней части коры) над областями расположения глубинных источников и их боковых контактов.

2. Для нижнего этажа построены два варианта магнитных тел с разными глубинами верхнего ограничения. В первом варианте верхнее ограничение соответствует поверхности К₂, залегающей на глубинах от 10—12 до 15—18 км, во втором — глубине 10 км. При этом для второго варианта получаемые величины намагниченности глубинных тел меньше на 0,5—1,0 А/м по сравнению с первым, при неизменности их боковых контактов.

3. При существенно большей средневзвешенной намагниченности нижнего этажа по сравнению с верхним, предельные величины намагниченности магнитных тел этих этажей перекрываются (то есть в верхней части коры имеются магнитные тела с такой же намагниченностью как и в нижней коре, но занимают они существенно меньший объем).
4.3. Трехмерная магнитная модель Днепровско-Донецкого авлакогена. Днепровско-Донецкий авлакоген является частью трансконтинентальной тектонической структуры, простирающейся от западной границы Сарматского сегмента до отрогов Тянь-Шаня. Глубина залегания докембрийского фундамента меняется по простиранию авлакогена от 1—5 км на северо-западе до 20—22 км на юго-востоке, в районе Донбасса. Внутри авлакогена четко выделяется центральный грабен, ширина которого изменяется в том же направлении от 70 до 140 км. В свою очередь авлакоген в Приднепровской части органически сочетается с одноименной впадиной (рис. 4.17). Подошва земной коры в пределах Днепровской части авлакогена согласно В.Б.Соллогуба [285] и А.В.Чекунова с соавторами [354] характеризуется ярко выраженной антиклинальной формой рельефа с глубинами от 35 до 40 км (рис. 4.18). Рельеф раздела М Северного и Южного бортов Днепровско-Донецкой впадины резко отличный, а формы рельефа этого раздела имеют разные структурные соотношения с формами рельефа раздела М в пределах Днепровско-Донецкого авлакогена. Мощность коры бортов Днепровско-Донецкой впадины при этом колеблется от 40 до 48 км. В пределах трансрегионального тектонического шва Донец — Брянск и восточнее Верховцевско - Льговского разлома глубины до раздела М составляют меньше 40 км (см. рис. 4.18). Северный борт Днепровско-Донецкой впадины характеризуется слабодифференцированным рельефом раздела М, глубина до которого достигает 48 км только на север от Центральной депрессии. На южном борту Днепровской части авлакогена между тектоническим швом Херсон — Смоленск и Криворожско - Крупецким разломом выделяется прогиб раздела М, согласный с простиранием грабена и сопряженный с подъемом раздела М в авлакогене. В районе
Рис. 4.17. Положение Днепровско-Донецкого авлакогена в пределах Сарматии. На врезке — сегментация ВЕП, по С.В.Богдановой [347]: 1—4 — границы тектонических структур: 1 — Восточно-Европейской платформы; 2 — Сарматии; 3 — Припятско-Днепровско-Донецкого авлакогена (Пр-Дн-Дон); 4 — Волыно-Оршанского (В-О) и Пачелмского (Пч) авлакогенов; 5 — трансрегиональные тектонические швы (Х-С — Херсон—Смоленск, Д-Б — Донецк—Брянск); 6 — литосферные линеаменты, по В.Б.Соллогубу [285]; 7 — изолинии Т-аномалий МАГСАТ.
Рис. 37. Схема рельефа докембрийского фундамента и раздела аэлакогена: 2 - изогипсы фундамента, км; изогипсы раздела 6М, км; 4 - трансграничные тектонические разломы [276]; 5 - трансграничные разломы [276]; 6 - глубинные разломы [1 - Криворожское - Крупецкий, 2 - Чернигов - Донбасс, 3 - Орехово - Павлоградский; разломы аэлакогена].
Верховцевско-Льговского разлома наблюдается слабый подъем раздела М. Линейный подъем раздела М является характерной чертой шовной зоны Донецк — Брянск. Интенсивные прогибы раздела М согласные с Криворожско-Крупецким и Орехово-Павлоградским глубинными разломами и размещены, соответственно, на восток и запад от них. При приближении к авлакогену их интенсивность уменьшается и глубина до раздела М не превышает 45 км. Эти прогибы имеют торцевое сочленение с формами рельефа раздела М в Днепровско-Донецком авлакогене. Юго-восточнее Полтавы отмечается своеобразный узел сочленения форм рельефа М. Здесь наблюдается “заливоподобный” заход в пределы УЩ структуры поверхности М с глубинами меньшими 40 км. В Донбассе глубина залегания подошвы коры достигает 45—47 км, причем прогиб раздела М структурно не согласен с авлакогеном. Трансрегиональный тектонический шов, отвечающий зоне сочленения Днепровской и Донецкой частей авлакогена, отмечается узким валом в разделе М. Кроме данных о глубине залегания кристаллического фундамента и поверхности М как “основополагающих” для магнитного моделирования, в качестве априорных использованы также данные о глубине залегания изотермы Кюри магнетита [162, 172 и др.].

Аномальное магнитное поле авлакогена поле представлено на рисунке 4.19. Как видно из рисунка, для авлакогена и окружающих регионов характерно слабоаномальное магнитное поле. Максимальные его значения (до 800 нТл) характерны для Черниговского гравимагнитного максимума. При этом локальные магнитные аномалии, сконцентрированные в этой области, приурочиваются преимущественно к периферическим частям гравитационных аномалий [335, с.27]. Большинство из магнитных аномалий ориентировано в северо-западном и близком к нему направлениях.
Рис. 38. Наблюдаемое поле (ΔТ)а Днепровско-Донецкого авлакогена: 1 - изолинии поля (ΔТ)а (1-положительные, 2 - нулевые, 3 - отрицательные); 2 - граница авлакогена.
Исключение составляют аномалии Припятского грабена, ориентируемые в северо-восточном направлении и Ичнянская зона, где доминируют меридиональные ориентировки аномалий. В области Центральной депрессии интенсивность аномалий достигает 200—400 нТл, а далее на восток-юго-восток составляет первые десятки, максимум сотни нанотесл. Для бортовых частей характерно чрезвычайно разнообразное и сложное строение магнитного поля с чередованием участков линейного магнитного поля с мозаичным и безаномальным. С запада на восток выделяются четыре зоны линейного, субмеридионального, простирания магнитных аномалий: Брусиловская, Каневско-Остерская, Криворожско-Кременчугско-Крупецкая, Орехово-Павлоградская и одна северо-западного — Курская. В районе Черниговского максимума намечается слияние Брусиоловской и Каневско-Остерской зон, а на северном борту происходит слияние Криворожско-Кременчугско-Крупецкой и Курской зон [335, с.28].

Области, разделяющие районы линейного распространения магнитных аномалий своеобразны по своему строению. Бориспольский участок, расположенный между Брусиоловской и Каневско-Остерской зонами, а также Царичанский (между Криворожско-Кременчугской и Орехово-Павлоградской) характеризуются мелкомозаичным положительным полем. Близкое строение магнитного поля имеют Холмский и Харьковский участки на северном борту. Также отрицательное безаномальное поле наблюдается в пределах Новомиргородского участка. Аномальное магнитное поле имеет в своем составе как минимум две компоненты: коротковолновую и длинноволновую с длинами волн от 5 до 50 и 150—250 км, что свидетельствует о разных глубинах залегания их источников.

В пределах авлакогена выделяются Черниговская (с А= 300—350 нТл) и Лохвицкая (250—300 нТл) региональные магнитные аномалии (см.рис. 4.5).
Вблизи расположены Киевская (300 нТл), Западно-Ингулецкая (550 нТл) и Синельниковская (300 нТл), расположенные в пределах Украинского щита и Сумская (400 нТл) и Купянская (25 000 нТл) - в пределах Воронежского массива.

Решение обратной задачи магниторазведки показало принадлежность источников локальных магнитных аномалий к верхней части консолидированной коры (от 3—10 до 15—20 км). Центры масс региональных аномалий размещены на глубинах 20—30 км. Максимальная глубина распространения магнитных образований ограничена изотермой Кюри магнетита либо разделом Мохоровичича.

Магнитная модель. Для исследуемого региона построены два варианта интерпретации аномального магнитного поля в пределах Черниговского и Лохвицкого максимумов [115, 137]. В частности В.Г.Козленко, Э.Л.Шеном и С.Х.Лейбовичем [137] проинтерпретирована сложная аномалия аномального магнитного поля по линии, параллельной профилю Пирятин-Талалаевка. Региональная составляющая аномального магнитного поля проинтерпретирована параллелепипедом размерами 60х30х15км при наклонном намагничении по нормальному вектору (I=66°) и интенсивности намагничения 2,2 А/м. Глубина залегания верхней грани параллелепипеда принята согласно предварительной интерпретации 6 км, а нижней — 20 км, что согласуется с глубиной поверхности K₂ по сейсмическим данным. В пределах этих же глубин распространены источники локальных аномалий, расположенные в краевых частях региональной аномалии.

Принципиально отличный результат получен М. С. Зейгельманом [116] для этого же профиля. Региональная особенность поля проинтерпретирована в данном случае источником с нижним ограничением на глубинах 55—60 км, и намагниченностью 1,0—1,5 А/м, т.е. расположенным глубоко в мантии, так
как поверхность Мохоровичича в этой части авлакогена находится на глубинах около 35 км.

Эти оба решения представляют собой имеющие право на жизнь варианты возможного распределения намагниченных образований в рамках эквивалентности решения обратной задачи магниторазведки. Необходимо только отметить, что М.С. Зейгельманом интерпретация выполнена в предположении наличия изолированных источников при не совсем удачном расположении профиля по отношению к аномальному полю Центральной депрессии Днепровско-Донецкой впадины. Как можно увидеть на рис. 4.19 профиль Пирятин — Талалаевка расположен, с одной стороны, в градиенте региональной магнитной аномалии, выклинивающейся в северо-западном направлении, а с другой — пересекает область северо-западного замыкания овалоподобных локальных источников. Следовательно для “результативной” интерпретации необходимо было бы выбрать интерпретационный профиль в 30 км юго-восточнее профиля Пирятин — Талалаевка. И, естественно, необходимо учет влияния расположенных вблизи источников регионального и локального классов.

Построение магнитной модели консолидированной земной коры Днепровско-Донецкого авлакогена осложнено присутствием в осадочном чехле девонских магматических и эффузивно-пирокластических образований разного состава (З.М. Ляшкевич, Т.В. Завялова [182]). Построение детальной магнитной модели данных образований в пределах осадочной толщи не представляется возможным по следующим причинам: большие глубины залегания эффузивно-пирокластических толщ, как правило, это низы осадочного чехла; высокомагнитными образованиями эффузивно-пирокластических толщ являются только пласты диабазов, составляющие очень незначительную часть разреза, максимум первые десятки метров, так
что средневзвешенные величины намагниченности не превышают первых амперо-с на метр; расчеты, проведенные автором с использованием экспериментальных данных о величинах намагниченности разных литологических образований осадочного чехла показали, что его неоднородности, расположенные ближе к поверхности, могут предопределять аномалии такого же порядка величины как и от диабазов — первые нанотесла — первые десятки нанотесла (М.И. Орлюк, [228]). Следовательно, выполнена только оценка вклада эффузивно-пирокластических образований в суммарное магнитное поле с использованием схем их латерального распределения и мощностей по данным [182]. При этом средневзвешенная интенсивность намагниченности эффузивно-пирокластических тощ принята, по-видимому, максимально возможной — 1,0—3,0 А/м. Магнитный эффект вулканитов как видно из рис. 4.20 незначителен. Только в районе Черниговского блока он составляет 150 нТл, что составляет 13% от интенсивности наблюдаемых аномалий. На остальной территории эффект вулканитов составляет не более чем 20 нТл. Таким образом расчет эффекта самого верхнего этажа магнитных источников Днепровско-Донецкого авлакогена свидетельствует, что наблюденные аномалии магнитного поля объясняются, главным образом, источниками консолидированной земной коры.

Для учета влияния источников, размещенных за пределами авлакогена, в модели консолидированной коры рассмотрен ряд источников региональных магнитных аномалий Украинского щита и Воронежского массива. Полученная модель удовлетворяет особенности магнитного поля, при этом все источники расположены в пределах консолидированной коры (рис. 4.21 и 4.22). На рисунке 4.22 приведены схемы намагниченности верхней и нижней частей консолидированной земной коры, построенные по результатам объемного моделирования. Анализ рисунков 4.21 и 4.22
Рис. 4.20. Эффект девонских вулканитов основного-ультраосновного состава (расчеты выполнены совместно с И.К. Пашкевич и Т.В. Лебедь).
Суммарная мощность вулканитов франского и фаменского этапов (а): 1 — изолинии мощности в км; 2 — границы областей развития вулканитов. Расчетные магнитные аномалии (б): 1 — изолинии в нанотеслах.
Рис. 4.21
Рис. 4.22

Схема намагниченности земной коры ДДА

1 - граница аналогоев; 2 - граница Центрального грабена; 3 - трансгрессионные тектонические швы; 4 - центральный разлом; 5 - западная граница Донецкого бассейна; 6 - западная граница Донецкого горста; 7 - изогипсы поверхности М; 8 - истощимые магнитные аномалии верхней части коры с намагниченностью 1.0-2.0 A/m; 9 - то же с намагниченностью 0.5-1.0 A/m; 10 - то же с намагниченностью 0.25 A/m; 11 - то же, 1.5 A/m; 12 - то же, 1.0 A/m; 13 - профили ГСЗ. Остальные условные обозначения см. Рис. 4.
позволяет сделать вывод об общей намагниченности коры авлакогена и его отдельных частей. Прежде всего, можно отметить, что кора характеризуется разными эффективными величинами намагниченности в западной, центральной и восточной частях авлакогена, а магнитные образования на запад от меридиана г. Полтава принадлежат к центральной, осевой части авлакогена, в то время как на восток от него они размещены в его северной бортовой части. Существенную роль в морфологии этих прибортовых магнитных источников играет трансрегиональный тектонический шов [171], к юго-западу от которого фиксируется смена простираний этих источников. При этом кора южной части авлакогена практически немагнитна.

На западе в районе Черниговской магнитной аномалии, проинтерпретированной ранее [138], эффективная намагниченность нижней части коры, за верхнюю границу которой принят горизонт К2 (глубины 18—20 км), равна 1—2 А/м (рис. 4.21 и 4.22). Намагниченность существенно базифицированной, с точки зрения автора, коры на глубинах от 3—5 до 18—20 км составляет 3—4 А/м.

Далее на юго-восток, в районе от г. Нежин до г. Прилуки выделяется область слабомагнитной коры с $I=0,5$ А/м. Эта область пространственно находится на север от Кировоградского блока УЩ, который также характеризуется незначительными величинами эффективных намагниченностей [155]. Локальные источники верхней части коры также характеризуются незначительными величинами намагниченности. Повышенной эффективной величиной намагниченности нижней части коры ($I=1,0—1,5$ А/м) характеризуется область между гг. Прилуки и Полтава. Для западной части этой области (Лохвицкая аномалия) в работе [116] получены такие же величины для всей коры и части верхней мантии. В верхней части этой области на глубинах от 5—10 до 19—0 км обнаруживается
ovalopodobnoe razmeshenie magnitnykh istochnikov s namagnychnennostyu 1,0—2,2 A/m (sm. ris. 4.22, 4.23).

Nachina ot g. Poltava na vostok, v svyazi s glubokim zaleganiem krystallicheskogo fundamenta (do 22 km) istochники zadavались neposredstvenno ot povernoosti krystallicheskogo fundamenta do glubin, gde temperatura dostigala izotermы Kuyri magnetita 580°C, либо границы Mohorovichicha. Dlya etoy parti avlagogena, kak bylo sказано, xarakterna prinzipianno ina karta razmesheniya magnitnykh neodnorodnostей относительно struktury avlagogena. Polosa s povyshennoy namagnychnennostyu porod, tyagoteyushchaya k zone kraevых глубинных разломов Dnepravoisko-Doneckogo avlagogena, na yuge smenyaetsya neamagnitnoy (ili slabomagnitnoy) koroy.

Dlya Cetrinalnoy depresii Dnepravoisko-Doneckogo avlagogena vdoь profily Alexanderovka — Artjuhovka postroena magnitnaya modelь zemnoy korы (raspolozhenie i samu modelь cм. na ris. 4.19 i 4.23), pozvolyaющая наглядno рассмотреть odin iz variantov rasshdeleniya namagnychnennosti v zemnoy korе. Kako видno magnitnye istochники ne vykhodят za predely kraevых глубинных разломов, а namagnychnennostь variruyet ot 0 do 2.2 A/m. Chetko zaфиксированы dva stolboobraznye tela s namagnychnennostями 2.0 i 2.2 A/m i rasprostranennykh na vse moychnostь konсолидированnoy korой.

Pричем, etot variant sleduet рассmtrivatь v kachestve ekvivalentnogo, naравne s variantami rasshdeleniya magnitnykh obrazovaniy v korе, рассмотренными V.G.Kozlenko i dr. [137] i M.C.Zeygelmanom [116]. V dannom konkretnom случае nachali v kraevых частях avlagogena stolboobraznyh magnitnyh istochnikov mogut sluzhitь podtverzhdeniem sushchestvovaliia skvozykorovyh kanalov postupleniya iz mantii v verhnuyu chastь korы magnitnogo veshchestva osnovnogo sostava
Рис. 4.23. Магнитная модель вдоль профиля Александровка-Артемовка: 1 - краевые глубинные разломы; 2 - поверхность кристаллического фундамента по данным корреляционного метода преломленных волн (а) и сейсмостратиграфических исследований (б)[211]; 3 - поверхность K3; 4 - поверхность Мохоровичича; 5 - предполагаемые разломы в консолидированной коре.
и дальнейшей активной флюидной деятельности. Геологическая и прогнозистическая интерпретации магнитной модели авлакогена в сочетании с дополнительными геофизическими и геологическими данными будет рассмотрена в разделе 6.3.

Выводы

1. Магнитная модель авлакогена отражает трехэтажное распределение магнитных источников в земной коре. Верхний этаж — эфузивно-пирокластические образования франкского и фаменского ярусов — залегает в самых низах осадочного чехла и имеет средневзвешенную намагниченность не более 1,0—3,0 А/м.

2. Магнитные источники верхней части консолидированной земной коры с верхними кромками на глубинах 3—15 км и нижними на глубинах 10—18 км обладают намагниченностью в первые амперы на метр (1,0—2,5 А/м). В Приднепровской части авлакогена в пределах Центральной депрессии впервые установлено овалоподобное распределение локальных источников с намагниченностью 1,0—1,5 А/м.

3. Глубинные магнитные неоднородности с намагниченностью в первые амперы на метр распределены неравномерно по простиранию авлакогена. Наиболее намагниченностью обладают области земной коры в районе Черниговского максимума (2,0 А/м) и Центральной депрессии (1,5 А/м).

4. Установлено принципиально отличное распределение глубинных магнитных неоднородностей по отношению к структуре авлакогена, а именно: на запад от г. Полтава они приурочиваются к центральной части авлакогена, а на восток от Полтавы — к его северной бортовой части.
4.4. Пространственно-временная (эволюционная) магнитная модель земной коры территории Украины. Для изучения какого-либо события в мире физических явлений необходимо прежде всего знать, где и когда оно происходит. Ответ на вопрос где? — заключается в определении места, а на вопрос когда? — момента времени происшествия. Место в пространстве указывается с помощью трех координат, при этом неважно, какими координатами пользоваться, географическими или какими-либо иными, все равно в общем случае для определения места события нужно всегда задать три числа.

Четвертое число, которое к ним нужно добавить, — это момент времени, который задается одним числом.

Все это означает, что пространство трехмерно, а время одномерно. Мир физических событий, каждое из которых определяется четырьмя числами, является из-за этого четырехмерным: \(3 + 1 = 4 \). При этом отметим, что четырехмерность не была изобретением теории относительности, мир классической физики (которая “объединила” время и пространство через движение) тоже четырехмерный.

Следовательно, в данном случае четырехмерность не означает ничего иного, кроме того, что мир физических явлений складывается из отдельных событий, каждое из которых описывается четырьмя числами.

Под пространственно-временной (четырехмерной или эволюционной) магнитной моделью земной коры подразумевается, поэтому распределение (изменение) намагниченности \(I \) в пространстве \((x,y,z) \) и времени \(T \). Следовательно, для построения такой модели необходимо трехмерную региональную магнитную модель “развернуть” во времени. Таким образом, кроме определения распределения глубинных магнитных неоднородностей в
пространстве коры, вторым обязательным условием является установление возраста намагниченных образований.

Исходя из этого, в методике построения соответствующей модели предусмотрено три этапа [226, 248, 378, 380]:

1 — построение трехмерной магнитной модели земной коры;
2 — установление времени возникновения намагниченных образований;
3 — совместный анализ (совмещение) результатов двух первых этапов с целью установления распределения намагниченных образований в пространстве коры и времени.

Как следует из работ З.А. Крутиховской, И.К. Пашкевич, И.М. Силиной для Украинского щита [155], М.И. Орлюка для территории Украины [225, 226], М.И. Орлюка, И.К. Пашкевич для юго-запада и всей платформы в целом [232-235] в пределах Украины выделяются крупные участки консолидированной земной коры с намагниченностью 1,0-1,5 А/м и размерами 300 x 500 км, в пределах которых размещены, как правило, источники региональных магнитных аномалий с намагниченностью 2,0-4,0 А/м и поперечником 60—120 км (рис. 4.24).

Самыми крупными магнитными неоднородностями являются Львовский палеозойский прогиб и Волынский блок Украинского щита на западе, Подольский, юго-западная часть Белоцерковско-Одесского и Голованевская шовная зона с северным бортом Причерноморского прогиба на юго-западе и Приднепровский и Приазовский блоки с северным бортом Причерноморского прогиба на юго-востоке (см.рис.4.24).

Для решения задачи установления возраста обнаруженных магнитных неоднородностей проанализирована связь намагниченности пород верхней части коры щита со временем их образования или максимального преобразования [153, 155]. Анализ выполнен с использованием
данных для Волынского, Подольского, Белоцерковско-Одесского, Кировоградского Приднепровского и Приазовского блоков Украинского щита.

Рис. 4.24. Схема сопоставления магнитных неоднородностей с разновозрастными тектоническими элементами Украины: 1 — контуры глубинных магнитных источников; 2 — границы естественных выходов УЩ, Карпатского и Крымского альпийских складчатых сооружений [155, 212]; 3 — Вольно-Полесский рифтоген [285]; 4 — палеозойские структуры [212] (А — Львовский палеозойский прогиб, Б — Днепровско-Донецкий авлакоген, В — Причерноморский шовный грабен); 5 — контуры наложенных впадин (1 — Львовско-Люблиицкой меловой, 2 — Днепровско-Донецкой мезозойской, 3 — Причерноморской мел-пaleогеновой, 4 — Конско-Ялинской меловой); 6 — Предкарпатский (а) и Индоло-Кубанский альпийские краевые прогибы; 7 — разломы, разделяющие блоки и шовные зоны УЩ [155]. Римские цифры в кружках — блоки и шовные зоны щита: I — Волынский, II — Подольский, III — Белоцерковско-Одесский, IV — Кировоградский, V — Приднепровский, VI — Приазовский, VII — Голованевская, VIII — Западно-Ингулецкая, IX — Орехово-Павлоградская шовные зоны.
При этом рассмотрены породы палингенно-метасоматического и магматического происхождения [155]. Результативным материалом являются графики изменения магнитной восприимчивости (или полной намагниченности) пород от времени их образования для отдельных блоков и суммарная по щиту (рис. 4.25). Каждая точка на графике характеризуется большой выборкой пород (от 30 до 2980 образцов).

Вольнский блок. Породы с повышенной магнитной восприимчивостью приурочены к началу и концу раннего протерозоя — 2,5—2,3 и 1,9±0,05 млрд. лет. Представлены они гранодиоритами, монцонитами и кварцевыми монцонитами с $\kappa = (500—1000) \times 4\pi 10^{-6}$ ед. СИ. В интервале 2,2—2,0 млрд. лет образовывались слабомагнитные граниты, плагиограниты и мигматиты с $\kappa = 50 \times 4\pi 10^{-6}$ ед. СИ.

Подольский блок. Возраст образований с повышенной магнитной восприимчивостью составляет 1,9 млрд. лет ($\kappa = 300 \times 4\pi 10^{-6}$ ед.СИ); 2,3—2,4 ($\kappa = 1200 \times 4\pi 10^{-6}$ ед.СИ); 2,65—2,7 ($\kappa = 400 \times 4\pi 10^{-6}$ ед.СИ) и более 3,0 млрд. лет ($\kappa = (400÷8000) \times 4\pi 10^{-6}$ ед. СИ). Породы представлены гранитами, амфибол-биотитовыми мигматитами, диоритами, гранодиоритами и чарнокитами. Между указанными временными интервалами образовывались породы слабомагнитные: в основном чудново-бердичесвкие граниты и мигматиты, а также чарнокитовые мигматиты.

Белоцерковско-Одесский блок. Высокую магнитную восприимчивость имеют гранодиориты, диориты, кварцевые диориты и амфибол-биотитовые мигматиты с возрастом 2,5—2,3 и более 3,0 млрд. лет. В промежутках между этими интервалами образовывались разнообразные слабомагнитные граниты, мигматиты и плагиомигматиты.
Рис. 4.25. Зависимость намагниченности ультраметаморфизических, интрузивных и метасоматических пород геосинклинального и платформенного этапов развития Украинского щита от времени их образования: 1 - Вольнский, 2 - Подольский, 3 - Белоцерковско-Одесский, 4 - Кировоградский, 5 - Приднепровский, 6-Приазовский блоки; 7 - средняя кривая по всем блокам УЩ; 8 - средняя кривая для магматических пород платформенного этапа развития УЩ.
Кировоградский блок. Монцониты и кварцевые монцониты с $\kappa = 200 \times 4\pi 10^{-6}$ един. СИ развиты в временному интервале 2,4—2,5 млрд. лет. К другим временным интервалам приурочены слабомагнитные граниты, плагиограниты, мигматиты, гранодиориты и диориты.

Приднепровский блок. Повышенной магнитной восприимчивостью обладают плагиограниты ($\kappa = 3000 \times 4\pi 10^{-6}$ един. СИ) с возрастом 2,7—2,8 млрд. лет, а также пироксеновые мигматиты и диориты ($\kappa = 1200—1600 \times 4\pi 10^{-6}$ един. СИ) со временем образования 3,0—3,2 млрд. лет. В промежутках породы представлены слабомагнитными гранитами, биотитовыми мигматитами и альбитами.

Приазовский блок. Характерно большое количество пород с повышенной восприимчивостью ($\kappa = (500-5000) \times 4\pi 10^{-6}$ един. СИ) для временного интервала 2,0—2,5 млрд. лет, представленное амфибол-биотитовыми и пироксеновыми мигматитами, гранодиоритами и монцонитами. Время образования высокомагнитных пироксеновых и амфибол-биотитовых мигматитов более 2,9 млрд. лет. В остальное время образовывались слабомагнитные плагиограниты и биотитовые мигматиты.

Для уменьшения влияния ошибок в случае ошибочной стратиграфической привязки отдельных выборок построена суммарная кривая магнитной восприимчивости ультраметаморфических, интрузивных и метасоматических образований от времени их образования для Украинского щита. Как видно из рис. 4.25, можно выделить четыре временных интервала образования пород повышенной намагниченности: менее 2,0 млрд. лет с неопределенной верхней границей в связи с отсутствием пород исследуемого типа более молодого возраста; 2,25—2,55; 2,75—2,80, зафиксированного всего двумя выборками пород Приднепровского блока; более 2,9 млрд. лет с неустановленной нижней границей из-за указанных причин. Для
исследуемого типа пород наблюдается общее уменьшение величин намагниченности с уменьшением их возраста. Таким же образом построена кривая для магматических образований платформенного этапа развития Украинского щита. Полученная кривая близка к предыдущей, т.е. во временном интервале 2,25-2,55 млрд. лет формировались габбро, габбро-амфиболиты, габбро-нориты и т.д. с повышенной намагниченностью. Следующий пик приходится на 1,85-2,0 млрд.лет. В это время образуются габбро, габбро-пироксениты, габбро-диориты, габбро-сиениты. Намечается еще один временной интервал с началом 1,7 млрд. лет и неустановленной верхней границей, который согласно геохронологических исследований может быть связан с одним из этапов становления Коростенского плутона.

Для закрытых территорий Украины данные ограничены, однако свидетельствуют о наличии периодов формирования пород повышенной намагниченности в более поздние времена. Так, для запада Украины и Припятского вала выделена габбро-диоритовая формация возрастом 1,3—1,35, габбро-диабазы дайково-силлового комплекса рифея с возрастом 0,9—0,95, формирование эфузивов трапповой формации вендского времени 0,56—0,68 млрд. лет [255]. В пределах Днепровско-Донецкого авлакогена широко развиты магматические и эфузивно-пирокластические образования девона. Кроме того, для юго-востока авлакогена, а также структур Причерноморья и Закарпатья имеются сведения о более молодых образованиях, обладающих повышенной намагниченностью (рис. 4.26).

Полученная зависимость находится в соответствии со средневзвешенной намагниченностью разновозрастных образований, построенной по данным Л.В. Булиной с соавторами [28—30]. Но кривая для Украины более дифференцирована. В частности, отмечается максимум во временном
интервале 1,85—1,95 и 1,65 млрд.лет, в то время как на кривой Л.В.Булиной не отмечается заметных отклонений. Следующее увеличение суммарной намагниченности геологических образований, по данным этого автора, начинается около 0,55 млрд. лет назад, и, испытав спад в интервале 0,1—0,25 млрд.лет, намагниченность продолжает расти до настоящего времени. Следовательно, эпохи образования пород с повышенной намагниченностью чередуются с эпохами образования немагнитных и слабомагнитных пород.

Как было показано, анализ петролого-tektonических аспектов природы региональных магнитных аномалий показал приуроченность их источников к режимам растяжения земной коры. Логично поэтому предположить, что периоды образования пород с повышенной намагниченностью отвечают этапам преобладающих растяжений коры, а периоды образования немагнитных пород - этапам преобладающего сжатия земной коры. С этой целью была проанализирована периодизация тектоноической истории Земли на основании выделения эпох складчатости, интенсивной гранитизации и крупных региональных несогласий (эпохи преобладающего сжатия), с одной стороны, и растяжения - с другой (В.В. Белоусов [11], Е.Е. Милановский [199,200], К. Шмидт, Л. Бауман [392] и др). Как следует из рис. 4.26, образование высокомагнитных пород приурочено к эпохам растяжения, а слабомагнитных - к эпохам сжатия. Наблюдается также взаимосвязь выделенных эпох с “плитотектоническими циклами” К. Шмидта и Л. Баумана [392], временными реперами которых является возраст зон субдукции и образования крупных континентов, с одной стороны, и их распад - с другой. Так, ранние этапы архейского цикла, характеризующиеся возникновением депрессий с мощным проявлением основного магматизма, сменяются затем этапом деформаций и метаморфизма (более 3,2 млрд. лет — саамская фaza
тектогенеза), что отражается в смене высокомагнитных образований слабомагнитными.

Раннепротерозойский “прото-плитотектонический” цикл (2,5—1,7 млрд.лет) начался с распада континентов, что соответствует эпохе растяжения [200] и образования высокомагнитных пород. В намагниченности пород отражается также начало среднепротерозойского “плитотектонического” цикла (1,7—1,0 млрд.лет). Существование такой взаимосвязи объясняется тем, что за основу выделения “плитотектонических” циклов положены два главных фактора, приводящих к распаду и образованию континентов — растяжение и сжатие.

Очень хорошее соответствие полученной цикличности в образования магнитных образований наблюдается для эпох преобладающего растяжения коры и рифтообразования, (по данным Е.Е.Милановского [199]), а также с крупными тектоно-магматическими циклами для Украинского щита (по данным Н.П. Щербака и К.Е. Есипчука [70]). Согласно их данным, рубежи начала крупных тектономагматических циклов соответствуют временным значениям 3,2 (граница нижнего и верхнего архея), 2,6 (граница архея и протерозоя), 1,9 млрд.лет (граница нижнего и верхнего протерозоя) и фиксируются проявлением инициального основного магматизма. Завершались периоды тектоно-магматической активности проявлением гранитоидного магматизма. Их положение на геохронологической шкале менее выдержано в пределах отдельных блоков, хотя преимущественно приурочено к временным значениям 3,4, 2,8, 2,0, 1.7 млрд.лет [70].

В согласии с цикличностью образования магнитных источников находятся палеомагнитные данные Ю. Корхонена [366] о поступательно-вращательном движении Балтийского щита на протяжении с 2,7 млрд. лет до настоящего времени. Из рис. 4.26 видно, что периоды образования
намагниченных образований соответствуют временам максимальных смещений щита по широте либо временам их максимальных поворотов вокрух своей оси.

Анализ рис. 4.24 и 4.26 позволяет наметить следующую картину возрастного распределения намагниченных образований в земной коре Украины (схематично изображено на рис. 4.27). Так, источники Приднепровского блока сформированы во временных интервалах 3,0 — 3,2(?), 2,7—2,8 млрд.лет, Подольского и Белоцерковско-Одесского — более 3,0, около 2,7 и 2,25—2,55 млрд.лет. Во время последнего интервала формировались источники Приазовского блока, Западно-Ингулецкой и Голованевской шовных зон. Для определения возраста и объема магнитных образований закрытых территорий Украины используется информация о магматизме платформенного этапа развития и наложенных структур, а также о бассейнах осадконакопления, как свидетелей процессов в земной коре и верхней мантии, приводящих к увеличению намагниченности [221]. Так, индикатором прогибания коры Волынского блока — области Новоград-Волынской региональной магнитной аномалии — является накопление осадочно-вулканогенной толщи тетеревской серии. Для Волыно-Подольской окраины Восточно-Европейской платформы наблюдается соответствие магнитных неоднородностей со структурами рифейского, вендского, палеозойского и мелового этапов развития коры. Наличие интрузивных образований, в частности вендского этапа, мощных осадочных бассейнов Львовского палеозойского прогиба и Львовско-Люблинской меловой впадины свидетельствуют о существенном преобразовании пород коры и времени возникновения намагниченных образований. Наличие девонских магматических, эффузивно-пирокластических и мощных осадочных
бассейнов характерно для районов с повышенной намагниченностью консолидированной коры Днепровско-Донецкого авлакогена [226].

Рис. 4.27. Схематичная эволюционная магнитная модель земной коры территории Украины. Условные обозначения см. На рис.4.24.
Все это позволяет предложить первое приближение пространственно-временной региональной магнитной модели земной коры Украины в обобщенном виде. Магнитные неоднородности с величинами намагниченности 0,5—4,0 А/м сформировались в результате суперпозиции магнитных источников, образовавшихся во временных интервалах: более 2,9; 2,75—2,80; 2,25—2,55; 1,90—2,00; около 1,6; 1,30—1,35; 0,90—0,95; 0,56—0,68; 0,35—0,44 и менее 0,1 млрд. лет. В соответствии с геологическими данными наиболее “мощные” интервалы (более 2,9, 2,25—2,55, 1,9—2,0 млрд. лет) соответствуют временам ранних стадий крупных тектономагматических циклов для Украинского щита. В рифей-вендское и палеозойское времена в пределах Вольно-Оршанского палеорифта, Львовского палеозойского прогиба и Днепровско-Донецкого авлакогена формировались источники с меньшей намагниченностью. Времена проявления наиболее мощных процессов образования магнитных образований имеют периодичность с интервалом около 0,7 млрд. лет. По аналогии с результатами работ А.Н. Третьяка [303] можно допустить, что этот период каким-то образом связан с Метагалактическим годом и, следовательно, в магнитных неоднородностях коры зафиксированы следы жизни Земли как космического объекта.

Пространственно-временная магнитная модель земной коры является первой такого типа моделью в которой показана пространственная и временная дискретность формирования магнитных неоднородностей и которая, поэтому, является одним из базовых элементов для построения соответствующей комплексной модели, исследования эволюции земной коры и Земли в целом, прогнозирования полезных ископаемых и решения задач экологической геофизики.
При этом для подобного рода исследований предвидятся существенные трудности, так как только “магнитная память”, фиксируемая такими параметрами как величина и направление намагниченности породы, позволяет относительно легко строить пространственно-временные (эволюционные) магнитные модели среды. Относительно “гравитационной памяти”, “тепловой памяти” и т.д., то здесь необходимы исследования по поиску “носителей” соответствующей памяти. Но представляется, что другого пути познания эволюции Земли, природы геофизических неоднородностей и прогнозирования полезных ископаемых, являющихся следствием и продуктом пространственно-временных процессов, не предвидится.

Выводы

Главный вывод данного раздела заключается в том, что источники положительных региональных магнитных аномалий, представленные преимущественно основными и средними образованиями (фемическим и сиальмафическим петромагнитными типами), формировались циклически на ранних стадиях крупных тектоно-магматических циклов, характеризующихся условиями преобладающего растяжения земной коры. В пределах Украины магнитные источники “маркируют”, поэтому разновозрастные структуры режимов преобладающего растяжения земной коры: архейские проторифтоиды, раннепротерозойские шовные зоны (протогеосинклинали по Г.И.Каляеву), рифей-вендские и палеозойские палеорифты.

Данная пространственно-временная модель является также одним из необходимых базовых элементов для построения комплексной эволюционной модели коры, прогнозирования полезных ископаемых и решения задач экологической геофизики.
5. Петромагнитная модель литосферы

Построенные разномасштабные магнитные модели земной коры несут информацию о геометрии объектов и величинах намагниченности. Для их геологической и тектонической интерпретации необходимым является установление типов пород и их ассоциаций, характеризующихся разными величинами намагниченности. Рассмотрим в связи с этим самую общую петромагнитную характеристику литосферы Земли с целью сведения всего многообразия горных пород, формирующих ее, в определенные петромагнитные типы. Причем, для более однозначного истолкования магнитных моделей в комплексе с данными других геолого-геофизических методов число этих петромагнитных типов не должно быть слишком велико.

По мнению многих исследователей, кора океанического типа является первичной по отношению к коре континентального типа, а по своему строению она проще коры континентального типа (рис. 5.1). Как видно из рисунка, образования слоя 2А, частично 2Б и 3А, представленных базальтами, дайковым комплексом и изотропными габбро, с разбросом намагниченностей от 0,1 до 5,0—10,0 А/м магнитны. Немагнитны образования слоя 3Б и 4. В случае серпентинизации гипербазитов слой 4 может также иметь повышенную намагниченность [209, 210, 249].
Рис. 5.1. Обобщенный петромагнитный разрез океанической коры по [249]: 1 — осадочные породы, 2 — базальты, 3 — переходная зона, 4 — дайковый комплекс, 5 — изотропные габбро, 6 — кумулятивные габбро и расслоенный комплекс, 7 серпентинизированные перидотиты, 8 — несерпентинизированные перидотиты (мантия), 9 — зависимость средней намагниченности от глубины, (по D.Kent et al. [249]), 10 — то же, (по D.Dunlop and T.Prevo [356]), 11 — то же, по В.Гордину и И.Золотову [80], 12 — то же по коллективу авторов [249].
Прямые геологические и петромагнитные сведения о низах континентальной коры присутствуют в виде ксенолитов вулканических пород, выносимых в результате вулканической и магматической деятельности.

Основываясь на предполагаемом составе нижней части коры и намагниченности пород, представляющих эти горизонты, З.А.Крутиховская, И.К.Пашкевич и И.М.Силина [155] рассчитали величины намагниченности земной коры УЩ. При этом было допущено, что в состав нижней 30—35км толщи входят основные и ультраосновные породы (габбро, габбро-амфиболиты, ортоамфиболиты, диориты, чарнокиты, серпентиниты, пироксениты и перidotиты), а также метаморфизованные образования гранулитовой фации метаморфизма типа пироксеновых гнейсов примерно в равных соотношениях. Использование средних величин индуктивной и остаточной намагниченностей пород, измеренных при нормальном давлении и температуре, позволило оценить среднюю намагниченность рассматриваемой толщи 1,9 А/м. В случае, если основные и кислые разности пород находятся в нижней части коры в соотношении 1:1, средняя намагниченность составит 1,3 А/м (табл. 5.1).

С учетом средней намагниченности верхней части коры (0,3 А/м) средняя намагниченность коры УЩ в целом будет не более 1,0—1,3 А/м. Причем, по-видимому, это максимальные величины, так как авторы приняли, что ультраосновные образования нижней коры высокомагнитны, что справедливо только для серпентинизированных разностей [249].

В настоящее время в разрезе континентальной коры по скоростной характеристике условно выделяется три слоя: “гранитный” \(V_p <6,3 \text{ км/с} \), “диоритовый” \(V_p = 6,3—6,8 \text{ км/с} \) и “базальтовый” \(V_p = 6,3—8,0 \text{ км/с} \).
км/с) [245]. Для петромагнитной характеристики литосферы в целом необходимо выделить еще один скоростной интервал ($V_p > 8,0—8,2$), характеризующий мантийную породную ассоциацию. Отметим, однако, что такое деление коры на слои имеет ясную геологическую содержательность в том случае, если оно подтверждено структурной частью разреза по данным ГСЗ, т.е. совпадением глубин залегания изолиний с поверхностями K_1, K_2, K_3 и M или зонами повышенной расслоенности земной коры, часто приурочивающихся к этим границам [304, 305].

Магнитные характеристики выделенных таким образом слоев определены согласно изучению пород, представителей этих слоев на поверхности Земли и корреляционным зависимостям скорости от плотности и намагниченности от плотности и скорости (рис. 5.2).

Таблица 3. К расчету намагниченности нижней части коры.

<table>
<thead>
<tr>
<th>Породы</th>
<th>Количество образцов</th>
<th>$I_{ср.изв.}$, А/м</th>
<th>$I_{ср.нижней части коры}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пироксениты, перидотиты</td>
<td>3114</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Серпентиниты</td>
<td>2364</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Габбро, габбро-нориты</td>
<td>3178</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Чарнокиты</td>
<td>3140</td>
<td>0.8</td>
<td>1.9*</td>
</tr>
<tr>
<td>Амфиболиты</td>
<td>2245</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Диориты</td>
<td>1640</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Гранодиориты</td>
<td>730</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Гранитоиды (мigmatиты</td>
<td>3911</td>
<td>0.7</td>
<td>1.3**</td>
</tr>
<tr>
<td>амфибол-биотитовые и пироксеновые)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Магнитные разновидности гранитов</td>
<td>950</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Примечание. * Среднее значение намагниченности, соответствующее
основному составу нижней части коры; приняты равные соотношения разновидностей пород, за исключением серпентинитов, содержание которых предполагается вдвое меньше, чем остальных компонентов.

** Среднее значение намагниченности нижней части коры, полученное в предположении, что основные и кислые породы находятся в соотношении 1:1, намагниченность основных пород 1,9 А/м, кислых — среднее из табличных значений для гранодиоритов, гранитоидов и гранитов.

Наиболее простая картина наблюдается для пород верхней мантии, породообразующими минералами которой являются оливин \((\text{MgFe})_2[\text{SiO}_4]\), ромбический пироксен \((\text{Mg}_2[\text{Si}_2\text{O}_6])\) и моноклинный пироксен \((\text{CaMg}[\text{Si}_2\text{O}_6])\). По данным измерений, неизмененные мантийные образования слабомагнитны (см.рис. 5.2).

Состав и намагниченность слоев коры следуют из анализа рис. 5.2. Как видно, “гранитный” слой представлен гранитоидами, туфами, некоторыми щелочными породами, серпентинитами, “дiorитовый” — диоритами, чарнокитами, гнейсами, метаосновными породами, “базальтовый” — гранулитами, амфиболитами, пироксенитами, габбро, метаосновными породами, перидотитами, оливинитами и пироксенитами.

Согласно [249], магнитоактивный слой литосферы формируется в процессе дифференциации магмы основного состава с выделением ранних, немагнитных и слабомагнитных кумулятов и более поздних дифференциатов, обогащенных первично-рудными минералами — титаномагнетитом и гемоильменитом; в зависимости от окислительной обстановки содержание в них магнитных минералов существенно изменяется.
Тектонической обстановкой образования магнитных пород являются зоны растяжения (рифты, области развития внутриплитного магматизма, островные дуги и т.д.). Последующие преобразования, связанные с региональным глубинным метаморфизмом, как правило, могут приводить лишь к перекристаллизации магнитных минералов на месте в соответствии с типом окислительно-восстановительной обстановки, и только в случае привноса железа флюидом с низким РН возможна обогащение глубинных пород магнетитом. Но роль последнего процесса по сравнению с первично-магматическими образованиями магнитных минералов второстепенна [256].

В результате анализа изложенного все возможное многообразие петромагнитных разрезов литосферы Земли сводится к четырем типам: ультрамафит-мафитовый; фемический; сиальмафический; сиалический.

Ультрамафит-мафитовый тип. Имеет среднюю намагниченность менее 0,5 A/м. Минералы — носители намагниченности и представлены редкими зернами ильменита, высокотитанистого титаномагнетита, а также вторичного магнетита. Формируется в относительно восстановительных условиях, буфер кварц — магнетит — фаялит и ниже, система близка к закрытой. Породы представлены перидотитовыми и пироксенитовыми коматитами, расслоенным габбро-пироксенитовым комплексом, кумулятивным габбро, гранулитами, эклогитами, зеленокаменными породами. Типичен для слоя ЗВ океанической, консолидированной коры “сухих” рифтов, осадочных бассейнов (впадин), зеленокаменных структур континентальной коры.
Фемический тип. Средняя намагниченность — 1,0÷10,0 A/m. Минералы — высокотитанистый титаномагнетит и ильменит, вторичные низкотитановые — титаномагнетит и магнетит, самородное железо. Формируется при относительно низком окислительном режиме, буфер близок к буферу никель — оксид никеля, типичный для базальтовой магмы, система близка к закрытой и промежуточного типа. Породы представлены базальтоидами, феррогаббро и другими продуктами дифференциации феннеровского типа, реже средними и кислыми породами, основными гранулитами, серпентинизированными гипербазитами. Типичен для структур растяжения: океанические рифты, континентальные “мокрые” рифты, области основного и щелочного внутриплитонного магматизма (горячие точки, зоны и поля на океанической коре, шовные зоны, зоны тектономагматической активизации).

Сиальмафический тип. Средняя намагниченность — 1.0÷5.0 A/m. Минералы -- титаномагнетит разного состава и ильменит, вторичные низкотитановые -- титаномагнетит и магнетит. Окислительный режим широко варьирует от буфера никель — оксид никеля до магнетит — гематит, система открытая. Породы представлены андезито-базальтами, андезитами, диоритами, гранитоидами и другими продуктами магматической дифференциации известкого-щелочного типа, гранулитами разного состава, чарнокитами, амфиболитами, эндербитами. Представляет магматизм активных окраин плит, островные дуги, шовные зоны, зоны тектономагматической активизации.
Сиалический тип. Средняя намагниченность менее 0,5 A/м. Минералы — ильменит, вторичные низкотитановые — титаномагнетит и магнетит. Относительно восстановительный режим близок к буферу кварц – магнетит – фаяллит, система близка к открытой. Породы представлены гранитоидами и их метаморфическими аналогами. Типичен для структур сжатия (колизионные, складчатые области) и осадочного чехла платформ.

В основных тектонотипах петромагнитные типы в чистом виде, как правило, не встречаются. В принципе возможны 36 вариантов их комбинаций, которые могут быть реализованы в естественных условиях.

В соответствии с изменением ситуации (прежде всего, Т-f02 - обстановки) на любой стадии формирования коры может происходить наложение определенных петромагнитных типов на ранее существовавшие. Однако, как показывают петромагнитные исследования, на разных стадиях развития коры преобладают вполне определенные петромагнитные типы или их сочетания. Например, ультрамафит-мафитовый и фемический петромагнитные типы органически связаны и присущи ранним стадиям развития коры.

Выделенные четыре основных петромагнитных типа позволяют в сочетании с дополнительными геолого-геофизическими данными охарактеризовать с единых позиций земную кору любого типа. Интересным представляется оценка средней намагниченности земной коры океанического, переходного и континентального типов.

С использованием данных [210] средневзвешенная намагниченность океанической коры составляет 1,5±1,7 A/м, а при допущении широкого развития в низах коры серпентинита — 2.5±2.7 A/м. Близкими величинами
намагниченности характеризуется также кора переходного типа. В качестве примера рассмотрим петромагнитную модель Курильской островной дуги. Е.В.Кочергин и др. [141] построили магнитную модель Курильской и Рюкю островных систем, где наблюдается взаимосвязь положительных аномалий с мощностью "базальтового" слоя коры. Состав слоя предполагается на основании изучения ксенолитов глубинных пород, вынесенных на поверхность молодыми лавами Курильских островов. Эти ксенолиты состоят, главным образом, из габбро-алливаллитов и амфиболитов. Магнитные минералы в нормальных габро и амфиболитах представлены преимущественно низкотитановым титаномагнетитом с преобладающей точкой Кюри 350—400°С и магнетитом. Нередки обособленные зерна вторичного магнетита, более характерного для пироксенитовых габбро и габбро-диоритов. Видимо, магнитные габбро и амфиболизированные их разновидности представляют слой 3А (возможно, и 2В). Габбро-алливаллиты имеют различное происхождение, но в основном это продукты преобразования ультраосновных пород верхней мантии и габбро — кумулятов, т.е. первично немагнитных пород слоя 3В.

В магнитной модели Курильской островной дуги магнитоактивный слой ограничен подошвой земной коры и изотермой Кюри магнетита [141]. Максимальные значения интенсивности региональных аномалий соответствуют утолщениям "базальтового" слоя, намагниченность которого оценена в 1,3—2,7 А/м. Отмечается также высокая магнитная восприимчивость пород внешней зоны Курильской гряды по сравнению с таковой внутренней зоны, что обусловлено большей основностью продуктов современного вулканизма. Следовательно, с учетом слабой намагниченности остальной части разреза островной дуги,
средневзвешенная намагниченность коры в целом будет в полтора раза меньше и составит 0,8—1,8 А/м.

Таким образом, с учетом приведенной средневзвешенной величины намагниченности континентальной коры (коры УЩ) следует, что океаническая кора, кора островных дуг и континентов, несмотря на существенные различия в мощности и строении, имеет близкие величины намагниченностей: 1,5—1,7, 0,8—1,8 и 1,0—1,3 А/м. Отсюда можно сделать очевидный, но впервые подтвержденный на количественном уровне вывод: аномальное магнитное поле Земли обусловлено, в основном, базальтовым слоем земной коры (фемический петромагнитный тип), так как только он присутствует во всех типах земной коры (оceanической, переходной и континентальной).

Результаты магнитного моделирования по геотраверсу III и ряду районов Северной Евразии показали, что в магнитном отношении все слои разреза коры неоднородны по латерали. Магнитные неоднородности "гранитного" слоя, согласно изложенному, отвечают преимущественно сиалическому петромагнитному типу, "диоритового" — сиальмафическому, а "базальтового" — фемическому и ультрамафит-мафитовому. При этом, обратные корреляционные зависимости между магнитным и гравитационным региональными полями по геотраверсу III могут быть обусловлены, в основном, соотношением фемического и ультрамафит-мафитового петромагнитного типов, т.е. образованиями средней и нижней частей коры. Плотностные характеристики различных частей разреза позволяют с учетом намагниченности отнести разрез к определенному петромагнитному типу. Так, уменьшение намагниченности разреза с одновременным увеличением плотности, иногда до аномально высоких значений, свидетельствует о наличии пород ультрамафит-мафитового петромагнитного типа, а с
уменьшением плотности — о наличии пород сиальмафического или сиалического типа. Последние два типа земной коры отражают процессы платформенной активизации и формирование существенно гранитоидной коры, преимущественно сиалического петромагнитного типа.

Выводы

Выделены четыре петромагнитных типа земной коры: ультрамафит-мафитовый, фемический, сиальмафический, сиалический, позволяющие судить о вещественном составе, окислительно-восстановительных и термодинамических условиях любой стадии развития земной коры. Средневзвешенные намагниченности океанической коры, островных дуг и континентальной коры близки по величине: 1,5—1,7, 0,8—1,8 и 1,0—1,3 А/м. При этом, главным в магнитном отношении (отвечающим за большую часть интенсивности аномального магнитного поля), является фемический петромагнитный тип, присутствующий во всех типах коры.

6. Истолкование разномасштабных магнитных моделей

Истолкование магнитных моделей земной коры является наиболее важным и интересным этапом геомагнитных исследований в связи с непосредственным решением задач магнитологии, экологической геофизики, строения и эволюции литосферы, прогнозирования полезных ископаемых и т.д. Построенные магнитные модели масштабов 1 : 5 000 000,
1 : 2 500 000, 1 : 1 000 000, 1 : 500 000 и т.д. несут информацию соответствующих масштабов о строении магнитоактивной толщи и величине намагниченности источников. Привлечение дополнительных данных в виде петромагнитной характеристики коры, скоростей сейсмических волн и плотностей отдельных слоев коры и других геолого-геофизических данных позволили по новому взглянуть на строение и эволюцию земной коры юго-запада платформы, Днепровско-Донецкого авлакогена, рифейской зоны сочленения Фенноскандии и Сарматии, последокембрийской зоны сочленения Восточно-Европейской платформы с альпийской системой Карпат и т.д. Обобщение этих данных в сочетании с результатами геохронологических исследований позволяют впервые рассмотреть строение и эволюцию земной коры в рамках пространственно-временной (эволюционной) магнитной модели земной коры.

В этой главе приведена геолого-тектоническая интерпретация магнитных моделей разных в геологическом отношении регионов, на основе чего будут предложены общие закономерности и отличия в возникновении магнитных неоднородностей, показана их роль в комплексе геолого-геофизических методов при познании глубинного строения и эволюции земной коры.

6.1. Интерпретация магнитной модели юго-западной части Восточно-Европейской платформы. Согласно региональной магнитной модели, в пределах юго-запада Восточно-Европейской платформы выделяются крупные участки земной коры с намагниченностью 0,5—1,0 А/м и максимальными размерами 300х500км. Источники региональных магнитных аномалий с намагниченностью 1,0—4,0 А/м и размерами в первые десятки (до 100) км
размещены, как правило, в пределах выделенных ранее полос положительных магнитных аномалий. По магнитному моделированию с использованием спутниковых съемок выделены также своеобразные “надструктуры”, отличающиеся различной степенью концентрации магнитных источников регионального класса и сопоставимые по размерам с сегментами (по С.В. Богдановой [347]) и мезоплитами (по В.Г. Кушеву [70]) (рис.6.1).

В выяснении состава земной коры, объяснении структуры и состава магнитных источников разных рангов и их соотношений друг с другом и будет заключаться геолого-тектоническая интерпретация данной модели. В соответствии с сейсмическими данными, данными о плотности литосферы, тепловом потоке и т.д. [9, 114, 170] и результатами раздела 5 можно предложить обобщенную петромагнитную характеристику крупных сегментов литосферы и источников регионального класса. В частности, земная кора юго-запада платформы (Курско-Прибалтийского сегмента) при наличии всех четырех петромагнитных типов сложена преимущественно образованиями фемического и ультрамафит-мафитового типов, кора Северо-Скандинавского сегмента — ультрамафит-мафитового и сиальмафического типов, Камско – Эмбенского сегмента — ультрамафит-мафитового, сиальмафического и сиалического петромагнитных тимпов (рис.6.2),

Кора Санкт-Петербургского и Прикаспийского магнитных минимумов образовывалась ультрамафит-мафитового и сиалического типов. Следовательно, магнитные сегменты представляют собой участки литосферы повышенной основности и увеличенных мощностей диоритового и
базальтового слоев [172]. Слабомагнитные сегменты являются таковыми вследствие увеличения плотности низов коры за счет мантийных компонентов и наличия гранитного слоя, либо мощного осадочного чехла в верхней части коры.

Земная кора в районе источников региональных магнитных аномалий представлена, преимущественно, двумя петромагнитными типами — фемическим и сиальмафическим (рис. 6.3).

Причем, судя по результатам моделирования, источники регионального класса являются максимальными из возможных (в плане однородности в магнитном отношении) структурами, характеризующимися существенным преобладанием одного из петромагнитных типов. Более детальная геолого-тектоническая интерпретация природы источников этого класса будет дана при истолковании магнитных моделей моделей масштаба 1 : 500 000 и крупнее. А здесь остановимся на истолковании природы и расположения магнитных и слабомагнитных сегментов коры и объяснении распределения и формы источников регионального класса в пределах сегментов и платформы в целом.

С этой целью остановимся вкратце на крупномасштабном строении Восточно-Европейской платформы. Согласно последним работам С.В. Богдановой [347,348], платформа подразделяется на три крупных сегмента: Фенноскандию, Волго-Уралию и Сарматию, разделенные Волыно-Центрально-Русским и Пачелмским авлакогенами (см.рис.6.1). Согласно В.Г.Кушеву [69], платформа состоит из четырех мезоплит: Восточная часть Балтийского щита (на севере) и группа доменов Украинского щита
Рис. 6.3. Петромагнитные типы, формирующие земную кору юго-запада Восточно-Европейской платформы: 1 — фемический, 2 — фемический и сиальмафический, 3 — ультрамафит-мафитовый и сиалический.
и Белорусско-Воронежского выступов (на юге). Две смежные с ними полигональные ячейки, отвечающие Свекофенской и Приволжской областям, также образуют парную систему мезоплит (см.рис.6.1). Сопоставление данных тектонических схем с магнитными и немагнитными сегментами по данным приземных и спутниковых съемок показывает, что магнитные сегменты практически полностью составляют Сарматию и Волго-Уралию. Фенноскандия неоднородна в магнитном отношении (см.рис.4.3, 6.2, 6.3), что может объясняться палеопротерозойским и самым ранним мезо—протерозойским ее ростом, путем постепенной аккреции новой коры с запада и формированием краевой юго-западной границы платформы [238]. Магнитные сегменты, выделенные по данным приземных съемок, имеют немного другие конфигурации по сравнению с выделенными по аномалиям МАГСАТ. При этом, спутниковые Северо-Скандинавский и Камско-Эмбенский сегменты по приземным данным выделяются как один (но с разным внутренним строением в пределах Фенноскандии и Волго-Уралии, в частности, простиранием аномальных полос), а Курско-Прибалтийский — практически одинаков как по приземным, так и по спутниковым данным. Согласно данным [337], Северо-Скандинавский и Камско-Эмбенский магнитные сегменты (или же правое крыло "бабочки" по приземным данным) сложены архейской корой, с преимущественным развитием мафических гранулитов. Такой же состав и Курско-Прибалтийского сегмента. Немагнитные части "бабочки", как это следует из рис. 4.3, 6.4, сложены на поверхности фундамента (более чем на 90%) гнейсами и сланцами. На крайнем юго-востоке, в районе Прикаспийской депрессии, состав фундамента неизвестен из-за большой мощности осадочного чехла.

Анализ построенной магнитной модели и эффектов от нее на разных высотах (включая спутниковые) позволяет проанализировать
поле относимости Земли на предмет присутствия в нем аномалий, связанных с формальными методами его построения и приводящих, в свою очередь, к появлению "ложных" аномалий в поле (ΔT)a.

Так, анализируя морфологию и интенсивность расчетных аномалий и аномалий МАГСАТ, можно сделать вывод, что полученные длины волн и местоположение экстремумов близки между собой (рис. 6.5, расположение — профиль II-II на рис. 4.10). Имеющиеся же расхождения в интенсивности между выделенными по спутниковым данным и расчетными значениями свидетельствуют о том, что уровень поля относимости, по отношению к которому выделены аномалии МАГСАТ, завышен и содержит в себе часть аномального эффекта коровых источников. Этот вывод подтверждается также тем, что величины размаха $A = (\Delta T)a$, макс. – ($\Delta T)a$, мин. рассчитанных аномалий и аномалий МАГСАТ близки. Так, по отношению к Санкт-Петербургскому минимуму величина A для Курско-Прибалтийской аномалии составляет 24 нТл по расчетным данным и 28 нТл по аномалиям МАГСАТ, что для региональной модели, не учитывающей влияние верхней части коры, можно считать удовлетворительным.

Различие в уровнях расчетного и наблюдаемого полей на высоте полета спутника наблюдается и для территории Туркменистана. Однако здесь на расстоянии полуудлин волны находятся другие положительные аномалии МАГСАТ, в частности аномалия Аравийского полуострова. Учет их влияния на суммарное поле уменьшает расхождение до 2,0 нТл, что существенно меньше, чем для аномалий Восточно-Европейского кратона.

Такой же подход применим и для оценки нормального поля T, по отношению к которому выделены приземные аномалии (ΔT)a [130,131].
Рис. 6.5. Сопоставление рассчитанных (T-аномалии) и аномалий МАГСАТ (T-Магсат) вдоль профиля II-II [384] (расположение см. рис.4.10).
Продемонстрируем это на протяженном профиле через южную часть платформы (расположение — профиль 1-1 на рис.4.10). Профиль построен на основании объемной модели платформы и, как видно из рис. 6.6, в пределах Сарматского сегмента в рамках принятых модельных допущений с добавлением источников верхней части коры можно добиться сколь угодно точного совпадения наблюденного и расчетного полей. В пределах же Прикаспийской депрессии расчетное поле отличается от наблюденного на 100 ±150 нТл, причем эта разница неустранима в рамках принятых модельных допущений и требует существования большого объема обратно намагниченных пород. Использование результатов трехмерной модели позволяет оценить величину поправки, которую необходимо ввести в поле \((\Delta T) \) на поверхности Земли. Для подтверждения правомочности и необходимости такой процедуры на этом же рисунке приведена кривая изменения "нормального" поля \(T \) вдоль профиля, взятого в соответствии с картой [130]. Хорошо видно, что в нормальном поле можно выделить соответствующую длину волны с интенсивностью около 100 нТл, исключение которой из его состава приблизит уровень аномального магнитного поля к необходимому для построения магнитной модели без введения обратной намагниченности.

Такая же картина наблюдается и районе геотраверса III (см. разд. 4.1), где в поле \((\Delta T) \) наблюдается длинноволновая составляющая, приводящая к невозможности построения магнитной модели при допущении намагниченности пород коры по современному полю. В связи с этим при построении двумерной магнитной модели приходилось вести подбор намагниченностей в пределах отрицательных ее величин [220]. И только введя поправку в виде длинноволновой составляющей с максимальной интенсивностью 25—300 нТл, можно выполнить построение модели для
Рис. 6.6

На рисунке изображено использование различных элементов линий и областей для отображения различных данных. Каждая область соответствует определенному показателю или состоянию. Ось H, km показывает высоту, а ось времени (выделена внизу) отражает динамику процесса во времени.
положительно намагниченных блоков коры. Немного меньшая величина поправки следует из результатов трехмерной модели при намагниченности пород по современному полю.

Следовательно, истолкование трехмерной магнитной модели Восточно-Европейского кратона позволяет сделать ряд выводов, представляющих, с точки зрения автора, интерес для геологов, тектонистов и, собственно, специалистов в области геомагнетизма.

Выводы

1. В пределах платформы выделены своего рода “надструктуры”: Курско-Прибалтийский, Северо-Скандинавский и Камско-Эмбенский сегменты, отличающиеся повышенной насыщенностью коры магнитными источниками регионального класса, и Санкт-Петербургский и Прикаспийский — с минимальной насыщенностью коры магнитными источниками.

2. Курско-Прибалтийский сегмент сложен преимущественно образованиями фемического сиальмафического и ультраамфит-мафитового петромагнитного типов, Северо-Скандинавский — ультраамфит-мафитового и сиальмафического, Камско-Эмбенский — ультраамфит-мафитового, сиальмафического и сиалического, а Санкт—Петербургский и Прикаспийский — ультраамфит-мафитового и сиалического типов.

3. Анализ аномального эффекта от трехмерной магнитной модели платформы с данными (ΔT) на поверхности Земли и аномалиями МАГСАТ впервые позволил предложить количественные критерии оценки достоверности поля относимости Земли, полученного формальными методами.
6.2. Геолого-тектоническая интерпретация магнитной модели земной коры запада УЩ и смежных регионов. Детальная геолого-тектоническая интерпретация магнитной модели Вольно-Подольской плиты выполнена автором в кандидатской диссертации (М.И.Орлюк, [221]). Главным результатом данной работы явился вывод о принадлежности источника Львовской региональной магнитной аномалии к структуре растяжения и прогибания консолидированной части коры без существенной инверсионной стадии ее развития. Поэтому в данной главе изложена интерпретация магнитных неоднородностей запада Украины в плане их использования для познания строения и эволюции зон сочленения Восточно-Европейской платформы со структурами Альпийского пояса и Фенноскандии с Сарматией. Для построения согласованной геолого-магнитной модели и корректного ее истолкования привлечен обширный геолого-геофизический материал [60, 61, 83, 90, 91, 115, 123, 135, 142, 157, 169-174, 194, 195, 204, 212, 241, 242, 255, 265, 285, 291, 293-295, 320, 323, 324, 327-329, 351 и др.].

Исследуемый регион уникален в плане наличия пород и структур от архейских до практически современных возрастов. Самые молодые образования связаны с Закарпатским прогибом, а самые древние — с Подольским блоком УЩ.

Согласно геохронологическим исследованиям Н.П.Щербака, Г.В.Артюменко, Е.Н.Бартницкого и др. [341] наиболее древние супракrustальные образования днестровско-бугской серии Подольского блока сформированы около 3,4 млрд. лет тому назад. Породы этой серии были подвержены метаморфизму и гранитизации около 3,2 млрд. лет и 2,8 млрд. лет (Л.М.Степанюк, Е.Н.Бартницкий [396]). По данным этих же авторов супракrustальные образования бугской серии
сформированы не ранее 2,8 и не позже 2,57 млрд. лет. По-видимому с этими процессами, связанными с заложением и развитием данных структур связано формирование мафит-ультрамафитовых интрузивных комплексов (древнее 2.7 и 2,3 млрд.лет), находящихся в тесной ассоциации с чарнокитами Среднего Побужья [396].

Время формирования тетеревской серии неизвестно, но субвулканические породы новоград-вольнской толщи, прорывающие породы тетеревской серии имеют возраст 2,4 млрд.лет. В составе тетеревской серии присутствуют первично-осадочные образования Кочеровского прогиба с возрастом моложе 2,4 млрд.лет. Повторный метаморфизм пород тетеревской серии и новоград-вольнской толщи их гранитизации (житомирский комплекс) имели место 2,10-2,02 млрд.лет. Некоторые образования житомирского комплекса имеют более молодой возраст – 1,96 млрд.лет. В этой же возрастной интервал укладываются и уран – свинцовые датировки циркона из интрузивных образований Букинского комплекса [396].

В раннем протерозое (2,10-1,97) в результате интенсивной метаморфической переработки и гранитизации образовался бердичевский комплекс. Примерно в это же время (2,02-1,99) были сформированы породы вулкано-плутонической ассоциации Осницкого блока (Осницко-Микашевичский вулканический пояс) [391].

Более молодые образования формируют кристаллический фундамент вблизи Львовского палеозойского прогиба (1,70-1,20) [212].

В верхней части коры запада щита распространены образования Волынской, Подольской, Росинско-Тикичской (Белоцерковско-Одесской) геологических провинций и Коростенского плутона. Построенная магнитная модель позволила:
— рассчитать геометрические параметры и величины намагниченности источников локальных магнитных аномалий;
— выделить с использованием полученных параметров и привлечением дополнительных данных петромагнитные типы пород верхней части коры;
— определить вклад выделенных петромагнитных типов (комплексов пород) в объеме верхней части коры.

Согласно З.И.Крутиховской, И.К.Пашкевич и И.М.Силиной [153,155] в районе распространены следующие группы пород: 1 - разновозрастные метаморфизованные осадочно-вулканогенные и интрузивные образования; 2 - ультраметаморфические интрузивные и метасоматические породы доплатформенного этапа развития; 3 - магматические породы платформенного этапа развития.

В пределах Волынского блока первая группа представлена биотитовыми гнейсами (по магнитной восприимчивости выделяются две разновидности - слабомагнитные и с величиной \(k = 780 \times 4\pi \times 10^{-6} \text{ ед. Си} \)), амфибол - биотитовыми гнейсами (сл.м. и \(k = 1300 \times 4\pi \times 10^{-6} \text{ ед. Си} \)), пироксен - биотитовыми гнейсами (\(k = 60 \times 4\pi \times 10^{-6} \text{ ед. Си} \)) и амфиболитами (\(k = 70 \times 4\pi \times 10^{-6} \text{ ед. Си} \)) тетеревской серии. Вторая группа представлена гранодиоритами (\(k = 450 \times 4\pi \times 10^{-6} \text{ ед. Си} \)) осницкого комплекса и образованиями кировоградско - житомирского комплекса: слабомагнитными биотитовыми гранитами, житомирскими плагиогранитами и мигматитами, монцонитами (\(k = 300 \times 4\pi \times 10^{-6} \text{ ед. Си} \) и \(k = 1400 \times 4\pi \times 10^{-6} \text{ ед. Си} \)) и кварцевыми монцонитами (\(k = 100 \times 4\pi \times 10^{-6} \text{ ед. Си} \) и \(k = 650 \times 4\pi \times 10^{-6} \text{ ед. Си} \)). Третья представлена слабомагнитными альбитами и сиенитами, коростенскими гранитами и гранитами рапакиви. Комплекс основных и ультраосновных пород представлен высокомагнитными образованиями: сиенит - диоритами (\(k = 450 \times 4\pi \times 10^{-6} \text{ ед.} \)).
Си), габбро-диоритами (к = 3600 x 4π 10^{-6} ед. Си), габбро (к = 4000 x 4π 10^{-6} ед. Си), габбро-амфиболитами (к = 150 x 4π 10^{-6} ед. Си и к = 6000 x 4π 10^{-6} ед. Си), габбро-норитами (к = 1300 x 4π 10^{-6} ед. Си).

В пределах Подольской провинции первая группа представлена биотитовыми гнейсами (сл.м.), пироксен-биотитовыми гнейсами (к = 700 x 4π 10^{-6} ед. Си), кальцифиров (сл.м.) и амфиболитами (к = 300 x 4π 10^{-6} ед. Си) бугской серии; биотитовыми (сл.м.), пироксен-биотит-амфиболовыми (к = 300 x 4π 10^{-6} ед. Си) и пироксеновыми (к = 950 x 4π 10^{-6} ед. Си) гнейсами, пироксен-плагиоклазовыми кристаллосланцами (к = 3500 x 4π 10^{-6} ед. Си), кварцитами (к = 10000 x 4π 10^{-6} ед. Си) и амфиболитами (к = 800 x 4π 10^{-6} ед. Си) днестровско-бугской серии. Вторая — кировоградско-житомирским комплексом: кировоградскими (к=250 x 4π 10^{-6} ед.Си) и аплито-пегматоидными (сл.м.) гранитами, мигматитами (сл.м.), мигматитами амфибол-биотитовыми (к = 700 x 4π 10^{-6} ед. Си) и диоритами (к = 1200 x 4π 10^{-6} ед. Си). Подольский комплекс представлен чудново-бердичевскими гранитами (сл.м.), аплито-пегматоидными гранитами (к = 380 x 4π 10^{-6} ед. Си), чудново-бердичевскими мигматитами (сл.м.), чарнокитовыми мигматитами (к = 90 x 4π 10^{-6} ед. Си), чарнокитами (к = 380 x 4π 10^{-6} ед. Си) и диоритами (к = 8000 x 4π 10^{-6} ед. Си). Комплекс основных и ультраосновных пород представлен габбро-амфиболитами (к = 150 x 4π 10^{-6} ед. Си), пироксенитами (к = 1100 x 4π 10^{-6} ед. Си), серпентинитами (к = 1200 x 4π 10^{-6} ед. Си), габбро-норитами (к = 1500 x 4π 10^{-6} ед. Си) и норитами (χ = 1550 x 4π 10^{-6} ед. Си).

В пределах Росинско-Тикичского региона первая группа представлена росинско-тикичской серией: биотитовыми (к = 110 x 4π 10^{-6} ед. Си), амфибол-биотитовыми (к = 4000 x 4π 10^{-6} ед. Си), амфибол-пироксеновыми (к = 220 x 4π 10^{-6} ед. Си) гнейсами и амфиболитами (к = 140 x 4π 10^{-6} и к = 6500 x 4π
Вторая группа кировоградско-житомирским комплексом - кировоградскими (сл.м.), аплитопегматоидными (сл.м.), биотит-амфиболовыми (сл.м.) гранитами и пегматоидными мигматитами (сл.м.), а также гранодиоритами (к = 1800 х 4π 10^{-6} эд. Си). Магматические образования платформенного этапа развития представлены только аплитоидными гранитами кировоградско-житомирского комплекса (сл.м. и к = 1 100 х 4π 10^{-6} эд. Си).

Согласно объемной модели в верхней части коры наиболее распространены сиалический и сиальфемический петролитический типы, среди которых небольшими островками попадаются образования фемического петролитического типа. Наиболее насыщен образованиями фемического типа Подольский блок, сиальфемического - Волынский.
Отметим при этом, что в Росинско-Тикичском блоке фемический тип представлен metamorphicами, в Подольском — metamorphicами и магматическими, в Волынском — преимущественно магматическими образованиями.

Начало формирования раннеплатформенного чехла кратона связывается с авлакогенной стадией развития (средний — верхний рифей). В это время сформировалась структура северо-восточного простирания, природа которой до сих пор не получила однозначного толкования и названия [206]. В. С. Заика-Новацкий и А. В. Чекунов выделили сквозной поперечный Паннонско-Волынский прогиб, северо-восточной частью которого является рифейский Вольно-Оршанский прогиб [212]. Мощность отложений рифей в прогибе (полесская и волынская серии) достигает 1000 м. На основании геофизических данных В. Б. Соллогуб выделил здесь Вольно-Оршанский палеорифт [285]. Согласно последним данным (С. В. Богданова, И. К. Пашкевич, Р. М. Горбачев и М. И. Орлюк [348]) эта структура (независимо от ее генезиса) расположена в зоне сочленения Фенноскандии и Сарматии. На рисунке 6.7 показано строение зоны сочленения этих сегментов по данным И. К. Пашкевич [348]. Хорошо видно, что локальные магнитные источники Вольно-Оршанской депрессии вытянуты в северо-восточном направлении, подчиняясь напряжениям юго- запад — северо- западного направления. К краевой части Сарматии приурочен глубинный магнитный источник Новоград — Вольнского блока второго порядка. Глубинный разлом между Фенноскандией и Сарматией (современная граница между этими сегментами), прослеживающийся до астеносферы, имеет юго- западное падение. Структура поверхности Мохо и наличие отражающих площадок в мантни над плоскостью разлома делают
Рис. 6.7. Зона сочленения магнитных сегментов Сарматии и Фенноскандии по данным И.К. Пашкевич [348,385]: 1 — граница между Фенноскандией и Сарматней; 2 — границы магнитных сегментов; 3 — Вольно-Оршанская депрессия; 4 — разломы; 5 — Осинско-Микашевичский вулканический пояс; 6 — гранулитовые пояса (ББГП — Белорусско-Балтийский, ВП — Витебский); 7 — контуры положительных магнитных аномалий; 8 — положение линии разреза. Условные обозначения к разрезу: 9 — разломы и предполагаемые разломы; 10 — изотерма 600°C; 11 — изолинии скоростей продольных волн, км/с; 12 — раздел Мохоровичича; 13 — отражающие площадки в мантии; 14 — предполагаемая поверхность астеносферы по данным МТЗ; 15 — границы аномальной сейсмической зоны; 16 — наблюденное поле (ΔT); 17 — его региональная компонента. Использованы данные ГСЗ [285].
эту зону сходной (по типу строения земной коры) с таковой между Восточно-Европейской платформой и Альпийской системой Карпат, сформированной на фанерозойском этапе развития [163].

Совместный анализ результатов теоретического магнитного моделирования (см. раздел 3.1 и рис. 3.11) и магнитной модели вдоль Белорусско-Украинской части геотрансекта ЕВРОБРИДЖ (см. раздел 4.1 и рис. 4.12) позволяет подтвердить субдукционную природу зоны сочленения Фенноскандии и Сарматии.

Так магнитные образования Белорусско-Балтийского гранулитового комплекса с возрастом 1,89—1,86 млрд.лет могут быть сопоставлены с палеоокеанской корой, немагнитные комплексы Центрально-Белорусского пояса (2,0—1,9) — с палеоокеанскими образованиями глубоководного желоба, а Осницко-Микашевичского вулканического пояса (2,02—1697) — с образованиями палеосторонней дуги (либо со структурно-формационными комплексами, являющимися результатом преобразованной процессом субдукции краевой части Сарматии). Происхождение Коростенского плутона (1,80—1,75) в данной ситуации также может быть истолковано субдуктированием в юго-восточном направлении океанической плиты. Пространственное положение, падение и намагниченность источников верхней и нижней частей коры перечисленных структур вполне аналогичны таковым в схематичной магнитной модели субдукционной зоны (сравни рис. 3.11 и 4.12.). Так установленное по данным моделирования падение юго-восточного контакта глубинного источника Белорусско-Балтийского гранулитового пояса на юго-восток, а источников верхней части коры Центрально-Белорусского пояса согласны с таковыми для глубоководного желоба (со стороны океана). Источники верхней и нижней частей земной коры Осницко-Микашевичского вулканического пояса и по форме и по
величинам намагниченности близки к таковым, образованным за счет насыщения продуктами плавления субдуктированных комплексов разреза коры.

В вендское время происходит перестройка структурного плана: северо-восточного на северо-западный, сопровождающаяся основным вулканизмом [255].

М.В.Муратов и другие [207] впервые выделили Приднестровский окраинный прогиб, протягивающийся от Черного до Балтийского морей (Балтийско-Приднестровская система перикратонных опусканий по Р.А. Гарецкому с соавторами [61]. Наиболее древними осадками, выполняющими прогиб, являются континентальные породы валдайской серии рифея. Максимальная мощность осадков палеозоя свыше 6000 м, рифея — 900 м [61]. В структурном отношении прогиб — пологая монохлиналь, осложненная локальными (блоковыми) поднятиями. Восточная граница этой структуры проводится условно по стратоизогипсе поверхности фундамента 1 км, между тем, как ее западная граница, т.е. граница Восточно-Европейской платформы, весьма дискуссионна.

Львовский палеозойский прогиб занимает наиболее погруженную северо-западную часть Днестровской зоны перикратонного опускания.

Стрыйский юрский прогиб и Львовско-Люблinskая впадина принадлежат к мезозойскому структурному ярусу. Первый [61, 115] в основном приурочен к молодой эпипалеозойской Западно-Европейской платформе и граничит на западе с областью распространения рифейских отложений. Вторая охватывает большую часть территории западного склона УЩ и современного Предкарпатья. Юго-западная граница меловой впадины на участке между Немировом и Малой Горожанкой совпадает с Городокским разломом. Центральная, наиболее прогнутая часть, приурачивается к ее
западному борту, проходя по линии Рава-Русская — Ставчаны — Вербиц — Угерско. Впадина характеризуется асимметричным строением: западный борт ее крутой и короткий, а восточный — пологий и длинный [115].

Как показано в разделе 2 по характеру магматизма, окислительно-восстановительным условиям и термодинамической обстановке благоприятными для образования и дальнейшего существования ферримагнитных минералов, являются условия режима преобладающего растяжения земной коры. Реализация этих условий согласно геолого-тектонических исследований приурочена к рифтам и островным дугам (зонам сочленения континентальной и океанической коры). В поиске палеоаналогов этих структур обоснованными дополнительными геолого-геофизическими данными заключалось истолкование магнитной модели исследуемого региона.

В пределах УЩ и его западного склона северо-восточное простирание имеют глубинные источники Винницкой и Новоград-Вольнской региональных магнитных аномалий. Такое же простирание имеет зона сочленения Фенноскандии и Сарматии и согласные с ней Осницко-Микашевичский вулканический пояс и Вольно-Оршанский палеорифт. Распространение на поверхности коры в районе Винницкой региональной магнитной аномалии чарнокит-гранулитовых образований и мафит-ультрамафитовых интрузивных комплексов, а также наличие глубинного магнитного источника позволили З.А.Крутиховской, Э. В.Мельничуку, С. Г.Слоницкой и М.И.Орлюку [150, 226] показать его принадлежность к архейской проторифтоидной структуре. Участок Новоград-Вольнской РМА, кроме повышенной намагниченности коры, выделяется относительным гравитационным минимумом, ось которого проходит по линии Тернополь — Шепетовка — Новоград-Вольнский. С учетом этого, выводов раздела 2 и
геологических данных повышенную намагниченность коры можно объяснить накоплением средних и основных пород на протерозойском этапе и насыщении ими глубинных и поверхностных горизонтов коры. Индикатором прогибания коры является накопление осадочно-вулканогенной толщи тетеревской серии в прогибе древнего фундамента с образованием двухъярусной структуры докембрия [157]. Возраст субвулканических образований новоград-волынской толщи — около 2,4 млрд. лет, может свидетельствовать о времени формирования глубинного магнитного источника. На северо-запад от области Новоград-Волынской региональной магнитной аномалии расположен Осницкий блок, характеризующийся интенсивной гравитационной аномалией и, соответственно, повышенной плотностью, и средней величиной намагниченности земной коры (1,0—2,0 А/м). Это позволяет предположить, что земную кору Осницкого блока можно рассматривать как сформировавшуюся в области непосредственного контакта палеоокеанической и континентальной коры. Следовательно, источник Новоград-Волынской региональной магнитной аномалии располагался на краю континента и может быть истолкован как источник, связанный с перикратонным прогибом. В дальнейшем направление простирания этого прогиба унаследовано Осницко-Микашевическим вулканическим пояском (с возрастом формирования пород 2,02—1,99 млрд. лет [391]) и рифейской Вольно-Оршанской структурой неустановленного генезиса (палеорифтом по В.Б. Соллогубу [285]), наиболее погруженная часть которой окаймлена с двух сторон полосовыми магнитными аномалиями (М.И. Орлюк, [218]). Последний факт может свидетельствовать о том, что развитие палеорифта по каким-то причинам было остановлено на начальной стадии — стадии образования зон краевых разломов, то есть что данная структура согласно

Второй примечательной особенностью региона является наличие участка земной коры повышенной намагниченности, приуроченного к краю Восточно-Европейской платформы. Ее приуроченность к пограничной зоне Восточно-Европейской платформы видна при простом сопоставлении положения границы платформы с магнитным полем [218, 242]. На территории Польши юго-западная граница платформы простирается вдоль зоны Тейссейра-Торнквиства, совпадающей в данном случае с наиболее прогнутой частью перикратонных опусканий ВЕП. Учитывая, что данная зона имеет черты грабена (авлакогена, прогиба), а также вывод о приуроченности региональных магнитных аномалий к структурам данного типа, можно достаточно уверенно проследить ее на всем протяжении границы платформы.

Возникновение этой аномальной зоны связано, очевидно, с длительным перикратонным опусканием и внедрением мантийных дериватов, обусловивших переработку докембрийских образований, увеличение намагниченности и, соответственно, изменение структурного плана. Отмечаются участки, не подвергшиеся переработке. В пределах исследуемой территории это Ковельско-Ратновский и Северо-Молдовский выступы, о чем свидетельствует близкая интенсивность и простирания аномалий в краевой зоне и далее от нее к северо-востоку в пределах собственно платформы, а также относительно пониженное региональное поле.

Эти области соответствуют структурным выступам (носам) зоны перикратонных опусканий и не сопровождаются интенсивными прогибами поверхности докембрийского фундамента.
В пределах Вольно-Подолии существенной переработке подвергла область, пространственно приуроченная к каледонскому краевому прогибу по А.П.Медведеву [194]. Последний располагается в наиболее прогнутой части перикратонного прогиба, унаследует его, связан постепенными переходами и составляет с ним единое целое. Накопление толщи отложений мощностью в несколько километров, слагающих рассматриваемый структурный ярус, произошло в результате постоянного унаследованного прогибания на протяжении позднего протерозоя, кембрия, ордовика, силура, девона и карбона [194]. К этому прогибу северо-западного простирания приурочены максимальные значения региональной составляющей магнитного поля (500 нТл), и по данным моделирования кора имеет повышенную намагниченность на всю мощность [218-220].

Эти простирания унаследованы мезозойским структурным комплексом (Стрыйский юрский прогиб и меловая Львовско-Люблинскую впадину) [218].

Следовательно, глубина залегания дорифейского (а для Новоград-Волынской области — допротерозойского?) фундамента; намагниченность верхней и нижней частей коры; состав пород и их возраст, свидетельствуют об формировании глубинных и поверхностных магнитных неоднородностей в разновозрастных зонах сочленения.

При этом можно предложить единый механизм их образования. В нижней части коры на стадии ее растяжения под влиянием процессов, протекающих в зонах сочленения континентальной и океанической коры (субдукционных зонах?) в краевых частях континентов происходит "базификация" корового вещества, приводящая на поверхности к образованию структур депрессивного типа. Причем, как следует из раздела 2.3, процессу "базификации" будут подвергаться преимущественно блоки коры основного состава, сложенные ультрамафит-мафитовым и фемическим
петромагнитными типами, а слабым проявлениям этого процесса будут подвергнуты блоки, сложенные сиалическим и сиальмафическим петромагнитными типами.

На начальных, наиболее активных этапах развития литосферы в режиме ее растяжения (архейский — для области Винницкой региональной магнитной аномалии, нижнепротерозойский — для области Новоград-Вольнской, вендский и палеозойский – для области Львовской аномалии), магматические расплавы достигали поверхности фундамента с образованием эфузивов, интрузий и даек основного состава в верхней части коры, благодаря чему наблюдается общее соответствие между простиранием источников локальных и региональных аномалий. В дальнейшем, по мере уменьшения активности и общего остывания системы (что может продолжаться до 0,5—1,0 млрд.лет) продолжается преобразование глубинного источника. Это приводит к еще большему погружению коры, но уже без явного проявления магматизма на поверхности. Сделанный вывод наглядно подтверждается на примере Балтийско-Приднестровской системы перикратонных опусканий. Пониженное поле и слабая намагниченность характерны для приподнятых частей зоны опускания - это Ковельско-Ратновский и Северо-Молдовский выступы.

Следовательно, источники Винницкой, Новоград-Вольнской и Львовской положительных региональных магнитных аномалий интерпретируются как области распространения на всю мощность или нижнюю часть консолидированной коры пород основного состава (базитов или их метаморфических аналогов), приурачивающихся к разновозрастным структурам растяжения и прогибания фундамента, расположенных в краевых частях крупных тектонических структур (Сарматии и Восточно-Европейской платформы). Эти источники сложены фемическим и сиальмафическим
петротмагнитными типами. Области слабой намагниченности консолидированной коры (Коростенский плутон, область распространения бердичевских гранитоидов, Ковельско-Ратновский и Северо-Молдовский выступы) сложены сиалическим и ультрамафит-мафитовым петротмагнитными типами. После активных периодов формирования глубинных и поверхностных магнитных источников и занятия ими определенного пространственного положения эти источники являются своего рода “маркерами” тектонического перемещения вещества, его деформаций и свидетелями наложенных процессов, приводящих к увеличению или уменьшению их намагниченности.

В качестве примера такой информативности аномального магнитного поля и магнитной модели рассмотрим комплексную модель Запада Украины (построенную Р.И.Кутасом, С.С.Красовским, М.И.Орлюком и И.К.Пашкевич [163]) и ее тектоническую интерпретацию.

Изучение разломной тектоники региона при этом базировалось на использовании комплекса магнитного и гравитационного полей, теплового потока, данных ГСЗ, количественных геофизических моделей коры, карты неотектоники. Такой комплекс данных позволил ранжировать разломы по их протяженности, глубинности, морфологии и этапам активизации. Особенностью выполненных построений является выделение ряда разновозрастных систем разломов, изучение областей их влияния и взаимодействия (рис. 6.8). На данной схеме показаны разрывные структуры консолидированной коры, при этом их положение соответствует выходам разломов на поверхность кристаллического фундамента. Установлены следующие ранги разломов: глубинные линеаменты; глубинные разломы северо-западного простирания карпатской системы; северо-восточного — платформенной системы и сопряженные с ними
ортогональные разломы; сквозные глубинные разломы ортогональной системы. Выделены также разломы, классифицированные как оперяющие (см.рис.6.8).
Согласно комплексной модели консолидированная кора региона состоит из гранитного, диоритового и базальтового слоев, выделенных по скоростным и плотностным параметрам, а также переходной от коры к мантии зоны, установленной по результатам ГСЗ и гравитационного моделирования [142,143]. Эти слои в разных тектонических районах имеют широкий диапазон изменения мощности и намагниченности (рис. 6.9).

Намагниченность варьирует в широких пределах, уменьшаясь от древней платформы, где она составляет в районе Львовской аномалии 4,0 А/м, к молодым структурам Карпат (до 1,0 А/м). На рисунке 6.9 представлен один из вариантов распределения намагниченных образований в земной коре вдоль геотраверса II [218], из которого видно, что глубинные источники образуют структуру в виде клина. Вершина его упирается в линеамент "А", разделяющий область тонкой и толстой коры, а основание находится на границе ВЕП. К краям клина приурочена смена знака неотектонических движений.

Уменьшение намагниченности этой толщи в сторону Закарпатского прогиба может объясняться одновременным влиянием раскисления коры в связи с формированием переходной зоны и подъемом изотермической поверхности Кюри магнетита.

Тектоническая интерпретация комплексной модели свидетельствует о движении вещества литосферы (на последнем этапе развития) с юго-запада на северо-восток во всех ее этажах. Следует обратить внимание на неравномерность этого движения в разных частях карпатской системы. Об этом свидетельствует рваный характер разломов карпатской системы и сквозных субмеридиональных разломов, неравномерное перемещение покровов, явно прослеживающиеся развороты отдельных блоков (см. рис. 6.8 и 6.9).
Рис. 54. Геофизическая модель земной коры и тектоническая интерпретация по геотрансверсу II. Использована сейсмическая модель по [167]. 1 - осадочные отложения; 2 - складчатые комплексы; 3 - отражающие площадки; 4 - кровля переходной зоны кора - мантия; 5 - волноводы; 6 - раздел М; 7 - кровля астеносферы по геотермическим данным; источники геотермических аномалий возрастом: 8 - 10 - разуплотнение мантии (а), уплотнение мантии (б); 11 - глубинные разломы; 12 - предполагаемая граница мезозой-палеозойского и рифейского фундамента [291]; 13 - предполагаемая граница рифейского и архей-протерозойского фундамента [291]; 14 - региональные надвиги - границы тектонических единиц; 15 - разломы более высоких порядков в том числе глубинные; 16 - вулканы Выгорлат-Гутинской гряды; 17 - предполагаемое положение магматического очага кислого состава; 18 - то же - основного состава; 19 - пе-реходная зона кора-мантия; 20 - магнитоабсолютный слой и значения намагниченности в A/m; 21 - значения плотности: а - пород верхов мантии и переходной зоны кора-мантия, б - изоплотностных уровней в консолидированной коре; условно выделенные слои земной коры: 22 - гранитный, 23 - диоритовый, 24 - базальтовый; 25 - линеамента "А" на земную поверхность: 26 -
Следовательно, благодаря комплексной модели удалось объяснить изменение структуры и состава земной коры (уменьшение мощности и основности коры в зоне тепловой аномалии Закарпатского прогиба и образование переходной зоны кора — мантия и др.; разуплотнение верхов мантии под Закарпатским прогибом и уплотнение ее в краевой части Восточно-Европейской платформы, клиновидную форму и намагниченность магнитоактивного слоя коры.

В первом приближении такая картина распределения разных геофизических неоднородностей характерна и для зоны сочленения Фенноскандии и Сарматии. Наблюдаются такое же закономерное уменьшение намагниченности с подъемом поверхности М в сторону Вольно-Оршанского палеорифта и наличие в краевой части Сарматии уплотненной коры (Осницкий блок).

Также можно отметить заметное смещение и деформацию глубинных и поверхностных магнитных источников с использованием системы разломов северо-западного простирания, свидетельствующие о наличии тектонических напряжений со стороны Фенноскандии. Так можно объяснить явно видимое смещение глубинного источника Гайсинской региональной магнитной аномалии по отношению к источнику Винницкой региональной магнитной аномалии по Хмельницкому разлому и “подстраивание” под этот и другие разломы этого направления (Красногорско-Житомирский, Центральный и т.д.) целого ряда даек, дайковых поясов и крупных магнитных источников верхней части коры (см.рис.4.16). По этому же разлому в юго-восточном направлении можно предположить смещение северо-восточной части глубинного источника Новоград-Волынской аномалии. Своего рода упорами для перемещения в юго-восточном направлении вещества служили области Винницкой и Гайсинской аномалий (соответственно Винницкий и Уманский
блоки Украинского щита) и ограничивающие их на севере и северо-западе разломы – Хмельницкий, Лукошевско-Томашевский, Немировский. На востоке исследуемого региона роль упора выполняла область земной коры района Киевской аномалии и субмеридионального Звидаль-Залесского разлома (а может быть Брусловского разлома?). По результатам моделирования севернее, северо-западнее и западнее указанных разломов распространены согласные с их простираниями участки немагнитной на всю мощность земной коры (см.рис.4.16). Согласно результатам раздела 3 состав, намагниченность и плотность коры этих участков свидетельствует о ее образовании, либо преобразовании, в условиях режима сжатия земной коры. Судить о временных интервалах процесса образования либо преобразования земной коры (во всяком случае хотя бы одного – двух этапов) можно по возрасту бердических гранитов, оцененного Н.П. Щербаком и Л.М. Степанюком в 2,10—1,97 млрд.лет [391] и возрасту гранитоидов Коростенского плутона — около 1,8 — 1,75 млрд.лет.

Выводы

1. Образование и развитие глубинных и верхнекоровых магнитных неоднородностей отражает сложные процессы формирования земной коры запада Украины и ее преобразование, связанное со становлением двух зон сочленения — Сарматии с Фенноскандией и Восточно-Европейской платформы с Альпийским складчатым поясом.

2. Глубинные магнитные неоднородности (с намагниченностью 1,0—3,5 A/м) Гайсинской, Винницкой, Новоград-Волынской и Львовской региональных магнитных аномалий формировались в режиме
преобладающего растяжения земной коры в краевых частях континентов как структуры депрессивного типа. В настоящее время они сложены породами — представителями фемического и сиальмафического петромагнитного типов.

3. На начальных этапах развития этих структур (архейский — для Винницкой и Гайсинской аномалий, нижнепротерозойский — для Новоград-Волынской, вендский и палеозойский — для Львовской аномалии) магматические расплавы достигали поверхности с образованием интрузий, даек и эффузивов основного состава в верхней части коры. Формирование Винницкого и Гайсинского источников связывается с процессом рифтогенеза, а Львовского и Новоград-Волынского — с процессом субдукции.

4. Последующие этапы развития земной коры региона “маркируются” глубинными и поверхностными источниками путем их преобразования и перемещения под влиянием тектонических напряжений, окислительно-восстановительных и температурных условий. Свидетельством таких преобразований и перемещений является уменьшение намагниченности юго-западной части Львовского источника за счет повышения температуры и раскисления коры, а также преобразование и перемещение Новоград-Волынского и Гайсинского глубинных источников и источников верхней части коры запада Украинского щита под влиянием формирования зоны сочленения Сарматии и Фенноскандинии (около 2,0—1,9 млрд.лет).
6.3. Геологическая интерпретация магнитной модели Днепровско-Донецкого авлакогена. Для геологической интерпретации магнитной модели Днепровско-Донецкого авлакогена принята гипотеза о рифтовой его природе с заложением и развитием последнего на неоднородном докембрийском фундаменте. При этом использованы магнитная модель, построенные на ее основе схемы намагниченности верхней и нижней частей земной коры, данные о петромагнитных типах земной коры, изложенные в разделе 5, результаты сейсмических и гравитационных исследований, сведения о магматизме, данные интерпретации теплового потока и другие, необходимые для поставленной задачи.

Геологическое строение авлакогена изучалось несколько десятилетий (В.Г.Бондарчук, А.Я.Радзивилл, Ю.А.Куделя [20], Геология и нефтегазоносность Днепровско-Донецкой впадины [61, 62], Глубинное строение территории СССР [72], В.К.Гавриш [62, 354], Г.Я.Голиздра [75], Гравитационная модель земной коры и верхней мантии [83], В.Г.Гутерман [92, 93], В.Г.Козленко [138], З.А.Крутиховская [147], Литосфера Центральной и Восточной Европы [171-174], Основные черты тектоники Украины [214], Платформенные структуры обрамления Уральского щита и их металлоносность [255], Проблемы нефтегазоносности кристаллических пород фундамента Днепровско-Донецкой впадины [262], В.Б.Соллогуб [285], С.И.Субботин [294], А.В.Чекунов [328], М.В.Чирвинская, В.Б.Соллогуб [335 344] и многие другие) и основано на результатах бурения, сейсмических исследованиях методом ГСЗ и КМПВ, палеонтологических данных и анализа вулканической и магматической деятельности. Установлено, что сложно построенный грабен выполнен преимущественно девонскими отложениями и несогласно перекрыт мощным чехлом каменноугольных (начиная с верхневизейских), пермских и мезо-кайнозойских осадков. Осадочный чехол
сложен специфическим набором формаций — эфузивно-соленосной, параleticкой, моласовой и типичными для платформы терригенно-карбонатными.

Глубинное строение земной коры ДДА базируется на исследованиях методом ГСЗ и КМПВ, результатах интерпретации аномалий гравитационного и магнитного полей и комплексных геолого-геофизических моделях коры [138, 169-173, 212, 213, 223-225, 233, 235, 335, 354 и др.].

Как отмечалось в разделе 4.3, магнитные неоднородности глубинного происхождения имеют разную намагниченность и структурное положение и, как правило, контролируются глубинными разломами (рис. 6.10). Дифференциация коры по намагниченности и более высокие ее значения для западной части Днепровско-Донецкого авлакогена связаны с дифференцированностью вещественного состава, так как изотермическая поверхность Кюри магнетита здесь располагается ниже раздела М [354]. Этот вывод подтверждается гравитационным полем (рис. 6.11) и гравитационным моделированием [138, 142, 143 и др.], а также разнообразием состава и мощности девонских магматических и эфузивно-пирокластических образований. Так, для западной части авлакогена характерны проявления эфузивно-пирокластических толщ, сложенных лавами базальтов, ортофиров и кварцевых порфиров, в то время, как в центральной части и на востоке авлакогена характерно распространение туфов и лав без примеси кислого вулканизма (рис. 6.12) [182]. Причем магматические проявления в центральной и восточной частях авлакогена приурочены к краевым частям глубинных магнитных неоднородностей, а в районе Черниговского гравимагнитного максимума — к глубинному телу с высокой намагниченностью. К западу от Полтавы высокомагнитные
Рис. 6.10. Схема сопоставления глубинных разломов и линеаментов (по И.И. Чебаненко и др. [262]) (косая штриховка) с глубинными магнитными неоднородностями (крап) района Днепровско-Донецкого авлакогена.
Рис.6.11. Схема гравитационных аномалий средней части Днепровско-Донецкого авлакогена [138]: 1—относительные величины аномалий; 2—контур постдевонского грабена; 3—профили ГСЗ Пиряти-Талалаевка (П-Т) и Царичанка-Богодухов (Ц-Б); региональные гравитационные максимумы (Ч—Черниговский, ЛХ—Лохвицкий, ЛТ—Лютенский, С—Солоховский) и минимумы (Б—Бориспольский, А—Ахтырский).
Рис.6.12. Магматические образования девонского этапа развития Днепровско-Донецкого авлакогена (по З.М.Ляшкевич и др.[182,262]): 1 - щелочно-ультраосновная, 2 - щелочно-базальтоидная, 3 - базальт - долеритовая формации.
тела расположены на разных глубинных уровнях и в верхней части коры образуют овалоподобное тело, осложненное более мелкими телами, связанными с магматическими эфузивными образованиями. Наиболее крупные магнитные тела здесь имеют хорошую пространственную корреляцию с участками аномально высокой плотности (см. рис. 6.11), что свидетельствует об интенсивной базификации этой части авлакогена, совпадающей пространственно с областью Центральной депрессии (по М.В.Чирвинской и В.Б.Соллогубу [335]).

В пределах Центрального складчатого Донбасса кора характеризуется слабой намагниченностью средней и верхней ее частей и высокой плотностью. В этой части Днепровско-Донецкого авлакогена отмечается подъем изотермы Кюри магнетита в пределы нижней коры, а намагниченные глубинные тела располагаются в пределах Северного и Западного Донбасса.

Состав земной коры, который спрогнозирован по данным скоростных моделей коры вдоль профилей ГСЗ и гравитационных моделей [122,138,142] свидетельствуют, что наибольшей основностью характеризуется грабен Донбасса, где базальтовый слой составляет 80% от мощности консолидированной коры, а кора классифицирована как кора магнезиальных базальтов; кора Днепровского грабена по этой классификации принадлежит к лейкобазальтовой, что означает, что базальтовый слой здесь составляет более 50% консолидированной коры, если часть разреза, где скорость превышает 7.4 км/с отнести к коро-мантийной смеси [122].

Что касается бортов впадины, можно отметить в целом существенную разницу в основности коры — она больше для южного борта, чем для северного. В свою очередь, на южном борту с запада на восток происходит следующее изменение состава коры: на запад от трансрегионального шва Херсон-Смоленск кора отнесена к гранит-диоритовому типу, далее на восток от шва до Криворожско-Крупецкого разлома она характеризуется как диоритовая, между этим разломом и Верховцевско-Льговским — это
лейкобазальтовая кора, далее на восток — до Орехово-Павлоградского разлома — диоритовая и, наконец, южный борт Донбасса и Приазовский блок характеризуется гранит-диоритовым составом коры.

На северном борту имеется превалирующий гранит-диоритовый, частично гранитный, состав коры. Как видим, в бортовых частях Днепровско-Донецкого авлакогена разные блоки характеризуются не только разными типами сочленения форм рельефа раздела М, а и сочленением коры разного состава, что обусловлено, вероятно, с одной стороны, разными условиями формирования авлакогена, а с другой — разным исходным составом докембрийской коры, на которой была заложена эта структура.

Мощность консолидированной коры в рамках Центрального грабена изменяется от 15 км в Донбассе до 35 км в районе г.Чернигов.

С точки зрения связи магнитных неоднородностей авлакогена, Украинского щита и Воронежского массива, обнаружено несколько типов их соотношений. В пределах Донбасса магнитные неоднородности консолидированной коры картируются только к востоку от шва Донецк—Брянск, где они охватывают северную часть Донбасса, согласны с ним и без разрыва сочленяются с магнитными образованиями Воронежского массива. К западу от шва кора всего северного борта Днепровско-Донецкого авлакогена и Воронежского массива практически немагнитна. Южный борт авлакогена и склон щита характеризуются магнитной дифференцированностью. Консолидированная кора Черниговской части Центрального грабена наиболее магнитна и на юге через полосу немагнитной коры граничит с Киевской глубинной магнитной неоднородностью, классифицированной как древнее гранулитовое ядро (Пашкевич и др., 1992). Такой же тип перехода от Днепровско-Донецкого авлакогена к Украинскому щиту отмечается в западной части Лохвицкой магнитной неоднородности (от шва Херсон-Смоленск до Западно-Ингулецкого разлома). Между ними картируется сквозная зона пониженной
намагниченности, трассирующаяся от Кировоградского блока щита, через авлакоген на северный борт. Тем не менее, в пределах авлакогена в этом блоке намагниченность несколько выше, чем в Кировоградском (Орлюк, 1996).

Западно-Ингулецкая магнитная неоднородность имеет торцевое сочленение с Лохвицкой, а кора Центральной части Приднепровского блока по намагниченности не отличается от южной половины авлакогена.

Непосредственно к западу от шва Донецк-Брянск Синельниковская магнитная неоднородность Украинского щита сложной конфигурации не согласуется со структурой Днепровско- Донецкого авлакогена [332].

Как показали расчеты [223] магнитных эффектов от теоретических (по А.В.Разваляеву [264]) моделей рифтов типа Красноморского, наиболее близкого по мнению А.В.Чекунова [328] к Днепровско- Донецкому, эти эффекты находятся в хорошем соответствии для западной части авлакогена (западнее Верховцевско-Льговского разлома) с двумя типами моделей: формирование рифта на немагнитной коре и на коре разной намагниченности по обе стороны от рифта. В обоих случаях глубинные магнитные неоднородности относятся к центральной части рифта. Отсюда следует важный вывод о новообразовании нижней части коры при рифтинге или существенным ее преобразовании.

Такими моделями, однако, нельзя объяснить ассиметричное расположение магнитных неоднородностей по отношению к оси рифта к востоку от указанного разлома. Однозначного истолкования такого распределения магнитных неоднородностей нет. Возможно это связано со спецификой самого рифта, так и пострифтовой истории.

Как было указано ранее, основные магнитные неоднородности коры находятся в западной половине Днепровского сегмента авлакогена — к западу от Верховцевско-Льговского разлома. Эта область наиболее мощно проработана девонским магматизмом, который является прямым показателем интенсивности глубинных процессов в течение рифтинга.
Выполнен совместный анализ трехмерной магнитной модели Днепровско-Донецкого авлакогена и девонского магматизма в двух аспектах: пространственная корреляция основных и ультраосновных вулканитов с магнитными неоднородностями различных этажей коры и оценка возможного состава коры и масштаба рифтовых магматических процессов.

Две главные области девонского магматизма в Днепровском сегменте (Черниговский блок и Центральная депрессия), которые отличаются масштабом вулканизма, геохимическими особенностями и режимом магматизма разделены трансрегиональным тектоническим швом Херсон-Смоленск. Щелочно-ультраосновные вулканиты, относящиеся к краевым частям рифта, расположены главным образом, к востоку от этого шва и приурочены к глубинным разломам субпараллельным шву. Другая площадь ультраосновных вулканитов расположена на пересечении рифта и литосферного линеамента. Последний разделяет литосферные блоки различной мощности. Утонение литосферы примерно на 100 км с востока на запад и мантийный слой пониженной скорости мощностью до 50 км были описаны В. Б. Соллогубом [285].

Все штоки также относятся к пересечению рифта и глубинных линеаментов. Вблизи линеамента концентрируются также и дайки долеритов. Магнитные неоднородности верхней и нижней коры (рис. 4.21, 4.22) структурно соответствуют Днепровскому сегменту рифта и поэтому они могут интерпретироваться как результат образования новой коры, или преобразования ее состава магматическими процессами рифтовой стадии. Сравнение магнитных неоднородностей верхней части коры с площадным распространением основных-ультраосновных вулканитов (рис. 4.20, 4.22 и 6.12) обнаруживает, что большинство штоков и лав большой мощности могут быть прослежены до 10—20 км, то есть до нижних кромок верхнекоровых источников. Однако, некоторые из верхнекоровых
намагниченных тел с намагниченностью около 1,5—2,0 А/м не совпадают пространственно с вулканитами и могут объясняться как “слепые” вулканические тела.

В Черниговском блоке площадь преимущественно основных вулканитов расположена в пределах Центрального грабена и пространственно коррелирует с верхнекоровым намагниченным телом с интенсивностью около 1,5—2,0 А/м. Вулканические центры концентрируются в его пределах (рис. 4.22). Основные лавы мощностью до 2,7 км (рис. 4.20 и 4.22) тяготеют к краевым частям наиболее интенсивно намагниченных верхнекоровых источников. Последние полностью соответствуют нижнекоровому намагниченному блоку (1,0 А/м) внутри Центрального грабена.

Такие соотношения могут быть обусловлены интенсивным преобразованием всей коры основным магматическим веществом и формированием столбообразного тела. Это соответствует спокойному процессу фаменского магматизма в Черниговском блоке.

В Центральной депрессии отмечается овалоподобное распределение как вулканитов, так и верхнекоровых магнитных источников. В южной части этой структуры штоки, как правило, совпадают с изометричными верхнекоровыми магнитными неоднородностями с намагниченностью 1,5 и выше А/м. Подошва этих магнитных тел наблюдается на глубинах 15—20 км. Возможно поэтому штоки здесь практически вертикальные. Вулканиты, вулканические центры в северо-западной и северной частях Центральной депрессии смещены в этих направлениях относительно верхнекоровых магнитных источников. Такое положение лав свидетельствует об ассиметрии структуры авлакогена в течение франа и фамена.

Источники нижней части коры, расположенные в наиболее глубокой части рифта характеризуются увеличением намагниченности к центру структуры. Это может быть связано с присутствием в краевой части авлакогена ультраосновных вулканитов менее магнитных, чем основные.
Вулканические центры расположены над краевыми частями нижнекоровых магнитных блоков. Такие пространственные взаимоотношения вулканитов, верхне- и нижнекоровых магнитных тел свидетельствуют об ассиметрии всей магматической постройки.

Особенности распределения магнитных источников в коре находятся в соответствии со скоростной моделью [122]. Магнитная и сейсмическая модели вдоль направления А, совпадающего с профилем ГСЗ Пирятин-Талалаевка, представлены на рисунке 6.13. Геофизические данные дополнены данными о магматизме из рисунка 4.20. Как видно, имеется тенденция увеличения намагниченности с глубиной, которая коррелирует с увеличением сейсмической скорости, несмотря на существование неоднозначной корреляции намагниченности пород и сейсмической скорости. Одновременно отмечается уменьшение намагниченности от центра структуры к ее флангам. Штокоподобные тела высокой намагниченности верхней части коры расположены в краевой части высокоскоростного блока рифта. Причем, эти тела могут согласно разным вариантам магнитной модели могут быть распространены как до глубины 20 км так и до поверхности Мохоровичича (Козленко, 1982, Орлюк, Пашкевич, 1994, 1996). Если рассматривать эти штoki как новообразованные на стадии рифтообразования, то можно оценить величину растяжения верхней части коры на 20% от исходной величины, то есть в 1.2 раза. Вулканические центры и предполагаемые магматические каналы относятся к разлому северо-западной части рифта, тогда как в северо-восточной части наблюдается смещение вулканического центра относительно краевого разлома и штокоподобного тела вулканитов.

В центральной части рифта, если исключить из рассмотрения штокоподобные тела, наблюдается некоторая корреляция между подъемом изолиний Vp, разделом М и верхних кромок магнитных источников. Наблюдаются смещение к северо-востоку высокоскоростных и
Рис. 6.13. Комплексная модель земной коры Днепровско-Донецкого авлакогена по профилю Пирятин - Талалаевка. (Составлена М.И. Орлюком и И.К. Пашкевич с использованием результатов исследований Т.В.Ильченко [122], В.Г. Козленко [138], С.С. Красовского [143]).

1 - осадочный чехол, 2 - изолинии скоростей продольных волн V_p, 3 - поверхность мантии, 4 - магматические и эфузивно-пирокластические образования девона, 5 - разломы, связанные с образованием впадины, 6 - разломы, связанные с формированием авлакогена и Центрального грабена, 7 - уплотнение верхней части коры, 8 - разуплотнение верхней части коры.
высокомагнитных блоков нижней коры относительно подъема раздела М, который также имеет ассиметричную форму.

На примере этого разреза попытаемся спрогнозировать состав коры, используя петромагнитные типы литосферы, которые были сформулированы в монографии [249]. Верхняя часть коры, начиная с докембрийского основания до уровня $V_p=6.8$ км/с характеризуется намагниченностью 1,0—1,5 А/м и отвечает сиальмафическому петромагнитному типу, обнаруженному в зонах магматической активизации. Она представлена преимущественно субщелочными разновидностями коры: андезито-базальтами, андезитами, диоритами, гранитами. Такая совокупность пород может представлять гранитный и диоритовый слои, переработанные магматическими процессами. Это находится в соответствии с аномально высокой плотностью верхней коры [138]. Намагниченность 1,5—2,0 А/м и скорости $V_p >6.8$ км/с возможно обусловлены сочетанием ультрамафических и мафических (фемических) типов. Эти типы характеризуют континентальные рифты и представлены перидотитами, пироксенитами, габбро-пироксенитами и базальтоидами. В этих случаях часть каждого из них в разрезе коры не может быть определена.

Рассматривая пространственное соотношение девонских вулканитов и магнитных неоднородностей консолидированной коры западной части ДДА совместно с другими геолого-геофизическими данными приходим к подтверждению идеи А.В.Чекунова [328] об ассиметрии Днепровско-Донецкого рифта, как следствии ассиметрии глубинного астенолита и наличия смещений по крупному пологому литосферному разлому юго-западного падения.

Действительно, структура Днепровско-Донецкого авлакогена и его бортов характеризуется ассиметрией вкрест простирания и неоднородностью в пределах крупных ее сегментов вдоль простирания по ряду параметров. Наблюдаются различия в глубинах залегания поверхности
консолидированной коры вдоль и вкрест простирания структуры. Как можно видеть на рисунке 4.18, вдоль простирания авлакогена максимальная глубина до этой поверхности тяготеет к центру грабена, а восточнее Верховцевско-Льговского разлома — к его северному борту. Отметим, что для южного борта наблюдаются меньшие ширина и глубина и большая крутизна по сравнению с северным.

Максимальные градиенты раздела М отмечаются на севере, между краевым разломом Центрального грабена и краевым разломом авлакогена от тектонического шва Херсон-Смоленск на западе до линеамента “Д” на востоке. В то же время на юге максимальный градиент этого раздела наблюдается в пределах южной половины Центрального грабена, не выходит за его пределы и прослеживается до Верховцевско-Льговского разлома. Далее на юг эта зона сопровождается широким прогибом раздела М, тогда как на северном борту он значительно уже, менее интенсивный (рис. 4.18) и прослеживается только до Криворожско-Крупецкого разлома. На северном борту Донбасса картируется локальный подъем раздела М [122].

Гравитационное моделирование также показало существенную ассиметрию земной коры ДДА и Донбасса, в частности, наличие зоны аномального разуплотнения на северном борту и отсутствие такового на южном [142,143].

С точки зрения поведения изолиний скорости продольных волн (рис. 6.13) по профилю Пирятин—Талалаевка южный борт является, так сказать более “монолитным” с типичным для УЩ соотношением условных слоев коры для таких глубин залегания ее подошвы. Весьма специфична скоростная характеристика южного склона Воронежского массива, непосредственно сочлененного с бортом Днепровско-Донецкого авлакогена. Здесь изолинии скорости 6,4 км/с, которая является условной нижней границей гранитного слоя, отмечается на необычной глубине (около 26 км) над, хоть и слабым, но прогибом раздела М. Но, как правило, мощный
гранитный слой характерен для коры малой мощности порядка 35—40 км. Если оценивать базальтовый слой как толщу со скоростью \(V_p > 6.8 \) км/с, то этот участок разреза коры является аномальным по соотношению слоев и мощности коры [129]. Воронежский массив и его склон по профилю далее к северо-востоку характеризуется аномально высокими скоростями в основании коры, а на глубинах, где \(V_p > 7.2 \) км/с можно предположить присутствие маломощной коро-мантийной смеси, что также не характерно для таких глубин до раздела M на Украинском щите. Такая характеристика коры может толковаться несколькими путями. Действительно кислым составом верхней части коры аномально большой мощности, которая может быть результатом тектонического “сдваивания”. Но наличие коро-мантийной смеси свидетельствует об активных глубинных процессах, связанных с формированием рифта, тогда гранитоиды должны быть более молодыми, что не обнаружено бурением. Мы склонны считать эту зону гигантской зоной трещиноватости и частичного раскисления коры снизу.

Предполагаемая коро-мантийная смесь (часть разреза, где \(V_p > 7.2 \) км/с) имеет форму “столба” под Центральным грабеном, однако, ассиметрично расположенным относительно поднятия раздела M со смещением к северу от него.

Донецкий бассейн также имеет ассиметричное строение, что описано в работе [328], однако с обратным соотношением особенностей по сравнению с Днепровской частью. Так, его северный борт более крутой, прогиб раздела M и линза коро-мантийной смеси смещены к югу от Центрального грабена, с прогибом раздела M сопряжены локальные его подъемы. “Раскисление” коры под бортовыми частями бассейна также ассиометрично и менее ярко выражено, чем на профиле Пирятин—Талалаевка. Такая ситуация, несомненно, связана с неоднократной тектонической реактировацией Донбасса.
Все описанное может указывать на активные процессы преобразования коры северного борта и как бы “запечатанный” южный, где УЩ был, вероятно, упором при растяжении коры в процессе формирования рифта.

Такое глубинное строение свидетельствует о перестройке нижней части коры авлакогена и существенном преобразовании верхней ее части в процессе формирования, что подтверждается магнитными и плотностными неоднородностями, которые резко отличаются от неоднородностей окружающих докембрийских провинций. Об этом же свидетельствуют и структуры докембрия сопредельных регионов, имеющие либо резкое торцевое сочленение с Днепровско-Донецким авлакогеном, либо претерпевшие структурное и вещественное преобразование при приближении к авлакогену [332].

Магнитная модель авлакогена свидетельствует о его формировании на неоднородном в магнитном отношении субстрате. Так, на запад от меридиана г. Полтава, согласно теоретическим моделям (см. рис. 3.9) он формировался на немагнитной либо слабомагнитной коре, а на восток — на магнитной (с намагниченностью не менее 1,0 А/м). Исключением в данном случае является область Черниговского гравитационного максимума, кора в районе которого, судя по намагниченности пород фундамента, обладала повышенной намагниченностью до начала рифтообразования. Этот вывод подтверждается характером магматизма. Так, в районе Черниговского гравимагнитного максимума он основный и средний, в районе пересечения авлакогеном Кировоградско-Холмской зоны, представленной в пределах УЩ гранитоидами и мигматитами кировоградско-житомирского раннепротерозойского комплекса, магматизм средне-кислого состава. Согласно данным [133], среди пород, слагающих эту область, встречаются тела интрузивных и реоморфизованных гранитов. В пределах Центральной депрессии девонский магматизм существенно основный, далее на восток такой состав магматизма приурачивается к полосе с повышенной
намагниченностью. Центральная же часть авлакогена на восток от г. Полтава, характеризуясь повышенным тепловым потоком, высокой плотностью и немагнитностью коры, свидетельствует об ультраосновном ее составе, во всяком случае большей ее части.

С петромагнитной точки зрения кора авлакогена на северо-западе в районе Черниговского гравимагнитного максимума сложена ультрамафит-мафитовым и фемическим петромагнитным типами, в районе Кировоградско-Холмской зоны — ультрамафит-мафитовым и сиалическим петромагнитными, Центральной депрессии — ультрамафит-мафитовым, фемическим и возможно сиальмафитовым типами. Полосе повышенной намагниченности к востоку от Полтавы вероятнее всего соответствует сиальфемический петромагнитный тип, а консолидированная кора на юг от этой полосы представлена ультрамафит-мафитовым петромагнитным типом. Таким образом, в магнитном отношении формирование и развитие авлакогена заключалось в наложении на неоднородную консолидированную кору ультрамафит-мафитового и фемического петромагнитных типов. Осадочная толща повсеместно представлена сиалическим петромагнитным типом.

Выводы

Современная петромагнитная характеристика консолидированной коры и осадочного чехла авлакогена свидетельствует о его формировании и развитии на неоднородном древнем фундаменте. Проявление девонского магматизма разного типа зависит от состава коры до момента рифтообразования. Наложенный характер Днепровско-Донецкого авлакогена фиксируется следующими геологическими и геофизическими особенностями.
1. Несогласным по отношению к Украинскому щиту и Воронежскому массиву характером форм рельефа раздела М и глубинных магнитных и плотностных неоднородностей, которые рассматриваются как новообразованные;

2. Изменением состава коры по сравнению с окружающими регионами в сторону увеличения общей основности вплоть до безгранитной, аномально высокой плотности и высокой намагниченностью в глубинных часщах разреза;

3) Наличием "сопряженных" с Днепровско - Донецким авлакогеном структур раздела М и разломов на его бортах, структурным и вещественным преобразованием коры в окрестностях авлакогена. Хотя механизм образования авлакогена однозначно не установлен, описанные структурные и вещественные особенности коры и соотношение их с окружающими регионами и теоретические модели позволяют предполагать формирование авлакогена путем растяжения и раздвига коры с новообразованием и преобразованием нижней части коры, утонением и проседанием ее верхней части, с активным, но дифференцированным по простиранию авлакогена, платформенным магматизмом разного типа.

4) Ассиметрией в строении авлакогена, наиболее четко отраженной в крутизне северного и южного бортов и смещении магматических и эфузивных образований верхней части коры к северо-востоку по отношению к глубинным магнитным источникам, предположительно имеющим ту же природу.
7. Природа и эволюция глубинных магнитных источников

Детальное рассмотрение термодинамических и окислительно-восстановительных условий формирования и существования ферроферримагнитных минералов, анализ их приуроченности к определенным ассоциациям пород, определенному геодинамическому режиму и типу структур, а также расчетных двумерных, трехмерных и эволюционных (пространственно-временных) разномасштабных магнитных моделей разных в геолого-тектоническом отношении регионов в совокупности с обширной геолого-геофизической информацией позволяет наметить общие черты и отличия формирования и дальнейшего преобразования глубинных магнитных источников.

Приуроченность региональных магнитных аномалий к структурам преобладающего растяжения земной коры [218], особенностями глубинного строения земной коры и докембрийского фундамента Восточно-Европейской платформы [12, 19, 56, 69, 97, 114, 122, 168, 174, 199, 212 и др.] и типизация коры юго-западной части платформы [61, 150, 156, 155, 244, 243, 249 и др.] позволяют выделить на всей исследуемой территории ряд типов источников.

Ядра древнейшей консолидации. Их реликты сохранились в областях развития грануллитовых массивов. Характерными для этого типа источников согласно И.К.Пашкевич и Г.И.Каратаева [61] являются максимальная мощность земной коры, минимальная мощность гранитного слоя и аномально высокий коэффициент базальтоидности. К этому типу аномалий относятся Винницкая, Одесско-Гайсинская группа (включая Ананьевскую и Одесскую аномалии), Витебская, Калининградская, Инчукалинская, Киевская, относящиеся к грануллитовой фации метаморфизма Побужья и Белорусско-Прибалтийских грануллитовых массивов, Синельниковская — в блоке гранулитовых образований Приднепровья.
Эти неоднородности обладают высокой намагниченностью верхней (1,0—1,5 А/м) и нижней (3,0—4,0 А/м) частей консолидированной коры.

Переработанные ядра древнейшей консолидации. Для них, переработанных в протерозое, характерны двухъярусное строение докембрийского фундамента, проявление основного вулканизма, осложнение прогибов раздела М локальными поднятиями, уменьшенный (по сравнению с таковым для ядер консолидации) коэффициент базальтоидности коры и увеличенный вклад в общую мощность коры гранитного слоя. К этому типу неоднородностей отнесены Новоград-Волынская, фиксирующая начальный этап формирования зоны сочленения Сарматии и Фенноскандии и Бобруйская, связанная с Осницко-Микашевичским вулканическим пояском. Намагниченность верхней части коры составляет при этом около 0,5 А/м, а нижней — 2,0—3,0 А/м.

Шовные зоны. Это — наиболее распространенный тип магнитных неоднородностей. Зоны состоят, как правило, из ряда неоднородностей, установленных для разновозрастных структур и относятся к сочленению крупных блоков или сегментов земной коры. Среди них выделяются древние (архей — ранний протерозой) и молодые (разного возраста). Последние относятся, как правило, к краевым частям древней платформы, предгорным краевым прогибам, крупным зонам разломов на границах разновозрастных структур. В большинстве случаев эти магнитные неоднородности отвечают резкой смене мощности земной коры. В приповерхностной части этот тип магнитных неоднородностей не имеет однообразного проявления, однако главной особенностью строения земной коры можно считать в целом согласное простирание поверхностных и глубинных структур, наличие крупных глубинных разломов или их зон и длительность развития последних, что отражается, например, в полиметаморфическом преобразовании пород (Пашкевич и др. [243]).

К древним шовным зонам относятся источник Западно-Ингулецкой аномалии, располагающийся на границе Приднепровского и
Кировоградского блоков Украинского щита [155, 249] и источники Московской и Никольской аномалий — на границе Московской синеклизы и Волго - Уральской антеклизы [224].

Формирование неоднородностей этого типа можно рассматривать как результат внедрения интрузий основного состава в различные части земной коры вплоть до фундамента. Наиболее подробно данный тип изучен на юго-западном крае Восточно-Европейской платформы. Так, формирование Львовской магнитной неоднородности (Днестровско-Висленская группа аномалий) связывается с обогащением пород магнетитом на различных этапах растяжения и прогибания земной коры [220].

Наиболее выдержанными и согласными с простираением границы платформы являются неоднородности шовного типа юго-западной, южной, юго-восточной и северо-восточной зон сочленения ее с окружающими структурами [241]. К ним относятся Висленско-Днестровская, Эмбенская, Предтиманская, Верхнекамская, Мезенская, ряд неоднородностей широтного простирания юго платформы. Северо- западная и восточная граница платформы не сопровождаются аналогичными описанным выше магнитными неоднородностями шовных зон. Подобного типа источники широко распространены и для послериформенных структур сочленения: Моравская, Аугсбургская, Индоло-Кубанская [173], Предкопетдагская [10] и другие. По типу строения они ничем не отличаются от источников, распространенных в краевой части докембрийской Восточно-Европейской платформы.

Рассмотрим детально источник Предкопетдагской магнитной неоднородности, изученный нами при построении объемной магнитной модели земной коры Туркменистана [10].

В тектоническом плане большую часть территории Туркменистана занимает южная окраина эпипалеозойской Туркменской плиты, включающая Туркменскую антеклизу и Амударьянскую синеклизу. С юга и юго-запада эти структуры отделены Предкопетдагским прогибом от Копетдагского
мегантиклинория, представляющего собой область альпийской складчатости.

В обобщенном виде модель можно представить как состоящую из одной крупной неоднородности с размером 400×700 км и намагниченностью 0,5 А/м, на фоне которой, а также за ее пределами выделяются источники с поперечными размерами 20—100 км и намагниченностью 1,0—2,0 А/м.

Территориально крупный магнитный блок охватывает Амударьинскую синеклизу, западную часть Туркменской антеклизы, Предкопетdagский прогиб и частично Копетдагский мегантиклинорий. На западе блок ограничен Центрально-Каракумским разломом, на северо-востоке — Амударьинским. В ее пределах выделяются более мелкие неоднородности различной формы, размеров и намагниченности. В западной части этой крупной неоднородности, между Центрально-Каракумским разломом и фрагментом Урало-Оманского линеамента, сконцентрированы наиболее крупные и интенсивно намагниченные тела. Высокая, до 2,0 А/м, намагниченность характерна для Предкопетdagского прогиба. Вообще необходимо отметить приуроченность источников магнитных аномалий к наиболее погруженным участкам палеозойского фундамента. На западе территории выделено ряд неоднородностей, наиболее крупная и интенсивно намагниченная (1,5 А/м) из которых объясняет Красноводскую региональную аномалию, проинтерпретированную ранее [261]. Магнитные неоднородности данной области и Предкопетдагского прогиба, распространенные на всю мощность консолидированной коры, в региональном плане приурочены к крупной шовной зоне сочленения альпийской геосинклинали с эпигерцинской платформой, что позволяет сопоставить ее с однотипной структурой юго-западного края Восточно-Европейской платформы, которая характеризуется интенсивной Львовской неоднородностью, являющейся “классической” шовной неоднородностью.

Полигенно-полихронные неоднородности. Этот тип включает в себя неоднородности с различным соотношением геофизических полей,
мощности и намагниченности слоев земной коры, глубины до раздела М. Отдельные неоднородности по общим признакам объединяются в единые структурные зоны, развивающиеся как самостоятельные тектонические единицы. Структурам, образованным неоднородностями полихронно - полигенного формирования, присущи характеристики типа шовных зон, но с длительной тектонической активностью. Этот тип неоднородностей, как и шовные зоны, часто обнаруживается на стыке крупных тектонических единиц (щитов, плит, крупных блоков). Однако в отличие от шовных зон, в пределах описываемых неоднородностей устанавливается многократная активизация разного типа и времени вплоть до современных движений.

К данному типу относятся большинство из магнитных неоднородностей Балтийского щита и областей его сочленения с Русской плитой [151], образующие субмеридиональную полосу. Данная полоса располагается на продолжении к северу субмеридиональной границы раздела двух типов древней континentalной коры с разным возрастом формирования гранито-метаморфического слоя: преимущественно гранит-зеленокаменного на востоке и гранулитового — на западе [19]. На территории Русской плиты эта зона картируется относительно небольшими магнитными аномалиями субмеридионального простирания, в пределах Украинского щита она прослеживается в районе Кировоградского активизированного блока пониженной намагниченности, который с востока обрамлен Западно-Ингулецкой древней шовной зоной, а с запада — Одесско-Гайсинской и Киевской магнитными неоднородностями. Обе полосы подчинены единому простиранию. Если в данном случае принимать во внимание только магнитные критерии, а именно разделение данной полосой в пределах Балтийского щита преимущественно отрицательного поля на западе от положительного на востоке, то в пределах Украинского щита она может быть проведена вдоль Севско-Каркинитской полосы [147] (включающей Западно-Ингулецкий источник) западнее которой расположен
региональный минимум аномального магнитного поля Кировоградского блока.

Формирование структуры, прослеживаемой субмеридиональной зоной региональных источников, связано с разновозрастной тектономагматической активизацией протерозойско-мелового возраста, что подтверждается комплексом геолого-геофизических признаков [70-72 и др.]. Описываемая зона, по-видимому, была границей крупных блоков различной жесткости и стабильности в рифее — венде. Так, Паннонско-Волынско-Оршанский авлакоген на этой структуре резко обрывается, а далее на северо-восток продолжается в виде двух узких авлакогенов. Следовательно, активизация зон сочленения двух геоблоков происходила по единой зоне, начиная как минимум с протерозоя.

Меридиональная полоса магнитных аномалий отражает, таким образом, наименее стабильную зону в восточной части Балтийского щита и представляет собой полигенную и полихронную структуру, развивающуюся с архея до настоящего времени как единое целое и активизированную в различных блоках в разные периоды.

Неоднородности наложенных рифтов. Имеют природу, аналогичную природе неоднородностей краевых прогибов, так как связаны с областями растяжений, но в отличие от них располагаются внутри платформенных регионов. Среди этого типа выделяются неоднородности, относящиеся к внутренним и внешним частям рифтов. Так в Днепровско-Донецкой впадине магнитные неоднородности располагаются в пределах девонского рифта (Черниговская и Лохвицкая неоднородности), а в Донбассе — лишь в краевых его частях. Магнитная неоднородность приурочена и к южному борту Пачелмского прогиба.

Более молодые рифтовые структуры также часто фиксируются магнитными неоднородностями. Интенсивные магнитные тела наблюдаются в Кандалакшско-Североморском грабене и грабене Осло. Своеобразной магнитной неоднородностью фиксируется Парижский бассейн. Морфология
ее характерна для авлакогенов, на которых, вероятно, бассейн и был заложен.

В изучаемом сегменте, фиксирующемся Курско-Прибалтийской спутниковой аномалией, сконцентрированы практически все типы магнитных неоднородностей: шовные зоны разного возраста формирования, древние платформенные впадины (авлакогены) и др. Общим для формирования всех источников региональных магнитных аномалий, как уже было сказано, является режим преобладающего растяжения земной коры. Так, по данным М. В. Муратова [206, 207], наиболее древние архейские metamorfические комплексы с возрастом более 3,0 млрд. лет образовались в условиях прогибов дна древнейших бассейнов. Максимальная концентрация магнитных неоднородностей в крупном сегменте коры свидетельствует о многократно повторяющихся в его пределах режимах растяжения — от архея до мезозоя включительно.

Юго-западная граница Восточно-Европейской платформы фиксируется сложной Львовской региональной магнитной аномалией. Ее источник — типичная шовная зона. В верхней части коры этой аномалии отвечает ряд разновозрастных прогибов, а в нижней — сложнопостроенный раздел М. На западе Львовская магнитная неоднородность контактирует с зоной Тейссейра-Торнвиста. Однако в пределах этой зоны сочленения разновозрастных платформ кора не отличается намагниченностью от эпипалеозойской платформы.

Формирование Львовской магнитной неоднородности связано с несколькими этапами развития земной коры. Восточная ее часть, имеющая в плане субмеридиональное простирание, по аналогии с древними шовными зонами Украинского щита может классифицироваться как древняя шовная зона. Западная часть (в плане северо-западного простирания) приурочена к “базальтовому” слою и, как показано в работах [218, 242], характеризует границу Восточно-Европейской платформы. Именно эта часть Львовской
неоднородности имеет северо-западное продолжение вдоль границы платформы.

Глубинные магнитные неоднородности типа шовных зон (в отличие от “магнитных” неоднородностей типа ядер древнейшей консолидации) связываются с последующим изменением состава земной коры вследствие переработки и увеличения концентрации ферромагнетика в любой части ее разреза либо с внедрением интрузий основного состава, что подтверждается отсутствием корреляции намагниченности с мощностью какого-либо слоя коры. Для шовных зон характерно примерно равное содержание всех трех слоев коры, хотя есть некоторая тенденция к увеличению мощности “диоритового” слоя. К центру описываемого сегмента коры (Украинский щит) приурочены четыре ведущих типа магнитных неоднородностей: гранулитовые ядра, переработанные ядра, зрелая кора, неоднородности наложенных впадин.

В ядрах древнейшей консолидации континентальной коры при переходе к переработанным ядрам на фоне общего прогиба раздела М образуются локальные подъемы, связанные, вероятно, с проявлением раннепротерозойского магматизма, средняя намагниченность верхней части коры уменьшается до 0,2÷0,5, а нижней до 1,5 ÷3,0 А/м. Источник региональной магнитной аномалии имеет зону перехода к соседнему блоку с промежуточными значениями намагниченности.

В “базальтовом” слое ядер древнейшей консолидации и переработанных ядер преобладают основные кристаллические сланцы, “диоритовый” слой может быть представлен габброидами, эндербитами и чарнокитами в различных соотношениях.

Тип зрелой коры характеризуется подъемом раздела М, малой мощностью коры, слабой базальтоидностью, большой мощностью “диоритового” слоя, низкой, практически нулевой намагниченностью нижней части коры и низкой (около 0,2 А/м) средней намагниченностью “гранитного” слоя. Исходя из таких параметров разреза земной коры можно
прийти к выводу о метаандезитовом (в большей части) составе, что не противоречит наличию в ее верхней части Коростенского массива рапакиви в ассоциации с габбро, габбро-норитами, норитами, анортозитами и габбро - анортозитами.

Описанные типы магнитных неоднородностей щита не представляют собой полный эволюционный ряд докембрийских неоднородностей, выявленный при типизации коры. Между древними и переработанными ядрами существует кора, являющаяся аналогом зеленокаменных поясов, а между переработанными ядрами и зрелой корой — кора с платформенной активизацией. Но даже в таком неполном возрастном ряду магнитных неоднородностей прослеживаются эволюция форм раздела М (от прогиба через прогиб с локальным поднятием к подъему раздела М), изменение средней мощности коры (от 60 до 40 км), ее состава (от высокобазальтоидной к гранит-диоритовой), намагниченности (от 3,5÷4,0 до 0,05 А/м в нижней части коры и от 0,8÷1,5 до 0,2 А/м — в верхней).

При формировании земной коры в архее-протерозое в ее разрезах различных типов кроме указанных изменений в структуре раздела М и намагниченности происходят закономерные изменения относительной мощности отдельных слоев: уменьшение мощности “базальтового” слоя и увеличение - “диоритового” при относительно постоянной мощности “гранитного” слоя. “Базальтовый” слой в разрезе коры ядер древнейшей консолидации и переработанных ядер составляет 45 — 70% ее общей мощности, в зеленокаменных поясах (кора незавершенной стадии развития) — от 20 до 40, в блоках с платформенной активизацией — от 0 до 10%, в зрелой коре “базальтового” слоя практически нет. Вклад “диоритового” слоя в блоках тех же типов коры составляют соответственно 25—40, 30—50, 60—70% (для последних двух типов).

Однако в среднюю намагниченность рассматриваемого сегмента вносят вклад и магнитные неоднородности платформенных впадин (авлакогенов), в частности Днепровско-Донецкой, полностью
располагающейся в этом сегменте. Данный тип магнитных неоднородностей характеризует новый этап развития древней платформы — формирование рифей-палеозойских рифтов, которое сопровождается подъемом раздела М и соответствующим утонением коры. Именно с такими структурами растяжения и связывается начало нового цикла образования магнитных неоднородностей.

Выводы

Природа и эволюция глубинных магнитных источников отражают два механизма их образования и сложное дальнейшее развитие. Первый механизм образования — это формирование источников на стадии преобладающего растяжения земной коры в зонах рифтов, палеорифтов и зон тектономагматической активизации (в предельном случае это образование магнитной коры океанского типа в срединно-океанских хребтах). Такой механизм формирования магнитных неоднородностей для континентальной коры описан нами [223, 230, 231], изложен в разделе 3.3. и сводится к насыщению коры (как правило на всю мощность) магматическими образованиями основного и среднего состава при благоприятных окислительно-восстановительных условиях для реализации железа в виде ферро-ферримагнитных минералов. Такие источники образуются на ранних стадиях развития крупных тектономагматических циклов и они являются первичными по сравнению с источниками, формирующимися в результате другого механизма, а именно — субдукционно-обдукционного. Теоретически этот тип магнитных неоднородностей рассмотрен нами на примере субдукционных зон и современных островных дуг [231] и механизм его образования двойственный: с одной стороны это поддвиг магнитной коры океанского типа (а также возможного “сдваивания” в некоторых зонах нижней части коры) за счет субдукции, а с другой — переплавление субдуктированной
коры с насыщением верхней части разреза соответствующими образованиями по первому механизму.

Все остальные типы глубинных неоднородностей являются свидетелями дальнейших преобразований “рифтовых” и “субдукционных” источников в зависимости от характера геологического развития и наложенных вторичных процессов, сопровождавшихся изменением основности и магнитности коры, мощности отдельных слоев, степенью метаморфизма и т.д., что и отражено в приведенной в разделе эволюционной схеме глубинных магнитных неоднородностей, разработанной И.К. Пашкевич с соавторами [60, 243, 244].

8. Нефтегазоносность земной коры Украины в связи с ее намагниченностью

Актуальность проблемы прогнозирования месторождений углеводородов территории Украины не требует доказательств. Особая роль в настоящее время должна быть отведена малозатратным методам, к каковым относится магнитометрия. На основании обобщения и анализа исследований Е.И. Ангеловой [2], В.М. Березкина, А.М. Лощакова, М.И. Николаева [13,14,184], Т. Голда [74], И.В. Головина [76], П.Н. Кропоткина и Б.Н. Валяева [145], А.А. Трофимука с соавторами [306], В.Д. Харитонова, А.А. Гарбузы, Ф.Г. Бабчук [322] и многих других авторов разработана и предлагается методика геомагнитных исследований в общем и объемного магнитного моделирования в частности для регионального и локального прогнозирования распределения углеводородов. Методика предусматривает получение надежных исходных данных (поля \(\Delta T \))a, схем намагниченности земной коры, величин магнитной восприимчивости и т.д.), теоретическое и экспериментальное обоснование и нахождение корреляционных и генетических связей между исходными данными и поисковыми объектами (в данном случае, нефтегазоносные области и провинции в целом, их отдельные
районы и конкретные месторождения), выдвижение рабочих гипотез (в частности, для регионального и локального прогнозирования), их качественную и количественную проверку.

Проблема научного прогнозирования региональных зон нефтегазонакопления и локальных нефтегазоносных ловушек требует решения ряда фундаментальных и прикладных задач, т.к. объектом исследований являются процессы и явления, происходившие на стыке неживой природы и органического мира.

При этом месторождения являются конечным продуктом сложного взаимодействия процесса геолого-тектонического, гидрологического и климатического развития региона, определяющих необходимые условия для образования исходного нефтегазоматеринского вещества.

Дальнейшая эволюция нефтегазоносного бассейна связывается со сложными процессами преобразования исходного вещества в углеводороды, формирование литолого-тектонических условий для миграции, накопления и сохранности углеводородов.

Разработанная методика геомагнитных исследований (как и любого другого метода претендующего на прогностичность) должна, следовательно, содержать физико-геологическое обоснование проявления в параметрах намагниченности среды и аномальном магнитном поле процессов тектогенеза, литогенеза, нефтегазонакопления, нефтегазообразования и структурообразования.

Все рассмотренные элементы положены в технологическую схему истолкования природы региональных и локальных магнитных аномалий в нефтегазоносных областях и провинциях, причем в меру наличия фактического материала сделаны оценки магнитной неоднородности коры на момент начала образования бассейна и возникающие в процессе его формирования и развития, как в кристаллической, так и осадочной ее частях.

Демонстрацию предлагаемого подхода выполним на примере Днепровско-Донецкой впадины, наиболее пригодной в связи с достаточной
изученностью структуры поверхности докембрийского фундамента, глубинного строения фанерозойских осадочно- вулканогенных комплексов, а также магнитометрических исследований.

8.1. Структура, состав и намагниченность осадочного чехла Днепровско-Донецкой впадины. Так как глубинное строение и структура дофанерозойского этажа Днепровско-Донецкой впадины детально рассмотрена в разделе 4.3 остановимся вкратце на характеристике структурных этажей и формационных комплексов фанерозойского этапа развития, их намагниченности, а также на классификации структур осадочного чехла с точки зрения их перспективности в качестве ловушек углеводородов.

8.1.1. Структура осадочного чехла Днепровско- Донецкой впадины. Осадочный чехол Днепровско-Донецкой впадины представлен породами девона, карбона, перми и мезо-кайнозоя, залегает на разновозрастном кристаллическом фундаменте. Согласно структурным особенностям, формационно-вещественной характеристике и условиях осадконакопления выделяются пять структурно-формационных комплексов или циклов [62], разделенных структурными или близкими к ним несогласиями: среднедевонский платформенный, верхнедевонский рифтовый, каменноугольно-ниженермский синеклизно-синклинальный, мезозойский платформенно-синеклизный и кайнозойский платформенный. При этом мезозойские и кайнозойские этажи распространены только в Днепровско-Донецкой впадине, отражаю ее впадинный этап развития.

Среднедевонский дорифтовый платформенный структурно-стратиграфический комплекс, состоящий из эйфельского и живетского ярусов залегает на докембрийском фундаменте. Этот маломощный структурно-формационный комплекс представлен песчано-глинистыми, сульфатно-карбонатными породами, красно- и среднезернистыми песчаниками, алевролитами и известняками, иногда с вулканогенными породами [62]. Мощность среднедевонских отложений изменяется от 20 до
200м. В целом они залегают согласно с поверхностью кристаллического фундамента.

Верхнедевонский рифтовый структурный этаж. Согласно структурно-формационным особенностям подразделяется на два подэтажа: франский и фаменский. Первый в основном наследует характер поверхности докембрийского фундамента и среднедевонского структурно-стратиграфического комплекса. Отличительной особенностью этих отложений является чрезвычайное непостоянство литофациального состава как по площади, так и по разрезу и резкие колебания мощности. В разрезе данного структурного этажа господствующее положение занимает каменная соль и эффузи вы. Они замещаются по простиранию и чередуются в самых разных сочетаниях с терригенно - карбонатными образованиями и между собой.

Каменная соль образует пласты различной мощности, перемежаемые глинами, мергелями, известняками, доломитами, реже песчаниками, алевролитами и сульфатными породами. Последние сосредоточены в основном в нижней и верхней частях разреза либо замещают по простиранию пласти соли.

Вулканогенные комплексы представлены породами от основного до кислого состава, образующими покровы, реже дайки и интрузии, многократно перемежаемые с туфами, туффитами, терригенно - карбонатными и галогенными образованиями.

Мощность каменной соли достигает 2,0—2,5 км, а в пределах отдельных диапиров и более 7 км. Максимальная мощность эффузивных образований (2,6 км) установлена на северо-западе Днепровского грабена (Ладыженская скважина 231) [335].

Каменноугольно-нижнепермский синеклизно-миогеосинклинальный структурный этаж. От девонского этажа данный комплекс отделяется структурным несогласием. Он представляет собой комплекс генетически и структурно связанных морских, паралических, ритмических и регионально
выдержанных горизонтов известняков, глин, углей, песчаников и солей, отсутствием вулканизма и высокой скоростью погружения и осадконакопления, развитием складок коробления или солевого нагнетания [62]. Отличительными особенностями этого комплекса являются сравнительная выдержанность литофациального состава по площади и плавность изменения мощностей. В состав его входят нижне- (начиная с верхневизейских), средне- и верхнекаменноугольные отложения и нижняя часть (сакмарский и ассельский ярусы) нижнекаменноугольных.

Широко распространенные (включая бортовые части авлакогена) верхневизейские и намюрские отложения представлены терригенными формациями мелкого моря. В разрезе преобладают глинистые сланцы и аргиллиты с прослоями алевролитов, песчаников, известняков, а в верхней части и углей.

Среднекаменноугольные отложения (башкирский и московский ярусы) представлены аргиллитами, алевролитами, песчаниками, известняками и углями. Вверху разреза (московский ярус) преобладают песчанистые отложения.

Верхнекаменноугольные отложения (морских и прибрежно-kontinentальных фаций) практически не выходят за пределы грабена. Еще меньшую площадь распространения занимают нижнепермские осадки. Сложены они в нижней части красноцветными терригенными породами, сменяющимися вверх по разрезу хемогенными образованиями, состоящими из ряда пластов соли, разобщенных терригенно-карбонатными породами и содержащих в кровле прослои гипсов, ангидритов и доломитов.

В пределах Черниговско-Брагинской седловины мощность данного комплекса составляет 0,5 км, на меридиане г. Пирятина она увеличивается до 4,0—4,5км, а юго-восточнее меридиана г. Полтавы достигает 6,0—7,0км. В Донецком складчатом сооружении к моменту завершения осадконакопления данного цикла суммарная мощность только каменноугольных отложений составляла не менее 10,0—12,0км.
Мезозойский платформенно-синеклизный структурный этаж. На размытой поверхности нижнепермских, каменноугольных и девонских, в том числе соленосных, а также докембрийских образований со структурным несогласием залегают породы триасового возраста. Мезозойские отложения представлены песчано-глинистыми и карбонатными породами юры (нижней, средней и верхней), терригенными породами нижнего мела и мергеля сантон-туронского, кампанского и маастрихского ярусов верхнего мела. Максимальная мощность отложений мезозоя характерна для восточной части Днепровского грабена (2000 м).

Кайнозойский платформенный структурный этаж залегает на размытой поверхности меловых и более древних отложений. Представлен палеогеновым глинисто-кварц-глауконит-мергелистым и неоген-антропогеновым песчано-глинисто-лессовым структурно-формационными комплексами. В составе распространены терригенные образования палеоцена и меловыми песками харьковской свиты олигоцена, кварцевые пески полтавской свиты миоцена и горизонтом красно-бурых глин.

8.1.2. Морфологические типы и генезис локальных структур осадочного чехла. Локальные структуры Днепровско-Донецкой впадины характеризуются разнотипной длительной и неоднозначной историей развития. На протяжении последевонского времени устанавливается наличие направленности, цикличности и непрерывности развития локальных структур ДДВ. Направленность проявляется в постоянном снижении интенсивности структурообразующих процессов от карбона до кайнозоя включительно, происходящем, однако, не плавно, а прерывисто [61]. Наиболее интенсивными процессами формирования локальных структур характеризовался каменноугольный (а, возможно, и девонский) период, минимальными-кайнозойский этап, а новейшая тектоническая эпоха — самая пассивная в истории региона.
Генетическая классификация локальных структур Днепровско-Донецкой впадины выполнена Б.П. Кабышевым [61]. При этом локальные структуры поделены на два класса: несоляные и соляные. В классе несоляных структур выделены четыре основных типа: приразломные, надразломные, штамповые и структуры коробления.

Приразломные структуры располагаются в опущенных крыльях крупных сбросов. Они образуются при условии, когда разрывное нарушение фундамента проникает в осадочный чехол, способствуя образованию в нем конседиментационного сброса.

Надразломные структуры обусловлены движениями вдоль разрывных нарушений фундамента, что приводило к возникновению в осадочном чехле конседиментационной флексуры с опущенным в сторону оси впадины крылом. Дальнейшие реверсивные движения ранее опускавшегося блока приводят к образованию флексуры, но уже с противоположным крутым крылом и уже постседиментационной по характеру развития. Эта флексура может также осложняться взбросом или сбросом.

Штамповые структуры являются следствием поднятия локальных выступов фундамента. Формировались они в основном в постседиментационное время в основные фазы постседиментационного, хотя частичное формирование возможно в каменноугольный период.

Структуры коробления сформировались “под действием тангенциального сжатия пород за счет избытка длины слоев при подъеме до уровня хорды на стадии инверсии прогиба” [61, с.134].

Соляные структуры I группы формируются вследствие осложения соляной тектоникой основных генетических типов несоляных структур - приразломных, надразломных, штамповых и коробления. При этом весь надсолевой комплекс осадков независимо от уровня расположения девонской соли образует вокруг соляных ядер купола или антиклинали без резких несоответствий структурных планов.
Соляные структуры II группы представляют собой остаточно-компенсационные поднятия, образующиеся как пассивные структуры при формировании компенсационных мульд.

Причиной образования несоляных и соляных структур являются региональные вертикальные и тангенциальные тектонические движения. Ведущими при этом были вертикальные блоковые движения фундамента и подсолевого ложа [61].

Наблюдается преимущественное развитие надразломных или приразломных складок к южному краевому ограничению, приразломные несоляные и внутриразломные соляные — к северному ограничению. На бортах ДДВ развиты только штамповые складки, а в осевой части впадины преимущественно развиты структуры коробления или гибридные.

В целом намечается приуроченность разнотипных структур к системе рифтовых и дорифтовых разломов.

Как правило, на пересечении рифтовых и дорифтовых глубинных разломов образовались соляные штоки. Литолого-фациальные изменения нижнекаменноугольных пород (выклинивания, повышенная опесчаненность разреза, наличие линзовидных песчаников), обусловленные активизацией поперечных разломов, локализующихся в слабовыраженных структурах.

Слабовыраженные структуры представляют собой незамкнутые или замкнутые малоамплитудные поднятия. Их наличие в вышележащих горизонтах могут служить критерием для поиска комбинированных структурно-стратиграфических и структурно-литологических ловушек углеводородов в глубокозалегающих горизонтах.

В пределах Днепровско-Донецкой впадины независимо от структурной принадлежности большинство залежей нефти и газа приурочено к теригенным коллекторам гранулярного типа, а отдельные залежи нефти и газа, коллектор которых представлен известняково-доломитовыми породами со сложным типом пустотного пространства имеют подчиненное значение.
В Днепровско-Донецкой впадине развиты разнообразные терригенные коллекторы: от алевролитов до гравийно-галечных пород, от олигомиктовых до полимиктовых разностей, от рыхлых, рассыпающихся до средне- и сильно сцементированных, в отдельных случаях обогащенных минералами с электронной проводимостью [61].

Согласно [61] в связи с литологическими особенностями гранулярные коллекторы подразделяются на пять групп: песчаники преимущественно кварцевые от средне- и крупнозернистых до гравийных; песчаники, преимущественно полевошпатово - кварцевые, разнозернистые, различной глинистости, а также алевролиты того же состава; песчаники полимиктовые, граувакково-кварцевые, равнозернистые; крупнообломочные породы, включающие гравелиты, галечники, гравийные и гравийно-галечные конгломераты; песчано-гравийные коллекторы с ионной и электронной проводимостью, которая обусловлена главным образом наличием таких минералов как, пирит, халькопирит, глауконит и др.

Рассмотрение морфоло-генетических особенностей локальных структурных форм и вторичных преобразований, происходящих на протяжении геологической истории позволо З. М. Слепаку [281] установить наличие закономерностей латеральной зональности пород и вторичных преобразований.

Такая зональность по его мнению характерна для структур различного генезиса. Причем З.М.Слепаком [281] показано, что латеральная неоднородность плотности пород на участках поднятий прослеживается практически во всем разрезе осадочного чехла (либо в пределах одного структурно-формационного комплекса) и проявляется в относительном ее уменьшении в сводовых и присводовых частях структуры и увеличении на крыльях.

Природа латеральной изменчивости физических параметров пород в пределах локальных поднятий может быть обусловлена характером седиментации (отложения грубозернистых пород на сводах и
мелкозернистых на крышках при конседиментационном формировании структур) и зональностью протекания вторичных процессов в сульфатно-карбонатном комплексе осадочного чехла. Наблюдается интенсивное развитие в сводовых частях структур тектонической трещиноватости, доломитизации, выщелачивания, вторичной пористости, карстообразования, приводящих к увеличению порового пространства пород, а также интенсивное минералообразование (сульфатизация, кальцитизация, окремрение) в погруженных частях структур, приводящее к запечатыванию пустот и снижению пористости.

8.1.3. Магнитные свойства осадочных пород. Физико-геологические основы применения геомагнитного метода связываются прежде всего с наличием магнитных минералов в породах осадочной толщи. Магнитные свойства осадочных пород обусловлены главным образом акцессорными минералами, обладающими выраженными ферримагнитными свойствами — магнетитом и его разновидностями, маггемитом, гематитом и гидроокислами железа (гетит и гидрогетит, гидрогематит и лепидокрокит) [319]. Большинство породообразующих минералов осадочных пород являются диамагнетиками или слабыми парамагнетиками. Наибольший вклад в магнитную восприимчивость вносят парамагнитные минералы: сидерит, хлорит, ильменит, биотит и реже, глинистые минералы.

Магнитные минералы-носители ферримагнитных свойств осадочных пород встречаются в трех формах: рудные зерна магнетита и его разновидностей - мартита и гематита; тонкорассеянные в породе гематит, маггемит, иногда магнетит, а также скопления и пленки гидроокисей железа; различные позднедиагенетические и эпигенетические образования из лимонита, продукты окисления и замещения сидерита, пирита и магнетита [302, 319].

На основании рассмотрения опубликованных данных для образований Днепровско-Донецкой впадины можно сделать вывод, что слабой магнитной
восприимчивостью характеризуются мергели \((4\pi (2,0\div 37,0) 10^{-6} \text{ ед. Си})\), гипсы и ангидриты \((4\pi (8,0\div 87,0) 10^{-6} \text{ ед. Си})\) и каменная соль с нулевой магнитной восприимчивостью.

Пределы изменения средних значений магнитной восприимчивости песчаников и песков \(\((2,0\div 281,0) 4\pi 10^{-6} \text{ ед. Си}\)\), алевролитов \(\((10,0\div 201,0) 4\pi 10^{-6}\)\), глин и аргиллитов \(\((8,0\div 233,0) 4\pi 10^{-6} \text{ ед. СИ}\)\), известняков и доломитов \(\((3,0\div 284,0) 4\pi 10^{-6} \text{ ед. СИ}\)\) не позволяют отдать предпочтение какому либо литологическому комплексу в создании локальных аномалий магнитного поля. Для получения информации о величинах магнитной восприимчивости пород разного литологического состава автором выполнен большой объем работ по исследованию магнитной восприимчивости кернового материала Черниговского кернохранилища. Изучена магнитная восприимчивость для имеющегося кернового материала скважин Артюховская (№ 13), Беевская (№ 382), Владимирская (№ 1), Горобиевская (№ 360), Золотихинская (№ 396), Рудовская (№ 2), Селюховская (№ 1, № 304), Южноафанасьевская (№ 12) (Табл.8.1-8.7, рис. 8.1).

Самыми магнитными образованиями в пределах осадочного чехла Центральной Депрессии Днепровско-Донецкой впадины являются диабазы \(\kappa = (45500,0 \div 48000,0) 10^{-6} \text{ ед. Си}\) из скважины Селюховская, 304 в интервале глубин 3613 — 3622 м. В этой же скважине имеется керновый материал каменной соли (интервал 3695 — 3705 м) с нулевой магнитной восприимчивостью. Вверх по разрезу над диабазами (3153 — 3537 м) залегают аргиллиты, пиритизированные аргиллиты, угли, песчаники, известняки с очень незначительными величинами магнитной восприимчивости \(\kappa = (0,0\div 90,0) 10^{-6} \text{ ед. Си}\). В интервале 3052 — 3126 м залегают аргиллиты и сидериты с магнитной восприимчивостью \(\kappa = (20,0 \div 2150,0) 10^{-6} \text{ ед. Си}\). В самом верху (2980 — 3062 м) залегают слабомагнитные аргиллиты, известняки, песчаники и алевролиты \(\kappa = (10,0 \div 210,0) 10^{-6} \text{ ед. Си}\).
Отбор керна в скважине Артюховская 13 начался с глубин 4070 м. Вверху опробованной части разреза выделяются аргиллиты, известняки и песчаники с магнитной восприимчивостью $\kappa = (10,0 ÷ 120,0) \times 10^{-6}$ ед. Си. Глубже следует пачка песчаников, известняков и аргиллитов с высокими значениями магнитной восприимчивости ($\kappa = 250,0 ÷ 500,0) \times 10^{-6}$ ед. Си). Вниз по разрезу следует толща, состоящая из слабомагнитных песчаников (в том числе нефтеносных), алевролитов, аргиллитов и известняков ($\kappa = (0,0 ÷ 80,0) \times 10^{-6}$ ед. Си), в верхней и нижней частях которой встречены относительно высокомагнитные известняки и сидериты ($\kappa = (650,0 ÷ 1580,0) \times 10^{-6}$ ед. Си). В интервале глубин 4268 — 4313 м породы обладают повышенной магнитной восприимчивостью в зависимости от состава. Песчаники имеют магнитную восприимчивость

Табл.8.1. Магнитная восприимчивость пород скв. Артюховская № 13

<table>
<thead>
<tr>
<th>№ керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Литологический состав пород</th>
<th>Значения κ, в 10^{-5} ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4070—4075</td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td>2</td>
<td>4075—4081</td>
<td>Аргиллит</td>
<td>6,0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Известняк</td>
<td>5,0</td>
</tr>
<tr>
<td>4</td>
<td>4175—4181</td>
<td>Аргиллит с прослойкой песчаника</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4181—4182</td>
<td>Песчаник</td>
<td>1,0</td>
</tr>
<tr>
<td>6</td>
<td>4182—4184</td>
<td>Песчаник</td>
<td>3,0</td>
</tr>
<tr>
<td>7</td>
<td>4186—4189</td>
<td>Песчаник мелкозернистый кварцевый(?)</td>
<td>40,0</td>
</tr>
<tr>
<td>8</td>
<td>4189—4192</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>4229—4239</td>
<td>Сидерит</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>30,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит (песч.?)</td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>25,0</td>
</tr>
<tr>
<td>10</td>
<td>4239—4247</td>
<td>Алевролит</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>158,0</td>
</tr>
<tr>
<td>№</td>
<td>Промежуточный интервал</td>
<td>Название породы</td>
<td>Песчаник</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>11</td>
<td>4249—4252</td>
<td>-- “” --</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>65,0</td>
</tr>
<tr>
<td>12</td>
<td>4252—4254</td>
<td>Песчаник</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник нефтеносный</td>
<td>0,0</td>
</tr>
<tr>
<td>13</td>
<td>4254—4256</td>
<td>Песчаник</td>
<td>3,0</td>
</tr>
<tr>
<td>14</td>
<td>4256—4263</td>
<td>-- “” --</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>11,0</td>
</tr>
<tr>
<td>15</td>
<td>4263—4268</td>
<td>Аргиллит плотный</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>алевритистый</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>118,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сидерит</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4268—4278</td>
<td>Песчаник</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- “” --</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4288—4293</td>
<td>Песчаник</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4293—4300</td>
<td>-- “” --</td>
<td>28,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4300—4302</td>
<td>-- “” --</td>
<td>4,0</td>
</tr>
<tr>
<td>20</td>
<td>4302—4309</td>
<td>Песчаник с бур.</td>
<td>4,0 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>оттенком</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сидерит</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4309—4313</td>
<td>Аргиллит</td>
<td>40,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4313—4316</td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4316—4318</td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>алевролитовый</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4318—4322</td>
<td>-- “” --</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4322—4324</td>
<td>Аргиллит</td>
<td>8,0</td>
</tr>
<tr>
<td>26</td>
<td>4324—4331</td>
<td>-- “” --</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4331—4339</td>
<td>-- “” --</td>
<td>5,0</td>
</tr>
</tbody>
</table>
Табл.8.2. Магнитная восприимчивость пород скв.Беевская № 382

<table>
<thead>
<tr>
<th>№ керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Литологический состав пород</th>
<th>Значения (\kappa), в (10^{-5}) ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3740—3748</td>
<td>Известняк темно-серый</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролитовый Аргиллит</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник Алевролитовый</td>
<td>13,0</td>
</tr>
<tr>
<td>2</td>
<td>3748—3757</td>
<td>Песчаник</td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>7,0</td>
</tr>
<tr>
<td>3</td>
<td>3757—3764</td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td>22,0</td>
</tr>
<tr>
<td>4</td>
<td>3764—3773</td>
<td>Известняк</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td>5</td>
<td>4095—4109</td>
<td>Алевролит</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сидерит</td>
<td>262,0 *</td>
</tr>
<tr>
<td>6</td>
<td>4109—4121</td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td>7</td>
<td>4148—4157</td>
<td>Песчаник впитывающий влагу</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>15,0</td>
</tr>
<tr>
<td>8</td>
<td>4157—4171</td>
<td>Алевролит</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>18,0</td>
</tr>
</tbody>
</table>
Табл. 8.3. Магнитная восприимчивость пород скв. Владимирская № 1

<table>
<thead>
<tr>
<th>№ керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Литологический состав пород</th>
<th>Значения χ, в 10^{-5} ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1682—1690</td>
<td>Известняк</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Мергель</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>2,0</td>
</tr>
<tr>
<td>2</td>
<td>2411—2418</td>
<td>Известняк</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит</td>
<td>12,0</td>
</tr>
<tr>
<td>3</td>
<td>2418—2424</td>
<td>Известняк</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит</td>
<td>10,0</td>
</tr>
<tr>
<td>4</td>
<td>2462—2468</td>
<td>Песчаник</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2469—2478</td>
<td>Песчаник</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит рыхлый</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>5,0</td>
</tr>
<tr>
<td>6</td>
<td>2479—2484</td>
<td>Артиллит</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк (сидерит?)</td>
<td>55,0</td>
</tr>
<tr>
<td>7</td>
<td>2499—2508</td>
<td>Песчаник</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Артиллит</td>
<td>15,0</td>
</tr>
<tr>
<td>8</td>
<td>2508—2513</td>
<td>Артиллит</td>
<td>12,0</td>
</tr>
<tr>
<td>9</td>
<td>2541—2553</td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td>№ керна</td>
<td>Интервал отбора керна, в метрах</td>
<td>Литологический состав пород</td>
<td>Значения магнитной восприимчивости, в 10^{-5} эд.СИ</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1-3</td>
<td>2447—2452</td>
<td>Известняк глинистый</td>
<td>5,0—19,0</td>
</tr>
<tr>
<td>4-5</td>
<td>2452—2457</td>
<td>Известняк серый</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит с алевролитом</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,0</td>
</tr>
<tr>
<td>6</td>
<td>3860—3863</td>
<td>Аргиллит</td>
<td>33,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник алевролитистый</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3863—3871</td>
<td>Аргиллит</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>27,0</td>
</tr>
<tr>
<td>8</td>
<td>3871—3876</td>
<td>Аргиллит</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>известняковый</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>4,0</td>
</tr>
<tr>
<td>9</td>
<td>3936—3940 3965—3970</td>
<td>Аргиллит</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4010—4020</td>
<td>Аргиллит</td>
<td>18,0</td>
</tr>
<tr>
<td>12</td>
<td>4175—4184</td>
<td>Песчаник алевролитистый</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит с алевролитом</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4280—4288</td>
<td>Аргиллит</td>
<td>30,0</td>
</tr>
<tr>
<td>14</td>
<td>4288—4296</td>
<td>Аргиллит</td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк с аргиллитом</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23,0</td>
</tr>
<tr>
<td>№</td>
<td>Месторасположение</td>
<td>Описание слоя</td>
<td>Угол наклона</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>15</td>
<td>4350—4357</td>
<td>Аргиллит с прослойкой доломита</td>
<td>20,0</td>
</tr>
<tr>
<td>16</td>
<td>4385—4395</td>
<td>Аргиллит</td>
<td>32,0</td>
</tr>
<tr>
<td>17</td>
<td>4406—4408</td>
<td>Аргиллит, песчаник водоносный</td>
<td>20,0</td>
</tr>
<tr>
<td>18</td>
<td>4409—4411</td>
<td>Песчаник, Сидерит</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70—100</td>
</tr>
<tr>
<td>19</td>
<td>4456—4459</td>
<td>Аргиллит</td>
<td>22,0</td>
</tr>
<tr>
<td>20</td>
<td>4459—4464</td>
<td>" " " "</td>
<td>25,0</td>
</tr>
<tr>
<td>21</td>
<td>4459—4464</td>
<td>" " " "</td>
<td>25,0</td>
</tr>
<tr>
<td>22</td>
<td>4506—4513</td>
<td>Аргиллит алевролитовый</td>
<td>17,0</td>
</tr>
<tr>
<td>23</td>
<td>4580—4585</td>
<td>Аргиллит, местами сыпучий</td>
<td>20,0</td>
</tr>
<tr>
<td>24</td>
<td>4585—4593</td>
<td>Аргиллит алевролитовый сыпучий</td>
<td>12,0</td>
</tr>
<tr>
<td>25</td>
<td>4593—4598</td>
<td>" " " "</td>
<td>22,0</td>
</tr>
<tr>
<td>26</td>
<td>4598—4600</td>
<td>Аргиллит</td>
<td>14,0</td>
</tr>
<tr>
<td>27</td>
<td>4600—4602</td>
<td>Сидерит с включением аргиллита</td>
<td>120,0</td>
</tr>
<tr>
<td>28</td>
<td>4602—4604</td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td>29</td>
<td>4614—4615</td>
<td>Песчаник водоносный</td>
<td>2,0</td>
</tr>
<tr>
<td>30</td>
<td>4615—4619</td>
<td>Песчаник</td>
<td>1,0</td>
</tr>
<tr>
<td>31</td>
<td>4623—4631</td>
<td>Песчаник кварцевый водоносный</td>
<td>2,0</td>
</tr>
<tr>
<td>32</td>
<td>4631—4639</td>
<td>" " " "</td>
<td>5,0</td>
</tr>
<tr>
<td>33</td>
<td>4688—4691</td>
<td>Аргиллит слюдистый алевролитовый</td>
<td>18,0</td>
</tr>
<tr>
<td>34</td>
<td>4697—4706</td>
<td>" " " "</td>
<td>12,0</td>
</tr>
<tr>
<td>35</td>
<td>4706—4713</td>
<td>Алевролит с прослойкой песчаника</td>
<td>15,0</td>
</tr>
<tr>
<td>36</td>
<td>4713—4721</td>
<td>Песчаник, Аргиллит алевролитовый</td>
<td>4,0</td>
</tr>
<tr>
<td>№</td>
<td>Область</td>
<td>Описание</td>
<td>Плотность</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>37</td>
<td>4721—4726</td>
<td>Песчаник серый</td>
<td>2,0</td>
</tr>
<tr>
<td>38</td>
<td>4732—4740</td>
<td>Аргиллит</td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит песчанистый</td>
<td>12,0</td>
</tr>
<tr>
<td>39</td>
<td>4754—4760</td>
<td>Аргиллит с зеркалами скольжения</td>
<td>20,0</td>
</tr>
<tr>
<td>40</td>
<td>4760—4767</td>
<td>Аргиллит плотный</td>
<td>22,0</td>
</tr>
<tr>
<td>41</td>
<td>4779—4791</td>
<td>Аргиллит алевролитовый</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>5,0</td>
</tr>
<tr>
<td>42</td>
<td>4792—4799</td>
<td>Аргиллит с прослойкой песчаника</td>
<td>6,0</td>
</tr>
<tr>
<td>43</td>
<td>4799—4805</td>
<td>алевролит песчаник</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>44</td>
<td>4805—4819</td>
<td>Песчаник</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит алевролитовый</td>
<td>5,0</td>
</tr>
<tr>
<td>45</td>
<td>4922—4924</td>
<td>Аргиллит плитчатый, плотный</td>
<td>20,0</td>
</tr>
<tr>
<td>46</td>
<td>4973—4976</td>
<td>--''--</td>
<td>19,0</td>
</tr>
<tr>
<td>47</td>
<td>4985—4990</td>
<td>--''--</td>
<td>21,0</td>
</tr>
<tr>
<td>48</td>
<td>4990—4993</td>
<td>Аргиллит сыпучий</td>
<td>12,0</td>
</tr>
<tr>
<td>49</td>
<td>4993—5000</td>
<td>--''--</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 обр. 125,0</td>
</tr>
<tr>
<td>50</td>
<td>5135—5139</td>
<td>Аргиллит с налетами пирита</td>
<td>7,0</td>
</tr>
<tr>
<td>51</td>
<td>5176—5185</td>
<td>Известняк темно-серый</td>
<td>2,0</td>
</tr>
<tr>
<td>52</td>
<td>5200—5207</td>
<td>Песчаник</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>7,0</td>
</tr>
<tr>
<td>53</td>
<td>5220—5232</td>
<td>Аргиллит алевролитовый</td>
<td>4,0</td>
</tr>
<tr>
<td>54</td>
<td>5270—5280</td>
<td>Аргиллит алевролитовый</td>
<td>8,0</td>
</tr>
<tr>
<td>55</td>
<td>5333—5338</td>
<td>Песчаник аргиллитовый</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит алевролитовый</td>
<td>2,0</td>
</tr>
<tr>
<td>№</td>
<td>5338—5351</td>
<td>Аргиллит</td>
<td>3,0</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>56</td>
<td>5351—5362</td>
<td>Аргиллит алевролитовый и песчан.</td>
<td>3,0</td>
</tr>
<tr>
<td>57</td>
<td>5433—5440</td>
<td>Песчаник плотный водоносный</td>
<td>24,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 обр. 66,0</td>
</tr>
<tr>
<td>58</td>
<td>5430—5470</td>
<td>Аргиллит, местами алевролитовый</td>
<td>25,0</td>
</tr>
<tr>
<td>59</td>
<td>5470—5475</td>
<td>Аргиллит красновато-бурый алевролитовый</td>
<td>24,0</td>
</tr>
<tr>
<td>60</td>
<td>5554—5564</td>
<td>Аргиллит алевролитовый Песчаник серый, водоносный</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24,0</td>
</tr>
<tr>
<td>61</td>
<td>5564—5575</td>
<td>Песчаник светлосерый с включением аргиллита</td>
<td>8,0</td>
</tr>
<tr>
<td>62</td>
<td>5575—5577</td>
<td>Песчаник</td>
<td>10,0</td>
</tr>
<tr>
<td>63</td>
<td>5586—5596</td>
<td>Песчаник серый Аргиллит крепкий Аргиллит красновато-бурый Аргиллит алевролитовый</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33,0</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>Аргиллит красновато-бурый с алевролитом</td>
<td>7,0—20,0</td>
</tr>
</tbody>
</table>
Табл. 8.5. Магнитная восприимчивость пород скв. Золотихинская №396

<table>
<thead>
<tr>
<th>№ керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Литологический состав пород</th>
<th>Значения к, в 10^{-5} ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4812—4826</td>
<td>Аргиллит Песчаник</td>
<td>25,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td>2</td>
<td>4891—4900</td>
<td>Аргиллит Песчаник</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29,0</td>
</tr>
<tr>
<td>3</td>
<td>4900—4907</td>
<td>"""" Песчаник</td>
<td>15,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,0</td>
</tr>
<tr>
<td>4</td>
<td>4907—4914</td>
<td>Аргиллит Песчаник</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td>5</td>
<td>4914—4925</td>
<td>"""" Аргиллит</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,0</td>
</tr>
<tr>
<td>6</td>
<td>4925—4930</td>
<td>Песчаник</td>
<td>4,0</td>
</tr>
<tr>
<td>7</td>
<td>4930—4940</td>
<td>Алевролит Песчаник</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,0</td>
</tr>
<tr>
<td>8</td>
<td>4970—4971</td>
<td>"""" Песчаник</td>
<td>5,0</td>
</tr>
<tr>
<td>9</td>
<td>4971—4980</td>
<td>"""" Аргиллит Песчаник</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td>10</td>
<td>4980—4990</td>
<td>Аргиллит Песчаник</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
</tr>
<tr>
<td>11</td>
<td>"""" Аргиллит</td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,0</td>
</tr>
<tr>
<td>12</td>
<td>5057—5063</td>
<td>"""" Песчаник</td>
<td>7,0</td>
</tr>
<tr>
<td>13</td>
<td>5075—5080</td>
<td>Сидерит</td>
<td>150,0</td>
</tr>
<tr>
<td>14</td>
<td>5080—5089</td>
<td>Песчаник</td>
<td>2,0</td>
</tr>
<tr>
<td>15</td>
<td>5089—5097</td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td>16</td>
<td>5097—5705</td>
<td>Аргиллит темно-серый</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5105—5115</td>
<td>Аргиллит</td>
<td>12,0</td>
</tr>
<tr>
<td>18</td>
<td>5115—5116</td>
<td>"""" Песчаник</td>
<td>10,0</td>
</tr>
<tr>
<td>19</td>
<td>5200—5206</td>
<td>"""" Песчаник</td>
<td>26,0</td>
</tr>
<tr>
<td>20</td>
<td>5206—5216</td>
<td>"""" Песчаник</td>
<td>12,0</td>
</tr>
<tr>
<td>21</td>
<td>5216—5223</td>
<td>"""" Песчаник</td>
<td>22,0</td>
</tr>
<tr>
<td>22</td>
<td>5223—5227</td>
<td>"""" Песчаник</td>
<td>23,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td>23</td>
<td>5227—5230</td>
<td>"""" Песчаник</td>
<td>4,0</td>
</tr>
<tr>
<td>24</td>
<td>5230—5236</td>
<td>Песчаник светло-серый</td>
<td>4,0</td>
</tr>
<tr>
<td>№ керна</td>
<td>Интервал отбора керна, в метрах</td>
<td>Литологический состав пород</td>
<td>Значения к, в 10^{-5} ед. СИ</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1</td>
<td>4190—4198</td>
<td>Аргиллит</td>
<td>30,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>""</td>
</tr>
<tr>
<td>2</td>
<td>4250—4258</td>
<td>Песчаник</td>
<td>4,0</td>
</tr>
<tr>
<td>3</td>
<td>4343—4351</td>
<td>Песчаник</td>
<td>35,0</td>
</tr>
<tr>
<td>4</td>
<td>4410—4421</td>
<td>Алевролит с прослоями песчаника</td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>""</td>
</tr>
<tr>
<td>5</td>
<td>4520—4528</td>
<td>Аргиллит</td>
<td>20,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник с запахом УВ</td>
<td>10,0</td>
</tr>
<tr>
<td>6</td>
<td>4528—4535</td>
<td>-- ""--</td>
<td>10,0 (2 обр.50,0)</td>
</tr>
<tr>
<td>7</td>
<td>4536—4540</td>
<td>-- ""--</td>
<td>7,0</td>
</tr>
<tr>
<td>8</td>
<td>4540—4542</td>
<td>Песчаник</td>
<td>12,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>10,0</td>
</tr>
<tr>
<td>9</td>
<td>4585—4590</td>
<td>Аргиллит</td>
<td>14,0</td>
</tr>
<tr>
<td>10</td>
<td>4590—4598</td>
<td>-- ""--</td>
<td>15,0 (1 обр.83,0)</td>
</tr>
<tr>
<td>11</td>
<td>4603—4620</td>
<td>-- ""--</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Табл. 8.6. Магнитная восприимчивость пород скв. Рудовская № 2
<table>
<thead>
<tr>
<th>№</th>
<th>Описание</th>
<th>Категория</th>
<th>ПерIOD</th>
<th>Влажность</th>
<th>Емкость</th>
<th>Дизель</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4666—4682</td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4682—4699</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4760—4776</td>
<td>Алевролит</td>
<td></td>
<td></td>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>18,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4776—4790</td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>23,0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4870—4879</td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>21,0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4965—4979</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4985—5004</td>
<td>Песчаник пропитанный нефтью Алевролит</td>
<td></td>
<td></td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5004—5007</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5008—5010</td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5032—5033</td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5037—5046</td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5065—5075</td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>28,0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5075—5085</td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5181—5191</td>
<td>Известняк</td>
<td></td>
<td></td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5544—5553</td>
<td>Аргиллит песчанистый с включением пирита</td>
<td></td>
<td></td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5583—5592</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>35,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>15,0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Сидеритиз.аргиллит</td>
<td></td>
<td></td>
<td>65,0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5606—5608</td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5729—5740</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит с прослоейкой песчаника Алевролит</td>
<td></td>
<td></td>
<td>18,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5752—5768</td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>9,0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5770—5784</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-- " " --</td>
<td></td>
<td></td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td></td>
<td></td>
<td>160,0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5805—5814</td>
<td>Песчаник</td>
<td></td>
<td></td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк (?)</td>
<td></td>
<td></td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит алевролитовый</td>
<td></td>
<td></td>
<td>1 обр. 122,0</td>
<td></td>
</tr>
</tbody>
</table>
Табл. 8.7. Магнитная восприимчивость пород скважины Южноафанасьевская № 12

<table>
<thead>
<tr>
<th>№ керна</th>
<th>Интервал отбора керна, м</th>
<th>Литологический состав пород</th>
<th>Значения k, 10^{-5} СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2718—2731</td>
<td>Алевролит</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td>2731—2743</td>
<td>Алевролит</td>
<td>25.0</td>
</tr>
<tr>
<td>3</td>
<td>2866—2878</td>
<td>Аргиллит с детритом и стяжением пирита</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>12.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Песчаник Аргиллит</td>
<td>6.0 24.0</td>
</tr>
<tr>
<td>5</td>
<td>2920—2935</td>
<td>Аргиллит с обугленным детритом Алевролит</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.0</td>
</tr>
<tr>
<td>6</td>
<td>2955—2970</td>
<td>Аргиллит с прослойкой алевролита</td>
<td>24.0</td>
</tr>
<tr>
<td>7</td>
<td>2970—2985</td>
<td>Аргиллит</td>
<td>24.0</td>
</tr>
<tr>
<td>8</td>
<td>3015—3028</td>
<td>Алевролит Песчаник Сидерит</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.0 130.0</td>
</tr>
<tr>
<td>9</td>
<td>3049—3064</td>
<td>Алевролит</td>
<td>20.0</td>
</tr>
<tr>
<td>10</td>
<td>3064—3077</td>
<td>-- "" --</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит Известняк</td>
<td>21.0 5.0</td>
</tr>
<tr>
<td>11</td>
<td>3077—3086</td>
<td>Аргиллит Известняк</td>
<td>18.0 35.0</td>
</tr>
<tr>
<td>12</td>
<td>3086—3091</td>
<td>Песчаник</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>3081—3097</td>
<td>Алевролит Аргиллит Песчаник</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.0 3.0</td>
</tr>
<tr>
<td>14</td>
<td>3103—3106</td>
<td>Песчаник Известняк (сидерит?)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td>15</td>
<td>3106—3113</td>
<td>Песчаник Алевролит</td>
<td>9.0 14.0</td>
</tr>
<tr>
<td>16</td>
<td>3113—3121</td>
<td>-- "" --</td>
<td>9.0</td>
</tr>
<tr>
<td>17</td>
<td>3190—3195</td>
<td>Известняк</td>
<td>15.0</td>
</tr>
<tr>
<td>18</td>
<td>3195—3204</td>
<td>Алевролит</td>
<td>20.0</td>
</tr>
<tr>
<td>19</td>
<td>3204—3211</td>
<td>-- "" --</td>
<td>20.0</td>
</tr>
<tr>
<td>20</td>
<td>3213—3219</td>
<td>-- "" --</td>
<td>15.0 105.0</td>
</tr>
<tr>
<td>21</td>
<td>3219—3232</td>
<td>Песчаник</td>
<td>3,0</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>22</td>
<td>3249—3250</td>
<td></td>
<td>4,0</td>
</tr>
</tbody>
</table>

\[\kappa = (30,0 \div 100,0) \times 10^{-6} \ \text{ед. Си}, \ \text{аргиллиты} - \kappa = (180,0 \div 400,0) \times 10^{-6} \ \text{ед. Си} \] и сидериты с \(\kappa = 1600,0 \times 10^{-6} \ \text{ед. Си} \). Дальше, вплоть до устья скважины залегают слабомагнитные образования с прослоями известняков (\(\kappa = (20,0 \div 100,0) \times 10^{-6} \ \text{ед. Си} \)).

Довольно близкими значениями магнитной восприимчивости обладают однородные образования скв. Беевская 382. Так песчаники (3748—3750, 3770—3773, 4120—4150, 4290—4292, 4332—4334м) имеют магнитную восприимчивость \(\kappa = (20,0 \div 120,0) \times 10^{-6} \ \text{ед. Си} \); алевролиты (3769—3770, 4095—4108, 4117—4120, 4150—4155, 4157—4165, 4228—4232м) обладают более высокими значениями магнитной восприимчивости (\(\kappa = (60,0 \div 180,0) \times 10^{-6} \ \text{ед. Си} \)); еще выше величины магнитной восприимчивости аргиллитов (\(\kappa = (70,0 \div 320,0) \times 10^{-6} \ \text{ед. Си} \)). Известняки имеют магнитную восприимчивость \(\kappa = (160,0 \div 270,0) \times 10^{-6} \ \text{ед. Си} \), а максимальные величины магнитной восприимчивости (900,0 \div 2620,0) \times 10^{-6} \ \text{ед. Си} \) характерны для сидеритов. Как уже было сказано, для этой скважины характерны небольшие разбросы величин магнитной восприимчивости для пород одного литологического состава.

Скв. Владимирская 1 расположена в северной бортовой части Днепровско-Донецкой впадины. Высокими значениями магнитной восприимчивости обладают сидерит (\(\kappa = 3000,0 \times 10^{-6} \ \text{ед. Си} \)), а незначительными (\(\kappa = (20,0 \div 100,0) \times 10^{-6} \ \text{ед. Си} \)) — мергели, известняки, песчаники, алевролиты. Следует отметить невысокие значения величины магнитной восприимчивости аргиллитов (\(\kappa = (60,0 \div 12,0) \times 10^{-6} \ \text{ед. Си} \)), которая не превышает средней величины магнитной восприимчивости алевролитов и меньше магнитной восприимчивости известняков (интервалы 2481—2482, 2483—2484, 2585—2587 м). Следует заметить, что, за
исключением сидеритов, породы остальных типов имеют меньшие значения магнитной восприимчивости (в частности аргиллиты) по сравнению с рассмотренными выше. Отметим при этом меньшие глубины отбора керна.

Наиболее представительные данные получены для параметрической скв. Горобиеевская 360, для которой имеется керновый материал в интервале глубин 2447—5596 м, то есть более чем для 3км.

Начинается разрез глинистыми известняками с $\kappa = (50,0 \div 190,0) \times 10^{-6}$ ед. Си, далее следуют известняки, алевролитовые аргиллиты и аргиллиты с $\kappa = (90,0 \div 150,0) \times 10^{-6}$ ед. Си. В интервале 3860—3863м залегают аргиллиты и алевролитовые песчаники с величиной магнитной восприимчивости $\kappa = (200,0 \div 330,0) \times 10^{-6}$ ед. Си. Далее следует мощная толща (3863—4182 м) аргиллитов, известняков и алевролитовых песчаников с невысокими значениями величин магнитной восприимчивости ($\kappa = (30,0 \div 180,0) \times 10^{-6}$ ед. Си). В интервале глубин 4182—4602м магнитная восприимчивость аргиллитов и алевролитов изменяется в узких пределах $(120,0 \div 300,0) \times 10^{-6}$ ед. Си, а прослои сидеритов (4411—4601м) имеют величины магнитной восприимчивости $\kappa = (700,0 \div 1200,0) \times 10^{-6}$ ед. Си. Глубже сидеритов в интервале 4602—4726 м залегает толща кварцевых водоносных песчаников с $\kappa = (10,0 \div 50,0) \times 10^{-6}$ ед. Си в которой встречены прослои аргиллитов и алевролитов с $\kappa = (120,0 \div 180,0) \times 10^{-6}$ ед. Си. На глубинах 4732—4767 залегают аргиллиты с зеркалами скольжения имеющие магнитную восприимчивость $(120,0 \div 22,0) \times 10^{-6}$ ед. Си. Дальше следует толща слабомагнитных песчаников, алевролитов и аргиллитов ($\kappa = (10,0 \div 60,0) \times 10^{-6}$ ед. Си), сменяющиеся на глубине 4922 м относительно магнитными аргиллитами (плитчатыми и сыпучими) с $\kappa = 120,0 \div 210,0) \times 10^{-6}$ ед. Си. Имеется один образец с $\kappa = 1250,0 \times 10^{-6}$ ед. Си.

Породы в интервале 5135—5362 м, представленные аргиллитами с налетом пирита, известняками, песчаниками, алевролитами и аргиллитами имеют слабую магнитную восприимчивость ($\kappa = (20,0 \div 80,0) \times 10^{-6}$ ед. Си), а
начиная с глубины 5433 м и до устья скважины для песчаников, водоносных песчаников, аргиллитов (в большинстве своем красновато-бурых) характерны повышенная величина магнитной восприимчивости \(\kappa = (80,0 \div 320,0) \times 10^{-6} \) ед. Си. Причем имеется даже водоносный песчаник с \(\kappa = 660,0 \times 10^{-6} \) ед. Си.

Породы скв. Золотихинская 396 в интервале глубин 4812—5500 м представлены терригенными образованиями — песчаниками (\(\kappa = (10,0 \div 80,0) \times 10^{-6} \) ед. Си), аргиллитами (\(\kappa = (60,0 \div 300,0) \times 10^{-6} \) ед. Си), а также имеется прослой сидерита (5075—5080 м) с величиной магнитной восприимчивости \(\kappa = 1500,0 \times 10^{-6} \) ед. Си.

В скв. Рудовская 2 как и в предыдущей скважине в интервале глубин 4190—5184 м распространены образования терригенного комплекса. Имеется только два прослоя известняка (в интервалах 4196—4198, 5181—5191 м) с магнитной восприимчивостью \(\kappa = (30,0—40,0) \times 10^{-6} \) ед. СИ. Остальную часть разреза занимают аргиллиты, алевролиты и песчаники с, в целом, повышенными значениями магнитной восприимчивости. Так в интервалах 4190—4196, 4585—4620, 4772—4879, 5002—5004, 5065—5085, 5600—5608, 5780—5784, 5772—5784, 5810—5814 залегают аргиллиты с магнитной восприимчивостью \(\kappa = (130,0—1600,0) \times 10^{-6} \) ед. Си. В интервалах 4410—4418, 4526—4542, 4682—4699, 4965—5002, 5004—5046, 5883—5590, 5729—5736, 5770—5780, 5805—5810 м расположены песчаники с магнитной восприимчивостью \(\kappa = (30,0 \div 350,0) \times 10^{-6} \) ед. Си. Алевролиты занимают подчиненное положение по отношению к аргиллитам и алевролитам с незначительными величинами магнитной восприимчивости ((110,0—200,0) \times 10^{-6} \) ед. Си). Необходимо отметить ряд аномальных значений магнитной восприимчивости аргиллитов и песчаников в интервалах 4528—4535 (песчаник с запахом углеводорода с \(\kappa = 500,0 \times 10^{-5} \) ед. Си) и 5570—5814 (аргиллиты с магнитной восприимчивостью \(\kappa = (1220,0 \div 1600,0) \times 10^{-6} \) ед. Си).
Породы скважины Южноафанасьевская 12 обладают следующими величинами магнитной восприимчивости. В интервале 2718—2743 распространены алевролиты с \(\kappa = 250,0 \times 10^{-6} \) ед. Си. В интервале 2866—2920 располагаются аргиллит с детритом и стяжением пирита (300,0 \(\times 10^{-6} \) ед. Си), известняк (120,0 \(\times 10^{-6} \) ед. Си), песчаник (60,0 \(\times 10^{-6} \) ед. Си) и аргиллит (240,0 \(\times 10^{-6} \) ед. Си). На глубинах 2920—2985 распространены аргиллит с обугленным детритом (120,0 \(\times 10^{-6} \) ед. Си), аргиллит с прослойкой алевролита (240,0 \(\times 10^{-6} \) ед. Си) и аргиллит (240,0 \(\times 10^{-6} \) ед. Си). В интервале глубин 3015—3064 залегают алевролит (240,0 \(\times 10^{-6} \) ед. Си), песчаник (80,0 \(\times 10^{-6} \) ед. Си, сидерит (1300,0 \(\times 10^{-6} \) ед. Си) и алевролит (200,0 \(\times 10^{-6} \) ед. Си). Дальше по разрезу (3064—3077м) следуют алевролит (25,0 \(\times 10^{-6} \) ед. Си, аргиллит (210,0 \(\times 10^{-6} \) ед. Си) и известняк (50,0 \(\times 10^{-6} \) ед. Си. В интервале 3077—3091 распространены аргиллит (180,0 \(\times 10^{-6} \) ед. Си), известняк (350,0 \(\times 10^{-6} \) ед. Си), песчаник (20,0 \(\times 10^{-6} \) ед. Си). На глубинах 3103 — 3113м расположены песчаник (2,0 \(\times 10^{-5} \) ед. Си), сидерит (1000,0 \(\times 10^{-6} \) ед. Си), песчаник (90,0 \(\times 10^{-6} \) ед. Си) и алевролит (140,0 \(\times 10^{-6} \) ед. Си). Дальше по разрезу в соответствующих интервалах глубин распространены следующие породы: 3113—3121м — алевролит (90,0 \(\times 10^{-6} \) ед. Си), 3190—3195м — известняк (150,0 \(\times 10^{-6} \) ед. Си), 3195—3211 — алевролит (200,0 \(\times 10^{-6} \) ед. Си), 3213—3219 — алевролит (150,0 \(\times 10^{-6} \) ед. Си) и сидерит (1050,0 \(\times 10^{-6} \) ед. Си), 3219—3250 — песчаник (40,0 \(\times 10^{-6} \) ед. Си).

Анализ величин магнитной восприимчивости осадочной толщи Центральной депрессии ДДВ позволил установить ряд закономерностей.

1. Намечается увеличение средних величин магнитной восприимчивости пород с севера на юг. Так аргиллиты скв. Владимирская (северный борт) имеют \(\kappa = 110,0 \times 10^{-6} \) ед. СИ, скв. Артюховская \(\kappa = 140,0 \times 10^{-6} \) ед. Си, скв. Южноафанасьевская \(\kappa = 180,0 \times 10^{-6} \) ед. Си и скв. Рудовская (расположенной ближе к центру впадины) \(\kappa = 280,0 \times 10^{-6} \) ед. Си. Такое распределение магнитной восприимчивости находит в соответствии с намагниченностью консолидированной коры, что свидетельствует об своего
рода “зараженности” магнитными минералами в большей или меньшей степени всей коры в области Лохвицкой региональной магнитной аномалии.

2. Возрастание магнитной восприимчивости однотипных образований с глубиной. Данная закономерность часто завуалирована

<table>
<thead>
<tr>
<th></th>
<th>А</th>
<th>Б</th>
<th>В</th>
<th>Г</th>
<th>Д</th>
<th>Е</th>
<th>Ж</th>
<th>З</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 8.1. Магнитная восприимчивость пород осадочного комплекса Центральной Депрессии Днепровско-Донецкого авлакогена для скважин (χ, 10^{-3} ед. СИ): A - Горобинская, 360; B - Владимирская, 1; V - Ю-Афанасьевская, 12; Г - Артиховская, 13; Д - Золотихинская, 396; Е - Рудовская, 2; Ж - Биеанская, 382; З - Селюховская, 304.
наличием определенной периодичности в распределении величин магнитной восприимчивости, связанных со строением осадочной толщи и, по-видимому, характером окислительно-восстановительного режима.

3. Резкая дифференциация величин магнитной восприимчивости для пород скважин с нефтегазовыми залежами. Так для скв. Артюховская наблюдается величины \(k = 0,0 \times 10^{-6} \) ед. Си для нефтеносного песчаника, а вверх по разрезу имеются мелкозернистые песчаники с \(k = 400,0 \times 10^{-6} \) ед. Си. Так же сильно изменяется и величина магнитной восприимчивости аргиллитов \(k = (80,0-400,0) \times 10^{-6} \) ед. Си. Это же характерно и для других нефтегазоносных скважин, в частности Рудовская 2.

8.2. Теоретические и экспериментальные предпосылки взаимосвязи путей миграции и месторождений углеводородов с намагниченностью земной коры. Наиболее общей предпосылкой взаимосвязи путей миграции и месторождений углеводородов с магнитными неоднородностями литосферы является установленная принадлежность источников положительных региональных магнитных аномалий к структурам преобладающего растяжения коры и прогибания ее консолидированной поверхности без дальнейшей существенной инверсионной стадии развития. При этом реализация железосодержащих минералов в виде магнитных (самородное железо, магнетит, титаномагнетит) и слабомагнитных либо немагнитных (пирит, марказит, гетит, гидрогетит) зависит от термодинамических и окислительно-восстановительных условий и в обобщенном виде может быть записана так:

\[
\rightarrow \text{FeO} \rightarrow \text{FeO} \ (T>572^\circ \text{C})
\]

\[
\text{Fe}_2\text{O}_3 \rightarrow \text{Fe}_3\text{O}_4
\]

\[
\rightarrow \text{Fe} \ (T<572^\circ \text{C}).
\]

Остановимся вкратце на сугубо экспериментальных данных, имеющих основополагающее значения для решаемой задачи. Согласно В. Бухи [352],
из отобранных образцов осадочных пород многих мест Моравии и некоторых образцов гнейсов и гранодиоритов из Центральной Моравии делались две пробы. Одна насыщалась природной нефтью, другая оставалась сухой. До температур 200°С не происходило никаких изменений, однако при 225°С наблюдалось значительное повышение намагниченности осадков в 20 раз (0,44 А/м), тогда как непропитанные нефтью образцы не показали существенных изменений. То же обнаружено для образцов из других участков, хотя повышение восприимчивости не всегда было таким сильным. Присутствие вторичного магнетита было доказано с помощью рентгеновского исследования.

Подобный эксперимент (по инициативе автора) был проведен сотрудников отдела геомагнетизма ИГ НАН Украины кандидатом геолого-минералогических наук С.Н. Кравченко для разнотипных осадочных образований из ряда скважин Центральной депрессии авлакогена. Исследовались образцы сидеритов, аргиллитов, известняков и песчаников из скважин Артюховская 13, Беевская 382, Золотихинская 306, отобранные в Черниговском кернохранилище.

Для эксперимента из керна вырезались два образца кубической формы объемом 8 см³, один из них заливался углеводородом (газолином) и выдерживался 2 месяца, а другой хранился в атмосферных условиях.

Для каждого образца были измерены начальная магнитная восприимчивость (κ₀) и остаточная намагниченность (I₀), а в дальнейшем исследовался характер изменения магнитной восприимчивости и остаточной намагниченности с нагреванием до 300°С для образцов с углеводородом и без него (рис. 8.2).

В результате обобщения экспериментальных данных можно констатировать, что характер изменения магнитной восприимчивости с повышением температуры зависит от исходного состава. Так для песчаников (с буроватым оттенком и запахом углеводорода) при температуре 300°С
магнитная восприимчивость у ненасыщенного углеводородом образца уменьшается до 0,8к₀, а у насыщенного — остается без изменений.

Для известняка также наблюдается уменьшение магнитной восприимчивости до κ = 0,45 к₀ ед. СИ для первого случая и увеличивается до κ = 1,1к₀ — для второго случая.

Для сидерита наблюдается уменьшение магнитной восприимчивости ненасыщенного образца до (0,5—0,6) к₀ и увеличение до 1,25—1,40 κ₀ — для насыщенного углеводородом образца.

Другая картина наблюдается для аргиллита. Для всех образцов магнитная восприимчивость ненасыщенных образцов немного уменьшается до температуры 200 °C (до 0,75±0,9)к₀, а затем увеличивается до κ = (1,4 ÷ 2,0)к₀ при 300°C. Для образцов с углеводородом характерно увеличение магнитной восприимчивости до κ = (2,6 ÷ 6,2) к₀ для температуры 300°C.

Следовательно, эксперимент подтверждает новообразование магнитных минералов (неустановленного в данном случае минералогического типа), которым можно объяснить увеличение магнитной восприимчивости пород, насыщенных углеводородами, т.е. за счет процесса восстановления.

Такой процесс восстановления может протекать и при более низких температурах, как это происходит в черных грунтах с высоким содержанием гумуса, где трехвалентное железо восстанавливается до двухвалентного. Это восстановление Fe производится органическим веществом, прямо или косвенно, бактериями и другими организмами, извлекающими кислород, связанный в соединениях, в частности в Fe₂O₃ [184].

Детально процесс взаимодействия восстановительных флюидов с различными соединениями железа и горными породами, рассмотрен в разделе 2.1 при описании магнитных минералов и определении термодинамических и окислительно-восстановительных условий их существования. В данном случае важным является вывод об изменении
Рис. 8.2. Зависимость магнитной восприимчивости (κ) от температуры (T) для насыщенных (сплошная линия) и ненасыщенных (пунктир) углеводородом осадочных пород Центральной депрессии ДДА (по данным С.Н.Кравченко).

Рис.8.2
намагниченности пород на путях миграции углеводородов в случае неорганического их генезиса и пронизывания ими земной коры на всю ее мощность.

В связи с полным отсутствием данных бурения о намагниченности глубинных частей нефтегазоносных областей и провинций воспользуемся результатами трехмерного моделирования [225]. В пределах Украины выделяются крупные участки консолидированной земной коры повышенной намагниченности и 17 источников региональных магнитных аномалий (рис. 8.3). Часть из них приурочены к нефтегазоносным областям и провинциям. Рассмотрим в связи с этим пространственные соотношения нефтяных месторождений с магнитными неоднородностями в пределах Днепровско-Донецкой и Волыно-Подольской нефтегазоносных областей и Причерноморской и Карпатской нефтегазоносных провинций. Нефтяные месторождения Монастирищенско-Софиевского и Анастасиевско-Рыбальского нефтегазоносных районов Днепровско-Донецкой впадины размещены над слабомагнитными блоками земной коры. Нефтяные месторождения принадлежат, в основном, к зонам сочленения магнитных и слабомагнитных блоков, а в 90% газовые и газоконденсатные месторождения Сребненского, Глинско-Солоховского и Краснорецкого районов размещаются над слабомагнитными блоками земной коры. Нефтегазовые месторождения принадлежат, в основном, к зонам сочленения магнитных и слабомагнитных блоков, а в 90% газовые и газоконденсатные месторождения Сребненского, Глинско-Солоховского и Краснорецкого районов размещаются над блоками с повышенной до 1,0—1,5 A/m (рис. 8.4). Нефтегазовые и газовые месторождения Руденковско-Пролетарского района на юге Днепровско-Донецкой впадины попадают в зону сочленения и непосредственно в пределы Приднепровского блока Украинского щита.

Газовые месторождения Карпатской нефтегазоносной провинции размещены над магнитными блоками, а нефтяные — за их пределами. Такая же картина характерна и для Причерноморской нефтегазоносной провинции, где газовые месторождения Индоло-Кубанского и Каркинитского прогибов принадлежат к блокам с повышенной до 0,5 —1,0 A/m. Интересно отметить при этом, что такая же закономерность наблюдается и для аномалий
Рис. 8.3. Сопоставление намагниченности глубинных частей земной коры Украины в связи с ее намагниченностью: 1 - контуры источников региональных магнитных аномалий; 2 - месторождения (а-нефтяные, б-нефтяные, в-газовые); 3 - контуры: А - Днепровско-Донецкой нефтегазоносной области; Б - Причерноморской нефтегазоносной провинции; В - Вольско-Подольской нефтегазоносной области; Г - Карпата плоской нефтегазоносной провинции; Д - контуры Донецкого каменноугольного бассейна (а) и отдельных его частей (б): 1 - Центральный Донбасс, 2 - Западный, 3 - Северный; 5 - контур Львовско-Волынского бассейна; 6 - государственная граница Украины. Арабские цифры в контурах источников - названия аномалий: 1 - Львовская, 2 - Новоград-Волынская, 3 - Винницкая, 4 - Черниговская, 5 - Киевская, 6 - Гадская, 7 - Ахтубинская, 8 - Одесская, 9 - Путевская, 10 - Лохвицкая, 11 - Западно-Ингулецкая, 12 - Каховская, 13 - Купянская (Курская), 14 - Синельниковская, 15 - Западно-Приазовская, 16 - Керченская (Индоп-Кубанская), 17 - Восточно-Приазовская.
МАГСАТ. Для этого на рис. 8.5 приведены аномалии МАГСАТ и наиболее крупные месторождения Западной Сибири, откуда видно, что нефтяные месторождения ложатся в минимум, а газовые тяготеют к градиенту и максимуму аномалии.

Для объяснения установленной закономерности можно предложить три механизма такой взаимосвязи:

1) **генетический** — увеличение намагниченности на путях миграции углеводородов при температурах более 200-250°C. Такой механизм, как уже указывалось, обоснован экспериментально. Его с успехом можно применить и в случае органического происхождения углеводородов. Так, главная (ГЗГ) и нижняя (катагенетическая) зоны газообразования принадлежат к градациям МК₃-АК₁ с температурами 200°C и более, где должно происходить увеличение намагниченности. Зона нефтеобразования лежит в температурном интервале 50-150°C, где, согласно экспериментальным данным, процессы восстановления замедленны;

2) **структурно-генетический** — обусловлен тем, что блоки повышенной намагниченности фиксируют структуры растяжения и прогибания коры без существенной инверсионной стадии развития. Кристаллическая их часть сложена породами основного (частично ультраосновного) состава, что свидетельствует о повышенной трещиноватости и возможности образования в них пределах и краевых частях разломов, которые и являются путями проникновения углеводородов в осадочную толщу. В таком случае изначально повышенная намагниченность может увеличиваться за счет первого механизма;
Рис. 8.4. Намагниченность верхней (а) и нижней (б) частей консолидированной коры Днепровско-Донецкого авлакогена.

а: 1 - контуры источников верхней части консолидированной коры; 2 - контур авлакогена; 3 - месторождения нефтяные (а), нефтегазовые (б), газовые (в);

б: 1 - контуры источников нижней части консолидированной земной коры; 2 - месторождения нефтяные (а), нефтегазовые (б), газовые (в); 3 - контур Днепровско-Донецкой нефтегазоносной области; 4 - контуры Донецкого угольного бассейна и его отдельных частей: I - Центральный Донбасс, II - Западный, III - Северный; 5 - государственная граница Украины.
Рис. 8.5. Сопоставление аномалий МАГСАТ (изолинии в нТл) с крупнейшими нефтяными (зализные треугольники) и газовыми (треугольники) месторождениями Западно-Сибирской нефтегазоносной провинции.
3) **структурный** — благоприятно проявляется в структурах растяжения и прогибаниях коры для накопления и захоронения органического вещества, являющегося в дальнейшем исходным для образования нефти и газа. Причем, согласно результатам раздела 3.3, магнитные блоки на всех этапах развития осадочных бассейнов являются более погруженными по сравнению со слабомагнитными, что обуславливает разный исходный состав нефтематеринских толщ, более глубоководный, чем в первом случае. Дальше развитие нефтегазоносного бассейна происходит классическим с точки зрения органического происхождения нефти и газа путем [283]. Различие нефтяных, нефтегазовых, газовых месторождений и намагниченности коры в данном случае определяется исходным составом органического вещества, с одной стороны, и большим погружением магнитных блоков с попаданием нефтематеринских толщ над ними в зону газообразования, а над слабомагнитными блоками только в зону нефтеобразования.

Частичным подтверждением такого механизма может быть вполне определенное соотношение с глубинными магнитными неоднородностями не только нефтегазоносных месторождений, а и Донецкого и Львовско-Волынского каменноугольных бассейнов. Только Центральный Донбасс (область с инверсионной стадией развития?) размещён над слабомагнитным блоком, а Северный и Западный Донбасс, а также Львовско-Волынский бассейны размещены над магнитными блоками.

В качестве детализации рассмотрим магнитную модель земной коры по профилю Александрновка-Артиюховка и сопоставим ее с нефтегазоносностью (рис. 8.5, 8.6, 8.6а). Как видно из рис. 8.6а, при общей повышенной намагниченности консолидированной коры центрального грабена к его краевым частям приурочиваются две столбообразные области с намагниченностью около 2,0 А/м, имеющие слабый наклон к центру авлакогена. Эти области рассматриваются автором как новообразованные
(преобразованные) на девонском этапе развития авлакогена и имеющими отношение к одному из механизмов взаимосвязи с региональной нефтегазоносностью территории. Более вероятна их магматическая природа, что подтверждается исследованием характера магматической деятельности девонского этапа развития и катагенетического преобразования осадочных пород [339]. Однако в дальнейшем эти же участки земной коры, а также глубинные разломы, ограничивающие сам авлакоген, являлись, по-видимому, областями повышенной геодинамической активности и путями миграции углеводородов. На современном этапе развития они хорошо проявляются в вариациях аномального магнитного поля $\delta(\Delta T) a$ (см.рис. 8.6а).

Основной причиной, которая приводит к возникновению геодинамических аномалий в зонах нефтегазоносности, является пространственно – временная изменчивость поля тектонических напряжений и его взаимодействие с геологическими неоднородностями различного типа: структурными элементами, разломами, зонами трещиноватости, зонами углеводородов и т. д. Такого рода неоднородности, а в особенности разломы и залежи нефти и газа, как показано [187], очень чувствительны к небольшим изменениям региональных полей напряжений. Под воздействием изменяющихся во времени тектонических напряжений, таких как приливные, тектонические волны деформации различных периодов в геологической среде возникают различные деформационные процессы, приводящие к разупрочнению пород, перемещению многофазных флюидных систем, изменению режима фильтрационных процессов, которые являются причиной изменения во времени геофизических полей, геохимических параметров, современных движений земной поверхности, регистрируемых с помощью повторных и режимных наблюдений [187].

Физическим механизмом генерации геомагнитных эффектов в активных зонах наиболее вероятнее всего служат электрокинетические явления, которые возникают в двухфазной среде (твердый скелет — флюид)
при взаимном перемещении фаз. В геологических условиях движение жидкости может приводить к появлению электрического тока, который, в свою очередь, создает магнитное поле. Теоретические расчеты, лабораторные эксперименты показывают, что эффект в магнитном поле может достигать единиц и даже первых десятков нТл [186,187]. Известны и другие

Рис.8.6
Рис. 8.6а Магнитная модель и вариации аномального магнитного поля \(\delta(\Delta T) \) вдоль профиля Александровка-Армовка: 1 - красные глубинные разломы; 2 - поверхность кристаллического фундамента по данным корреляционного метода преломленных волн (а) и сейсмостратиграфических исследований (б)[211]; 3 - поверхность Кс; 4 - поверхность Мохоровичича; 5 - предполагаемые разломы в консолидированной коре; 6 - контуры перспективных нефтегазовых структур; 7 - главные (а) и второстепенные (б).
физические механизмы: например, пьезомагнитный, физико-химические превращения, которые приводят к ощутимым вариациям геомагнитного поля.

Динамика магнитного поля вдоль профиля Александровка – Артуховка представлена на рис. 8.6а. Наблюдения выполнены в 43 пунктах в 1992-1994 гг. с интервалом в год. Методика исследований детально описана в [186, 230] и заключается в проведении высокоточных измерений модуля T и определении разностного значения ΔT относительно базового пункта, в конкретном случае с. Пацалы (см. [187]). Путем повторных измерений определены изменения поля во времени — параметр $\Delta(\Delta T)_a$. При этом применины методические приемы по учету влияния неоднородной структуры переменного магнитного поля и других возможных источников случайных и систематических ошибок.

Результаты изучения вариаций поля $(\Delta T)_a$ (рис. 8.6а) свидетельствуют о довольно сложном его характере, а соответственно, о природе. Прежде всего, очень четко выделяется длинноволновая, трендовая составляющая с амплитудой до 3,0 нТл за период 1992-93 гг. и около 5,0 нТл на суммарной кривой $\Delta(\Delta T)_a$ за 1992-1994 гг.

Природа длинноволновой компоненты может быть объяснена влиянием двух факторов: градиентом вековой вариации и современными процессами в Днепровско-Донецком авлакогене, которые связаны с большими глубинами и имеют региональный характер. Вероятно, в региональной компоненте поля $\Delta(\Delta T)_a$ проявляется глубинный объект, являющийся также источником региональной магнитной аномалии $(\Delta T)_a$.

Локальные изменения $(\Delta T)_a$, как правило, не превышают 2—3 нТл. Наиболее значительные и уверенно выделяемые по 4—5 точкам аномалии наблюдаются в северной части профиля.

Сопоставление аномальных зон $\Delta(\Delta T)_a$ с глубинным строением Днепровско-Донецкого авлакогена позволяет констатировать их
приуроченность к отдельным структурно-тектоническим элементам. Прежде всего, отметим отражение в аномалиях $\Delta(\Delta T)_a$ краевых глубинных разломов, ограничивающих авлакоген. Краевые разломы падают к центру авлакогена и их надразломные зоны четко выделяются отрицательными значениями в районе ПК 3—4 и 30—32. Отрицательной аномалией отмечается также область коры в районе ПК 19—25. Пространственно она соответствует области коры с повышенной намагниченностью на всю ее мощность. В верхней части это тело имеет оваловодобную форму и оконтуривает область Центральной депрессии [20]. Одновременно северный контакт этого тела (ПК 25) является соответствующим ограничением центрального грабена. Это находит отражение в смене отрицательных величин $\Delta(\Delta T)_a$ положительными в районе ПК 25—31 с интенсивностью 2,0—2,5 нТл/год. Последняя область соответствует северной прибортовой зоне ДДА, к которой приурочены большинство открытых к настоящему времени месторождений (см. рис. 8.6) [230].

Обращают на себя внимание локальные знакопеременные аномалии $\Delta(\Delta T)_a$ в центральной части профиля (ПК 13—2л, ПК Б3—Б2), по-видимому, связанные с продольными глубинными разломами. Следовательно, учитывая, что такими же аномалиями характеризуются и краевые разломы Днепровско-Донецкого авлакогена можно сделать более общий вывод об их приуроченности к глубинным разломам. Причем, судя по имеющимся данным надразломная зона характеризуется отрицательными величинами, а подразломная — положительными величинами $\Delta(\Delta T)_a$, что для закрытых территорий представляет несомненный интерес.

Для Карпатской нефтегазоносной провинции так же наблюдается приуроченность газовых месторождений к надразломной зоне, а нефтяных — к подразломной, так как глубинный разлом, разделяющий преимущественно нефтеносную и газоносную области, падает на северо-восток, под платформу (рис. 8.7) [221].
8.3. Региональный прогноз нефтегазоносности земной коры территории Украины. В пределах Украины к настоящему времени выделены Днепровско-Донецкая и Волыно-Подольская нефтегазоносные области, Причерноморская и Карпатская нефтегазоносные провинции. Предложенные механизмы, по-видимому, только теоретически могут существовать в чистом виде, а на практике приходится иметь дело с их сочетанием. Однако важным является связь, в любом случае, между магнитными неоднородностями, путями миграции и накопления углеводородов. Это вполне уверенно позволяет выполнить региональный прогноз нефтегазоносности земной коры Украины. Потенциально газоносными могут быть осадочные бассейны и зоны разуплотнения и трещиноватости фундамента над магнитными блоками консолидированной коры. В конкретном случае это вся Волыно-Подольская нефтегазоносная область. В пределах Днепровско-Донецкой области это Центральная депрессия, полоса повышенной намагниченности, приуроченная к северному борту Днепровско-Донецкого авлакогена, включая Северный Донбасс, и на юго-востоке — Западный Донбасс. Для Причерноморской нефтегазоносной провинции газоносными являются части Причерноморского прогиба в пределах склонов Подольского, Приднепровского и Приазовского блоков, Индоло-Кубанский и Каркинитский прогиб.

Потенциально нефтеносными по предложенному критерию являются Карпатская нефтегазоносная провинция, в пределах Днепровско-Донецкой области — пересечение Днепровско-Донецкой впадины с Кировоградско-Холмской зоной, северный борт впадины от меридиана г. Чернигова до меридиана г. Харькова. Для Причерноморской провинции это образования Причерноморского прогиба над слабомагнитной частью коры между склонами Подольского и Приднепровского блоков Украинского щита, слабомагнитные и немагнитные части коры Азовского и Черного морей и часть территории Крымского полуострова (см.рис. 8.3, 8.4). Сразу отметим, что из перспективных следует исключить области со слабомагнитной либо
Рис. 8.7. Схема распределения глубинных магнитных неоднородностей, нефтяных и газовых месторождений Карпатской нефтегазоносной провинции: 1 - контуры магнитных источников, 2 - государственная граница Украины, 3 - краевой шов Восточно-Европейской платформы с указанием направления падения, 4 - месторождения нефти (а) и газа (б).
немагнитной корой, но испытавших инверсионную стадию развития в понимании В.В.Белоусова [11, 299]. Отсюда следует, что перспективность Карпатской провинции может быть высоко оцененной в случае надвиговой природы складчатых Карпат.

В связи с тем, что большая часть работ автора связана с Днепровско-Донецкой впадиной рассмотрим вкратце какие же еще глубинные геофизические критерии могут “локализовать”, либо же усилить региональную прогностичность геомагнитного метода.

С этой целью нами (М.И.Орлюк, И.К.Пашкевич, С.С.Красовский, В.А.Колосовская [236] обобщены региональные факторы, которые могут рассматриваться как прогностические.

Согласно теоретическим и, частично, практическим исследованиям наиболее значимыми глубинными геофизическими критериями нефтегазоносности земной коры являются следующие.

1. Геофизические неоднородности земной коры: магнитная, плотностная, скоростная, тепловая и др.

2. Подъем раздела Мохоровичича и зоны максимальных его градиентов, отображающие “возбужденное” состояние мантии.

3. Трансрегиональные тектонические швы, глубинные разломы и системы разломов, связанные с формированием впадины, авлакогена и центрального грабена и разломных зон, пересекающих или ограничивающих геофизические неоднородности.

4. Литосферные линеаменты “Г” “Д” “Е” северо-восточного простирания, являющиеся границами блоков литосферы разной мощности и трансрегиональными проницаемыми структурами, связанными с подошвой литосферы.
Перспективность Днепровско-Донецкой впадины, включая ее бортовые части, оценивается по наличию одного или нескольких приведенных факторов.

С этой точки зрения наиболее перспективными являются северный борт и центральный грабен на территории между швом Херсон — Смоленск и восточной границей литосферного линеамента “Д”. Центральный грабен в этой части характеризуется подъемом раздела М, а для северного борта наблюдается соответствие максимального градиента поверхности Мохоровичича, контактов глубинных магнитной и плотностной неоднородностей. Для этого борта на основании анализа комплекса геофизических данных выделена мощная зона с пониженными скоростями сейсмических волн, разуплотнением верхней части консолидированной коры, интерпретируемая нами как гигантская область региональной трещиноватости, что определяет его большую, по сравнению с южным бортом, перспективность.

Для южного борта такой согласованности не наблюдается. Зона максимальных градиентов поверхности М западнее Криворожско-Крупецкого разлома располагается ближе к центру авлакогена, а контакт магнитной и немагнитной толщ находится между границами центрального грабена и авлакогена.

Перспективными следует считать площади Верховцевско-Льговского разлома для северного борта, где наблюдается подъем поверхности М и пересечение с литосферным линеаментом “Г” и для южного борта, где Верховцевско-Льговский разлом находится в зоне максимального градиента поверхности М, сочетающаяся с глубинной магнитной неоднородностью.

Далее на восток существенно перспективными могут быть области пересечения трансрегиональным тектоническим швом Донецк-Брянск литосферных линеаментов “Д” и “Е”, для которых характерно приподнятое положение поверхности М (до 40 км) и наличие глубинных геофизических неоднородностей.
8.4. Прогнозирование локальных нефтегазоносных структур.
Попытки локального прогноза с использованием геомагнитных данных предпринимались многими исследователями для районов западной Сибири, Днепровско-Донецкой впадины, Припятской и Прикаспийской впадин и т.д. Так, В. Д. Харитоновым с соавторами [322], в пределах ДДВ показано наличие над известными месторождениями нефти и газа (Богатойским, Волоховским, Гнединцевским, Западно-Крестышевским, Коробочкинским, Монастырищенским и др.) относительных локальных понижений магнитного поля амплитудой до 10 нТл, при отсутствии таковых над структурами без признаков нефтегазоносности (Марьяновская, Молчановская, Новоперещепинская и др.) [2,187]. Анализ этих работ свидетельствует, однако, о том, что в данном случае речь идет не о прогнозе, как таковом, а о возможности обнаружить в суммарных магнитных аномалиях какой-то их части, связанной с нефтегазоносной залежью.

Для ряда структур, в частности, для Яблуновского газо-конденсатного месторождения [2] просчитан ряд моделей, на примере которых предпринята попытка изучения суммарного поля от фундамента и осадочной толщи с учетом влияния нефтегазоносности, так и аномальных эффектов, обусловленных отдельными элементами разреза. Однако отсутствие экспериментальных данных о намагниченности осадочных образований Яблуновской структуры привело к неоднозначности истолкования магнитного минимума. В частности возможна его обусловленность влиянием пород кристаллического фундамента (с $\kappa = 2000 \, 4\pi \times 10^{-6}$ ед. Си), так как именно под Яблуновской структурой по сейсмическим данным обнаружено его ступенчатое погружение. Кроме этого наблюдается корреляция локальных минимумов с соляными куполами, что также затрудняет однозначное отождествление их с месторождениями углеводородов.

Из приведенного становится ясно, что для повышения эффективности локального прогноза необходимо создание некоторого эталона
месторождения углеводородов. В дальнейшем использование его в качестве первоначального приближения позволяет уточнить геометрические параметры и величины намагниченности локальных структур.

8.4.1. Магнитные модели типовых локальных нефтегазоносных структур. Оценка магнитного эффекта локальных нефтегазовых структур и их отдельных элементов, а также построение типовых структурно-генетических магнитных моделей являются необходимым звеном метода поиска путей миграции и мест накопления углеводородов с помощью объемного магнитного моделирования.

Для ее построения использованы теоретические и экспериментальные данные о магнитных параметрах пород нефтегазовой структуры и вмещающей среды [65, 184, 352, 358 и др.]. Согласно экспериментальным данным намагниченность над месторождением зависит от литологии пород и окислительно-восстановительных условий среды, подразделяющейся на две зоны: восстановительную и окислительную (рис. 8.8). В нижней, сильно восстановительной зоне, железистые соединения частично переходят в растворимую двуэлементную форму и, реагируя с сероводородом, выпадают в виде слабомагнитных пирита и марказита, что по данным В.М. Березкина с соавторами [14, 184] может приводить к уменьшению величин намагниченности на 0,02—0,07 А/м. В верхней зоне окисления железо находится в трехвалентном состоянии, что ограничивает его мигрирующую способность, как и первичного магнетита. Соответственно, здесь возможно появление вторичного магнетита под воздействием мигрирующих из залежи углеводородов и сульфатредуцирующих бактерий, что может приводить к увеличению намагниченности на 0,04—0,08 А/м [184, 358]. В краевых частях структуры, на ее флангах, выявлены субвертикальные неоднородные зоны разнонапряженного состояния пород, что обуславливает перенос углеводородов и вод с разными элементами (включая радиоактивные),
Рис. 8.8. Схема распределения физических свойств пород в пределах нефтегазоносных структур платформенного типа по В.М. Березкину [182]: I-залежи нефти и газа; II-запечатывающий слой; III-ореол вторжения; IV-зона разуплотнения пород в своде структуры; V-субвьертикальные зоны разнонапряженных состояний пород; VI-опорные границы между породами с различными физическими свойствами; VII- фундамент; знаками “плюс” и “минус” показано повышение или понижение физических параметров пород залежи по отношению к законтурной части.
теплового потока и т.д. В этих областях, соответственно, намагниченность может как возрастать, так и уменьшаться по отношению к вмещающей среде. Обобщенная модель распределения магнитных минералов в разрезе нефтегазоносной структуры приведена в табл. 8.8.

Таблица 8.8. Распространенность и магнитные свойства главных железистых минералов в разрезе нефтегазовых месторождений [184]

<table>
<thead>
<tr>
<th>Минерал</th>
<th>Коллектор</th>
<th>Зона восстановления</th>
<th>Зона окисления</th>
<th>Вмещающая среда</th>
<th>(min-max), 10⁻⁶, ед.СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Магнетит</td>
<td>+ (-)</td>
<td>-</td>
<td>+ +</td>
<td>+ +(+)</td>
<td>10⁷- 10⁵</td>
</tr>
<tr>
<td>Маггемит</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Гематит</td>
<td>-</td>
<td>+</td>
<td>+ +</td>
<td>+</td>
<td>10-3000</td>
</tr>
<tr>
<td>Ильменит</td>
<td>-</td>
<td>+</td>
<td>+ +</td>
<td>+</td>
<td>100-500</td>
</tr>
<tr>
<td>Гетит, лимонит</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
<td>110-140 (?)</td>
</tr>
<tr>
<td>Титано-магнетит</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>- -</td>
</tr>
<tr>
<td>Сидерит</td>
<td>-</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>67-450</td>
</tr>
<tr>
<td>Хлорит</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>53-106</td>
</tr>
<tr>
<td>Пирит, марказит</td>
<td>+</td>
<td>+ +</td>
<td>+</td>
<td>-</td>
<td>7 - 160</td>
</tr>
<tr>
<td>Халькопирит</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>100(?)-200</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е : “+ +” – часто; “+” – обычно; “?” – сведения отсутствуют; “-“ не встречаются.

Эти данные, а также гравитационные типовые модели нефтегазоносных структур, построенных З.М. Слепаком (рис. 8.9) [281], приняты автором для
построения типовых магнитных моделей нефтегазоносных структур. Геометрические параметры такой модели и величины намагниченности различных геохимических зон нефтегазоносной структуры приведены на рис. 8.10.
Как видно из рисунка, данная модель состоит из зон залежи (З.З.), восстановления (З.В.), окисления (З.О.) и краевых (З.К.). Зона залежи аппроксимирована слоем мощностью от 0,2 до 0,6 км, восстановения — 1,6, окисления — 1,0, вертикальные краевые зоны имеют мощность 0,4 км. Вмещающая среда аппроксимирована одним слоем с мощностью 3,2 км. Размеры нефтегазоносной структуры по латерали 5×9 км, а тела, аппроксимирующие вмещающую среду, распространяются на 25—30 км от края структуры. Согласно такой геометрии просчитаны вероятные в реальных условиях модели с разными соотношениями намагниченностей как самой нефтегазовой структуры, так и вмещающей среды (магнитные параметры в табл.8.9).

Модель 1-1. Используя приведенное, З.З. имеет намагниченность 0,02, З.В. — 0,3, З.О. — 0,05, З.К. — 0,03 А/м, а вмещающая среда (В.С.) — 0,07 А/м. Поле рассчитывалось от трехмерной модели для двух профилей, пересекающих вдоль и поперек нефтегазовую структуру. Как видно из рис. 8.10, для поперечного профиля (профиль 1 на рис. 8.10) кривая магнитного поля на высоте 0,15 км имеет семь экстремумов. Над вмещающей средой значение поля 5,0—6,0, над его краем в районе структуры составляет 2,5, З.К. — минимум до —10,0, по центру модели минимум достигает — 8 нТл. При удалении от модели на 0,5 км поле существенно упрощается в связи с частичным затуханием аномалий от З.К. Как видно из рис. 8.11, вырисовывается один минимум с небольшой ундуляцией (2,0—3,0 нТл) интенсивности. На высоте 1,0 км вырисовывается однородный минимум — (3,0÷4,0) нТл, при фоновых значениях 6,0 нТл. При удалении на 3,0 км данная модель отличается относительным минимумом с положительными значениями поля 4,0÷5,0 нТл.
Рис. 8.9. Типовые геологические модели "сквозных" локальных структур ([272]. Типы поднятий: A - конседиментационный, B - приразломный, В - надблоковый, Г - инверсионный, Д, Е - аккумулятивный. Породы: 1 - карбонатные, 2 - терригенные, 3 - рифогенные, мелкозернистые, 7 - подверженные доломитизации, выщелачиванию, карстообразованию, 8 - подверженные кальцитизации, сульфатизации, окремению.

Рис. 8.9.
Рис. 8.10. Геометрические параметры теоретической магнитной модели нефтеносной структуры.
Модель 2-1. Отличается от предыдущей увеличением намагниченности З.К. до 0,1 А/м. В этом случае кривая упрощается, над З.К. наблюдаются максимумы интенсивностью 10, а над центром модели — минимум —10 нТл. На высоте 0,5 км максимумы над З.К. составляют всего 2,0÷2,5 нТл по отношению до фоновых значений от вмещающей среды, а минимум над центром —(5,0 ÷ 6,0) нТл. На высоте 1,0 км кривая отличается от предыдущей модели 1—1 только шириной минимума интенсивностью 4,0 нТл. На высоте 3,0 км наблюдается еле заметный минимум интенсивностью 2,0 нТл при фоновых значениях 5,5 ÷ 6,0 нТл.

Модель 3-1. По сравнению с моделью 2-1 намагниченность З.О. достигает 0,1 А/м. Как видно, на высоте 0,15 км наблюдается кривая с пятью экстремумами и максимальной интенсивностью 10 нТл над З.К.

Таблица 8.9. Величины намагниченности зон нефтегазоносной структуры, А/м

<table>
<thead>
<tr>
<th>Номер модели</th>
<th>ЗЗ</th>
<th>ЗВ</th>
<th>ЗО</th>
<th>ЗК</th>
<th>НС1</th>
<th>НС2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—1</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,03</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>2—1</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,1</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>3—1</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,1</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>4—1</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,03</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>1—2</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,03</td>
<td>0,07</td>
<td>0,005</td>
</tr>
<tr>
<td>2—2</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,1</td>
<td>0,07</td>
<td>0,005</td>
</tr>
<tr>
<td>3—2</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,1</td>
<td>0,07</td>
<td>0,005</td>
</tr>
<tr>
<td>4—2</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,03</td>
<td>0,07</td>
<td>0,005</td>
</tr>
<tr>
<td>1—3</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,03</td>
<td>0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>2—3</td>
<td>0,02</td>
<td>0,03</td>
<td>0,05</td>
<td>0,1</td>
<td>0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>3—3</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,1</td>
<td>0,005</td>
<td>0,005</td>
</tr>
<tr>
<td>3—4</td>
<td>0,02</td>
<td>0,03</td>
<td>0,1</td>
<td>0,03</td>
<td>0,005</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Примечание: ЗЗ — зона залежи; ЗВ — зона восстановления; ЗО — зона окисления; ЗК — зона краевая; НС — нефтегазовмещающая среда.
На удалении 0,5 км максимумы над З.К. составляют 2,0 нТл по отношению к фоновым над вмещающей средой, а минимум над центром — (5,0 ÷ 5,5) нТл, на высоте 3,0 км поле практически соответствует его фоновым значениям.

Модель 4-1 получается из модели 1—1 при намагниченности З.О. в 0,1 А/м. В этом случае четко вырисовывается лишь З.К., а над центром модели наблюдаются почти фоновые значения за счет компенсации эффектов от З.З., З.В. и З.О. Этими четырьмя моделями и их модификациями, в принципе, исчерпываются варианты моделей от непосредственно самой нефтегазоносной локальной структуры. Дальнейшее усложнение характера поля может быть обусловлено разными величинами намагниченности вмещающей среды и наличием подводящего канала.

Модель 1-2 — 4-2. Эффекты от этих моделей приведены на рис. 8.11б для случая намагниченности вмещающей среды слева от модели 0,07, а справа — 0,005 А/м для продольного профиля (профиль 2). Как видно, главные различия наблюдаются в правой части профиля, где усиливается аномалия З.К. вследствие дополнительной аномалии контактного типа за счет разности в намагниченности нефтегазоносной структуры и вмещающей среды.

Модель 1-3 — 1-4. Эта серия моделей отражает ситуацию при намагниченности вмещающей среды 0,005 А/м. В этом случае модель 1—3 вырисовывается четкой положительной аномалией с максимальной интенсивностью 15 нТл и еле заметными минимумами над З.К. Модель 2—3 отмечается семью экстремумами с максимумами 24 нТл над З.К., и минимумами (−3,5 нТл) над вмещающей средой вблизи структуры. Модель 3—3 дает “платоподобную” аномалию с тремя максимумами интенсивностью 24,0÷26,0 и краевыми минимумами — (−6,0 нТл). Модель 4-3 отмечается монолитной положительной аномалией интенсивностью 25,0 и минимумами минус 5,0 нТл над вмещающей средой (см.рис. 8.11б).
Рис. 8.11 Полос (ΔТ) теоретических магнитных моделей нефтегазоносной структуры. Геометрические параметры на рис. 6.3, величины намагниченности в табл. 5.

Рис. 8.11
Особого внимания заслуживает модель нефтегазоносной структуры с подводящим каналом. Согласно температурному режиму и окислительно-восстановительным условиям последний должен сопровождаться увеличением намагниченности. На рис. 8.11г показан ряд моделей нефтегазоносной структуры с подводящим каналом мощностью 1,0 км и намагниченностью 0,5 А/м для разных углов его падения. Канал проистекает вдоль структуры от нижней части залежи до поверхности Мохоровича на глубине 30 км. В этом случае для серий моделей 1-1 – 4-1 четко вырисовывается аномалия от канала, на фоне которой довольно хорошо заметны аномалии от самой нефтегазоносной структуры. Только в целях экономии не приведены модели с подводящим каналом для серий 1-2 – 4-2 и 1-3 – 4-3. Отметим, что для расчета типовых моделей автором приняты максимальные различия в величинах магнитной восприимчивости отдельных геохимических зон и вмещающей среды, так что рассчитанные аномалии являются, по-видимому, максимально возможными.

Следовательно, эффект нефтегазоносных структур и их отдельных элементов величиной от первых до первых десятков нанотесла и удалении до 3 км от структуры (6 км от самой залежи) позволяют обнаруживать их с помощью детальных наземных и аэромагнитных съемок. Нетрудно также выделить эти аномалии из суммарного поля с целью дальнейшей интерпретации и подбора модели залежи.

Все это дает возможность использовать полученные результаты для детального изучения нефтегазононосных областей и провинций методом визуального районирования или математическим его аналогом – аппаратом распознавания образов и дальнейшего моделирования с использованием построенных моделей и их модификаций в качестве начальных приближений. Но применение их для локального прогноза сдерживается отсутствием сведений о намагниченности пород в названных геохимических зонах и вмещающей среды конкретных перспективных районов.
8.4.2. Магнитная модель Селюховской структуры и локальный прогноз. Возможность локального прогноза при минимуме априорных данных рассмотрим на примере Селюховской нефтегазоносной структуры. Она размещена на юге Центральной депрессии Днепровско-Донецкой впадины. По данным сейсмологических исследований продуктивным горизонтом может быть толща известняка, залегающая на глубине около 3 км, мощностью 100-150 м (рис. 8.12). В региональном плане данная структура находится на пересечении северо-западного и субширотного разломов и древнего субмеридионального, который по данным магнитного моделирования ограничивает с запада Западно-Ингулецкую региональную магнитную аномалию, т.е. предположительно — это северное продолжение Западно-Ингулецкого глубинного разлома. Также она находится в своеобразном пережиме изоаномал магнитного поля, которое проинтерпретировано как эффект от кольцеобразной структуры, опоясывающей Центральную депрессию. Как следует из рис. 8.4, данная кольцевая структура обусловлена повышенной намагниченностью консолидированной части коры на всю ее мощность.

Для построения детальной магнитной модели исследуемой структуры использованы полевые наблюдения полного вектора T ряда профилей и выделенной на их основании аномалии (ΔT)а (работа выполнена под руководством В.Е.Максимчука в рамках проекта ГКНТ Украины, в связи с чем автор не останавливается на методике наблюдений и выделения из суммарного поля аномалии, предположительно связанной с эффектом от нефтегазоносной структуры). Расположение Селюховской структуры и аномальное магнитное поле представлены на рис. 8.12 и 8.13. Кроме того, в качестве ограничивающих данных использованы величины магнитной восприимчивости пород скв.1 (интервал – 2960 - 3455 м) и скв.304 (интервал измерения 2980 - 3705 м) (табл. 8. 9 - 8.10).
Рис. 8.12. Расположение Селоховской нефтегазоносной структуры: 1-изолинии аномального магнитного поля (а-отрицательные, б-нулевые, в-положительные; 2-kontур карбонатной толщи по данным сейсмогеологических исследований; 3-профили детальных магнитометрических наблюдений; 4-скважины пробуренные (залитые кружки) и планируемые к бурению (незалитые кружки).
Таблица 8.10. Магнитная восприимчивость пород скв. Селюховская 1.

<table>
<thead>
<tr>
<th>Номер керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Породы</th>
<th>Значения (\chi), в (10^{-6}) ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2960-2976</td>
<td>Аргиллит с прослойкой алевролита</td>
<td>140-750</td>
</tr>
<tr>
<td>2</td>
<td>3000-3015</td>
<td>Аргиллит, Сидерит</td>
<td>350-1800, 1300-1800</td>
</tr>
<tr>
<td>3</td>
<td>3182-3194</td>
<td>Аргиллит</td>
<td>30-50</td>
</tr>
<tr>
<td>4</td>
<td>3233-3246</td>
<td>" Песчаник с алевролитом</td>
<td>10-15, 20-40</td>
</tr>
<tr>
<td>5</td>
<td>3246-3254</td>
<td>Алевролит, Песчаник</td>
<td>30, 0-150</td>
</tr>
<tr>
<td>6</td>
<td>3319-3335</td>
<td>" Аргиллит</td>
<td>1.0-2.0, 170-1200</td>
</tr>
<tr>
<td>7</td>
<td>3435-3446</td>
<td>"</td>
<td>70-130</td>
</tr>
<tr>
<td>8</td>
<td>3446-3455</td>
<td>"</td>
<td>100-150</td>
</tr>
</tbody>
</table>

Как следует из таблицы 1 наибольшей магнитной восприимчивостью обладает сидерит (1300 - 1800 x \(10^{-6} \) ед. Си) из интервала глубин 3000—3015 м. Повышенными значениями магнитной восприимчивости обладают также аргиллиты ((350—1880) x \(10^{-6} \) ед. Си) и аргиллиты с прослойками алевролитов ((140—750) x \(10^{-6} \) ед. Си) расположенные вверх по разрезу скважины от слоя сидеритов.

Глубже этой толщи в интервале 3182—3330 м выделяются слабомагнитные аргиллиты, алевролиты, песчаники с алевролитами и песчаники (к < 50 x \(10^{-6} \) ед. Си). При этом в этой пачке встречен один образец песчаника с аномальным значением магнитной восприимчивости (150 x \(10^{-6} \) ед. Си). Далее вниз по разрезу в интервале глубин 3331—3455 м залегают аргиллиты с магнитной восприимчивостью к = (70 - 1200) x \(10^{-6} \) ед. Си.

Близкие параметры распределения типа пород и величин их магнитной восприимчивости характерны и для скважины Селюховская 304 (табл. 8.11).
Рис. 8.13. Аномальное геомагнитное поле (ΔТ)а на Селюховской нефтегазоносной площади: 1 - изогипсы отражающего горизонта V-3; 2 - прогнозная линия факального замещения в низах верхневизейского комплекса; 3 - разрывные нарушения; 4 - профили детальных магнитометрических исследований; 5 - разведочные скважины; 6 - изолинии аномального магнитного поля (ΔТ)а, в нГл: положительные (a), нулевые (b), отрицательные (в).
Таблица 8.10. Магнитная восприимчивость пород скв. Селиховская 304

<table>
<thead>
<tr>
<th>номер керна</th>
<th>Интервал отбора керна, в метрах</th>
<th>Породы</th>
<th>Значения χ, в 10^{-6} ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2980-2990</td>
<td>Аргиллит</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>1.0-2.0</td>
</tr>
<tr>
<td>2</td>
<td>3006-3015</td>
<td>Аргиллит</td>
<td>20-210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Алевролит</td>
<td>50-60</td>
</tr>
<tr>
<td>3</td>
<td>3052-3062</td>
<td>Аргиллит</td>
<td>40-500</td>
</tr>
<tr>
<td>4</td>
<td>3116-3126</td>
<td>""</td>
<td>130-190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Известняк (?)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Сидерит</td>
<td>560-2150</td>
</tr>
<tr>
<td>5</td>
<td>3153-3163</td>
<td>Известняк</td>
<td>10-50</td>
</tr>
<tr>
<td>6</td>
<td>3184-3191</td>
<td>""</td>
<td>10-20</td>
</tr>
<tr>
<td>7</td>
<td>3219-3231</td>
<td>""</td>
<td>0-10</td>
</tr>
<tr>
<td>8</td>
<td>3304-3315</td>
<td>Аргиллит</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Песчаник</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3315-3324</td>
<td>Аргиллит</td>
<td>10-20</td>
</tr>
<tr>
<td>10</td>
<td>3324-3333</td>
<td>Песчаник</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Уголь</td>
<td>10-60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Аргиллит</td>
<td>40-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>пиритизированный</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3333-3339</td>
<td>Аргиллит</td>
<td>20-40</td>
</tr>
<tr>
<td>12</td>
<td>3444-3453</td>
<td>Песчаник</td>
<td>20-90</td>
</tr>
<tr>
<td>13</td>
<td>3528-3537</td>
<td>Аргиллит</td>
<td>0-40</td>
</tr>
<tr>
<td>14</td>
<td>3613-3622</td>
<td>Диабаз</td>
<td>45500-48000</td>
</tr>
<tr>
<td>15</td>
<td>3695-3705</td>
<td>Соль каменная</td>
<td>0</td>
</tr>
</tbody>
</table>

В связи с неоднозначностью решения обратной задачи магниторазведки и ограниченным количеством априорных данных построен ряд эквивалентных моделей, которые могут быть использованы в качестве
первоначальных приближений для построения реальной магнитной модели структуры (рис. 8.14).

Т а б л и ц а 8.12. Магнитные параметры расчетных моделей Селюховской структуры.

<table>
<thead>
<tr>
<th>Номер модели</th>
<th>Номер тела</th>
<th>Магнитная восприимчивость, 4\pi10^{-6} ед. СИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>3 - 5</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>6, 9</td>
<td>6000</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>3, 4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>5 - 9</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10 - 18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1 - 3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6 - 9</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>10 - 18</td>
<td>20</td>
</tr>
</tbody>
</table>

При их построении частично использованы величины магнитной восприимчивости пород в качестве предельно возможных значений для отдельных толщ (см. табл. 8.9-8.11). Геометрические параметры магнитных моделей заданы из предположения их соответствия контуру известняковой толщи.

Среди слабомагнитной известняковой толщи встречаются сидериты с магнитной восприимчивостью (56-215)х10^{-5} ед. СИ. Но даже при допущении средней магнитной восприимчивости известняковой толщи 100х10^{-5} ед. СИ при глубине ее залегания 3055-3155 м максимальные величины поля на поверхности не превышают первых десятых нанотесл.
Рис. 8.14. Магнитные модели Сельховской структуры (слева) и поля (ΔТ)α от них (справа) на поверхности Земли (нТл). Магнитные параметры моделей см. в табл. 7.

Рис. 8.14
Это свидетельствует о том, что сама нефтяно-газопродуктивная толща не может быть обнаружена по результатам высокоточных наблюдений на фоне аномалий-помех.

Модель 1. Если допустить, что обнаруженные в скв.304 на глубинах 3550—3650м диабазы имеют по латерали форму известняков, то при измеренной величине магнитной восприимчивости 4800х10^{-5} ед.СИ величина аномалии на поверхности будет 6,0—7,0 нТл. Для большего соответствия между наблюдаемыми и расчетными аномалиями необходима дифференциация величин магнитной восприимчивости от 1200х10^{-5} до 7200х10^{-5} ед.СИ. При этом следует отметить, что при соответствии интенсивности расчетных и наблюдаемых аномалий наблюдается несоответствие в длинах волн (рис. 8.13 и 8.14). Две последующие магнитные модели — в предположении максимально возможных величин магнитной восприимчивости и их приуроченности к определенным стратиграфическим горизонтам.

Модель 2 состоит из двух пластоподобных тел с дифференцированными поблочно величинами восприимчивости (рис. 8.13, табл. 8.12). Верхняя кромка находится на глубине 1,0 км. Магнитная восприимчивость отдельных блоков модели изменяется в пределах 25х10^{-5} — 180х10^{-5} ед.СИ. Эффект на поверхности при этом в максимумах составляет более 5,0 нТл.

Модель 3 состоит из двух пластов, причем верхний практически выходит на поверхность. Величины магнитной восприимчивости изменяются в более узких пределах по сравнению с предыдущей моделью и находятся в пределах 25х10^{-5} — 60х10^{-5} ед.СИ. Эффект на поверхности даже больше наблюденного и составляет 8,0 нТл. Построенные начальные приближения моделей 2 и 3 позволяют небольшими изменениями величин магнитной восприимчивости и геометрических параметров добиться сколь угодно точного совпадения наблюденного и расчетного полей. Этого нельзя сказать
о модели 1 и попытке объяснить наблюденную аномалию эффектом от известняковой толщи.

8.4.3. Обсуждение результатов интерпретации. Для истолкования магнитных моделей локальных нефтегазоносных структур используются теоретические и практические данные о наличии над ними специфических структурно-генетических зон, отличающихся составом, окислительно-восстановительными условиями, типом и количеством ферромагнитных минералов [14,184,318,319,358]. Как следует из вышеприведенного, согласно расчетам на типовых магнитных моделях над нефтегазоносными структурами должны наблюдаться магнитные аномалии интенсивностью в первые единицы — первые десятки нанотесл, которые обусловлены сочетанием эффектов от магнитных образований самой залежи, восстановительной, окислительной и краевой геохимических зон в соотношении с намагниченностью вмещающей среды. Отметим при этом, что сама залежь и восстановительная зона по типу и количеству ферромагнетиков сходны и характеризуются пониженной намагниченностью (см.табл. 8.8 и 8.12), т.е. при построении и истолковании магнитных моделей они могут аппроксимироваться одним пластом с пониженными по сравнению с вмещающей средой величинами магнитной восприимчивости.

Согласно этим замечаниям следует вывод, что предполагаемая мощность продуктивной толщи (около 100 м), измеренные для этого интервала величины магнитной восприимчивости и результаты моделирования не позволяют обнаружить ее эффект современной аппаратурой на региональном фоне и фоне аномалий-помех. Другими словами, сразу следует вывод о невозможности непосредственного обнаружения на поверхности эффекта от самой продуктивной залежи при нахождении ее на глубинах более 2,0—3,0 км.

Трудно объяснить также наблюденную магнитную аномалию эффектом от излившихся базальтоидов, так как получаемые длины волн при
выбранных модельных представлениях существенно отличаются от исходных.

Крайним случаем опосредованной взаимосвязи базальтоидов с месторождением является их приуроченность к дайкоподобному наклонному источнику (разлом?), являющемуся в дальнейшем, в случае неорганического происхождения углеводородов, путем их поступления в верхнюю часть осадочного чехла. Такой вариант возможен, но он слабодоказуем и, как представляется, малоэффективен для прогнозирования месторождений в осадочном чехле.

Следовательно, в качестве первоначального приближения для прогностического истолкования могут быть рассмотрены модели 2 и 3. При этом в них нижний пласт, аппроксимирующий продуктивный горизонт и восстановительную область, имеет магнитную восприимчивость 25х10⁻⁵ ед.СИ согласно средневзвешенной величине, полученной в результате измерения образцов керна (см.табл. 8.10 и 8.11). Верхний пласт с неоднородно намагниченными отдельными блоками для модели 2 включает в себя осадочные образования до юры включительно, а для модели 3 — до осадочных отложений неоген-четвертичного периодов тоже включительно. Величины максимальных величин магнитной восприимчивости для этих случаев требуют проверки и подтверждения независимыми измерениями кернового материала, который, к сожалению, отсутствует для пробуренных скважин. Только в этом случае можно будет построить детальную магнитную модель, пригодную для оценки нефтегазоносности Селиховской структуры.

Сейчас же в порядке дискуссии можно высказать предположение о том, что положительная аномалия обусловлена окислительной зоной месторождения. Это, в свою очередь, свидетельствует о значительном проникновении углеводородов в поверхность Земли. Свидетельствует ли это о дегазации месторождения либо же о его большой продуктивности — вопрос дальнейших исследований в комплексе с другими данными. Отметим,
что из изученных в пределах Центральной депрессии месторождений только Селюховское характеризуется положительной аномалией (ΔТ)а, а Яблуновское, Луценковское, Рудовское, Свиридовское и ряд других характеризуются слабо отрицательными аномалиями [187,382], что можно истолковывать, как проникновение к поверхности восстановительной зоны либо отсутствием окислительной зоны в связи с наличием непроницаемой покрышки. Последнее может указывать на минимальную дегазацию месторождений и их хорошую сохранность. В последнее время автором выполнены исследования по изучению магнитной восприимчивости керна ряда скважин Центральной депрессии, показавшие значительные вариации в значениях магнитной восприимчивости однотипных в литологическом плане пород в зависимости от расположения скважин и глубины горизонта. Так, для скв. Владимирская 1 средняя магнитная восприимчивость аргиллитов составляет \(k = 100.0 \times 10^{-6} \), а для скв. Рудовская 2 — \(k = 280.0 \times 10^{-6} \) ед.СИ. Такие же отличия наблюдаются и для песчаников, алевролитов и известняков. Существенные вариации в величинах магнитной восприимчивости однотипных пород разноглубинных горизонтов и в отдельно взятых скважинах. Для примера можно привести результаты исследований скв. Горобиевская 360, где аргиллиты в интервале 3860—4924м имеют восприимчивость более 20,0х10^{-5} ед.СИ, в интервале 5135—5361м (включая аргиллиты с налетами пирита — восстановительная зона?) — менее 7,0х10^{-5} ед.СИ, а дальше в интервале 5433—5596 м все породы, включая и аргиллиты, обладают повышенной магнитной восприимчивостью. Наиболее высокой восприимчивостью среди образований осадочного чехла обладают сидериты (700,0 - 2600,0) 10^{-6} ед.СИ, образуя своеобразные магнитные реперы, которые, отличаясь и другими физическими свойствами от соседствующих пород, должны выявляться сейсмическими исследованиями. Решение проблемы вариаций магнитной восприимчивости
однотипных образований в зависимости от расположения скважин и глубины залегания исследуемых пород возможно только в комплексе с геолого-промышленными, геохимическими и исследованиями температурного режима нефтегазоматеринских толщ. Так, согласно Ю.И.Галушкину и Р.И.Кутасу [53], в процессе погружения нефтегазоматеринских свит осадочного бассейна Сребенской площади, температура не превышала 170°С, что по нашим данным и данным V.Bucha [352] недостаточно для существенного увеличения магнитной восприимчивости. Для автора в данном случае важно то, что экспериментальные исследования магнитной восприимчивости образований осадочного чехла в лучшем случае подтверждают, а в худшем — не противоречат теоретическим представлениям об обусловленности величины магнитной восприимчивости разреза литологией пород, окислительно-восстановительной обстановкой и температурным режимом. А это является основой магнитного метода изучения нефтегазоносности земной коры.

Выводы

В данном разделе изложена методика геомагнитных исследований и объемного магнитного моделирования для регионального и локального распределения углеводородов в земной коре.

Предложены три механизма структурно-генетической взаимосвязи нефтегазоносности земной коры с ее магнитной неоднородностью, из которых следует расположение газовых месторождений над магнитными, нефтяных — над немагнитными или слабомагнитными, а нефтегазовых — над зонами сочленения магнитных и немагнитных блоков консолидированной коры. Это позволяет выполнить региональный прогноз провинций и областей Украины по фазовому составу углеводородов.

Данный “магнитный” критерий регионального распределения углеводородов в земной коре позволяет в сочетании с другими геофизическими критериями предложить глубинные геофизические критерии
нефтегазоносности земной коры: наличие глубинных неоднородностей земной коры: магнитной, гравитационной, скоростной, тепловой и др.; подъем раздела М и областей его максимальных градиентов; трансрегиональных тектонических швов и глубинных разломов, пересекающих либо ограничивающих геофизические неоднородности; литосферных линеаментов, как проницаемых структур, связанных с подошвой литосферы.

Для локализации конкретных нефтегазоносных структур изучена магнитная восприимчивость пород осадочного чехла Центральной депрессии, выполнена оценка магнитного эффекта структур и их отдельных элементов путем построения типовых структурно-генетических магнитных моделей. Анализ величин магнитной восприимчивости пород чехла Центральной депрессии показал увеличение величины к севера на юг и с глубиной залегания однотипных в литологическом плане пород, а также резкую дифференциацию величин магнитной восприимчивости для разреза продуктивных скважин.

Экспериментальные исследования магнитной восприимчивости осадочных образований Центральной депрессии подтвердили разрешающую способность магнитного метода по обнаружению магнитных неоднородностей, связанных с нефтегазоносными структурами, а соответственно, и его прогностичность.

Теоретические магнитные модели типовых нефтегазоносных структур показали, что они проявляются разнообразными магнитными аномалиями интенсивностью в первые десятки нанотесла. На примере магнитной модели Селюховской нефтегазоносной структуры показаны возможности и перспективы магнитного моделирования для изучения ее нефтегазоносности.
Заключение

В диссертации дано теоретическое и экспериментальное обоснование и продемонстрирована на практических примерах эффективность геомагнитных исследований для познания глубинного строения, вещественного состава, эволюции земной коры и прогнозирования ее нефтегазоносности. Приведены магнитные модели Восточно-Европейской платформы и ее юго-западной половины, Карпатского региона и Днепровско-Донецкого авлакогена, а также результаты их истолкования. Изложена методика геомагнитных исследований при прогнозировании и поиске нефтегазоносных структур.

Следовательно в работе доведен до окончательного разрешения один из принципиальных и актуальных методологических вопросов современной геофизики, а именно, реализована информативность аномального поля для изучения глубинного строения и эволюции земной коры и прогнозирования полезных ископаемых.

В компилятивной части работы показана возможность и минералогические формы существования намагниченных образований в земной коре, вплоть до границы Мохоровичича. Вопрос оценки предельных глубин существования намагниченных образований рассмотрен с петрологической и физической точек зрения. Высказанное ранее (в кандидатской диссертации) предположение о наличии в низах коры и верхней мантии самородного железа α- модификации подтверждено к настоящему времени специальными минералого-магнитными лабораторными исследованиями.

Предложенная методика построения трехмерных и пространственно-временных (эволюционных) магнитных моделей земной коры с использованием в качестве первоначальных приближений реальных геологических структур (включая типовые нефтегазоносные структуры) позволила получить решение обратной магнитометрической задачи,
пригодное для тектонических реконструкций и прогнозирования месторождений полезных ископаемых.

Построенные разномасштабные трехмерные и пространственно-временные магнитные модели разных в геолого-тектоническом отношении регионов (Восточно-Европейской платформы и окружающих регионов в м-бе 1: 5 000 000, юго-запада Восточно-Европейской платформы в м-бе 1 : 2 500 000, запада Украинского щита и Днепровско-Донецкого авлакогена, а также ряда других регионов в м-бе 1 : 500 000 могут рассматриваться в качестве базовых для использования при решении геолого-тектонических, прогностических и экологических задач.

Выделенные четыре петромагнитных типа земной коры (ультраамфит-мафитовый, фемический, сиальмафический и сиалический) позволяют судить о вещественном составе, окислительно-восстановительных и термодинамических условиях любой стадии развития земной коры.

Совместная количественная интерпретация приземных и спутниковых съемок позволили проанализировать вклад локальных и региональных источников на высотах полетов искусственных спутников Земли и впервые предложить критерий оценки достоверности геомагнитного поля относимости Земли, полученного формальными методами.

Принципиально новой является разработанная на основании скрупулезного физико-геологического обоснования и прошедшая практическую апробацию методика регионального и локального прогнозирования нефтегазоносных районов и месторождений.

Основные результаты работы заключаются в следующем.

1. Намагниченность глубинных зон континентальной коры с учетом влияния термодинамических условий и изменения состава от преимущественно гранитоидного до базальтоидного равна или больше в 1,1—2,0 раза намагниченности ее верхов.

2. На основании расчета эффекта верхней части земной коры для ряда профилей (ГСЗ III, VI) и площадей (запад Украинского щита, Днепровско-
Донецкий авлакоген), а также применения методики сглаживания поля в минимумах (Г.И. Каратаева и И.К. Пашкевич) выделена региональная компонента аномального магнитного поля (ΔT)_{a,рег} юго-западной половины Восточно-Европейской платформы. В пределах Курско-Прибалтийской аномалии МАГСАТ выделены 40 положительных региональных магнитных аномалий с поперечником 50—140 км и интенсивностью от 100 до 400—500 нТл. Нижним ограничением магнитоактивной толщи является при этом граница Мохоровичича, как разделяющая породы разного состава или фазового состояния и обуславливающая длину волны, соизмеримую с таковой региональных магнитных аномалий.

3. Для построения объемных моделей разномасштабных регионов и моделей источников региональных магнитных аномалий, а также их дальнейшего истолкования, в качестве первоначальных приближений предложено использовать теоретические магнитные модели континентальных палеорифтов и субдукционных зон (островных дуг). Для интерпретации магнитных моделей нефтегазоносных структур построены физико-геологические типовые магнитные модели.

4. В пределах платформы и окружающих регионов с использованием результатов районирования аномального магнитного поля и магнитного моделирования выделены своего рода “надструктуры”: Курско-Прибалтийский, Северо-Скандинавский и Камско-Эмбенский сегменты, отличающиеся повышенной, а также Санкт-Петербургский и Прикаспийский — с минимальной насыщенностью коры магнитными источниками регионального класса.

5. Двумерная магнитная модель вдоль геотраверса III (Геотрансект Черное море — Воркута) и трехмерная магнитная модель Восточно-Европейской платформы и ее юго-западной части свидетельствуют о наличии в пределах коры источников с намагниченностью в 0,5—4,0 А/м и поперечными размерами в первые десятки и сотни километров. Исключением при этом являются источники Курско-Брянских и Купянской
аномалий с интенсивностью намагничения 6,0—12,0 А/м. При этом масштабы моделей позволяют вести речь лишь о средневзвешенных величинах намагниченности крупных блоков литосферы.

6. Магнитная модель запада Украинского щита в районе геотрансекта “Евробридж” свидетельствует о латеральной и вертикальной неоднородностях в намагниченности земной коры с двухэтажным分布 магнитных тел. Источники верхнего этажа представлены изометричными, вытянутыми и дайкоподобными телами разных размеров, падений и простираний с нижними ограничениями на глубинах 4,0 — (12,0÷15,0) км. Наблюдается их повышенная концентрация (“зараженность”) над областями расположения глубинных источников и их боковыми контактами. При существенно большей средневзвешенной намагниченности (в районах региональных магнитных аномалий) нижнего этажа по сравнению с верхним, предельные величины намагниченности источников этих этажей перекрываются.

7. Магнитная модель Днепровско-Донецкого авлакогена отражает трехэтажное分布 магнитных источников в земной коре. Верхний этаж — эфузивно-пирокластические образования франкского и фаменского ярусов — залегает в самых низах осадочного чехла и имеет средневзвешенную намагниченность 1,0—3,0 А/м. Источники верхней части консолидированной земной коры с верхними кромками на глубинах 3,0÷15,0 км и нижними на глубинах 10.0-18.0 км обладают намагниченностью 1,0—2,5 А/м. Магнитные тела нижней части коры распределены неравномерно вдоль и вкрест авлакогена. Максимальной намагниченностью (1,0—2,0 А/м) обладают области нижней части земной коры в районах Черниговского максимума, Центральной депрессии и северного борта авлакогена (от г. Полтава и далее на восток до границы с Россией).

8. Пространственно-временная (эволюционная) магнитная модель земной коры территории Украины свидетельствует о том, что магнитные неоднородности с величинами намагниченностей 0,5—4,0 А/м
сформировались в результате суперпозиции магнитных источников, образовавшихся во временных интервалах: 2,90—3,2(?); 2,75—2,80; 2,25—2,55; 1,90—2,00; 1,60—1,75(?); 1,30—1,35; 0,90—0,95; 0,56—0,68; 0,35—0,44 млрд. лет. Наиболее мощные периоды образования магнитных образований — 2,90—3,20; 2,25—2,55; 1,60—1,75; 0,35—0,44 млрд.лет.

9. Выделены четыре петромагнитных типа земной коры: ультрамафит-мафитовый ($I<0,5$ A/м), фемический ($I=1,0—10,0$ A/м), сиальмафический ($I=1,0—5,0$ A/м) и сиалический ($I<0,5$ A/м), позволяющие судить о вещественном составе, окислительно-восстановительных и термодинамических условиях любой стадии развития земной коры.

10. Курско-Прибалтийский сегмент сложен преимущественно образованиями фемического и ультрамафит-мафитового петромагнитного типов, Северо-Скандинавский — ультрамафит-мафитового и сиальмафического, Камско-Эмбенский — ультрамафит-мафитового, сиальмафического и сиалического, а Санкт-Петербургский и Прикаспийский — ультрамафит-мафитового и сиалического петромагнитного типов.

11. Анализ аномального эффекта от трехмерной модели платформы с данными (ΔT)а и аномалий МАГСАТ впервые показал их обусловленность источниками регионального класса и позволил предложить количественные критерии оценки достоверности поля относимости Земли, полученные формальными методами.

12. Образование и развитие глубинных и верхнекоровых магнитных неоднородностей Карпатского региона и западной части Украинского щита отражает сложные процессы формирования земной коры и ее преобразования, связанного со становлением двух зон сочленения — Сарматии с Фенноскандией и Восточно-Европейской платформы с Альпийским складчатым поясом. Глубинные магнитные неоднородности Гайсинской, Винницкой, Новоград-Волынской и Львовской региональных магнитных аномалий формировались в режиме преобладающего растяжения земной коры в краевых частях континентов. Эти источники сложены
фемическим, сиальмафическим и ультрамафит-мафитовым петромагнитными типами. Области слабой намагниченности консолидированной коры сложены сиалическим и ультрамафит-мафическим петромагнитными типами.

13. Совместный анализ магнитной модели и современной петромагнитной характеристики коры Днепровско-Донецкого авлакогена с данными о глубинном строении и магматизме, свидетельствуют о его формировании путем растяжения и раздвига коры с новообразованием и преобразованием нижней ее части, утонением и проседанием верхней ее части с активным, но дифференцированным по простиранию авлакогена платформенным магматизмом разного типа.

14. Истолкование природы глубинных магнитных неоднородностей в рамках эволюционной магнитной модели земной коры Украины показывает, что они формировались циклически и приурочены к ранним стадиям крупных тектоно-магматических циклов. В пределах Украины магнитные источники "маркируют" разновозрастные структуры режимов растяжения земной коры: архейские проторифтоиды, раннепротерозойские шовные зоны, рифей-вендские и палеозойские палеорифты. Механизм образования неоднородностей такого типа ("рифтового") заключается в насыщении коры магматическими образованиями основного и среднего состава при благоприятных условиях для реализации железа в виде ферромагнитных минералов. Механизм образования "субдукционного" типа магнитных неоднородностей двойственный: с одной стороны это поддвиж магнитной коры за счет субдукции, а с другой — переплавление субдуцированной коры с насыщением обдуцированной коры соответствующими магнитными образованиями.

15. Теоретические и экспериментальные исследования свидетельствуют о том, что в нефтегазоносных областях и провинциях существует взаимосвязь между магнитными неоднородностями и нефтегазоносностью земной коры на региональном и локальном уровнях. Газоносные районы располагаются над магнитными, нефтеносные — над
немагнитными и слабомагнитными, а нефтегазоносные — над зонами сочленения магнитных и немагнитных блоков консолидированной земной коры. Этот магнитный критерий регионального распределения углеводородов позволяет в сочетании с другими данными предложить глубинные геофизические критерии нефтегазоносности земной коры, а именно наличие: глубинных геофизических неоднородностей (магнитной, гравитационной, скоростной, тепловой и др.); подъема раздела M и областей его максимальных градиентов; трансрегиональных тектонических швов и глубинных разломов, пересекающих либо ограничивающих геофизические неоднородности; литосферных линеаментов, как проницаемых структур, связанных с подошвой литосферы.

16. Выполненная оценка магнитного эффекта локальных нефтегазовых структур, их отдельных элементов и построенные типовые структурно-генетические магнитные модели свидетельствуют о достаточной разрешающей способности высокоточных магнитных наблюдений по обнаружению магнитных неоднородностей, связанных с нефтегазоносными структурами.

17. Разработанная методика объемного магнитного моделирования для регионального и локального прогнозирования распределения углеводородов в земной коре существенно повысила геологическую эффективность геомагнитных исследований при районировании областей и провинций по фазовому составу углеводородов и поиске нефтяных и газовых месторождений.

Автором защищаются следующие основные положения

1. **Усовершенствованная методика трехмерного магнитного моделирования разномасштабных структур земной коры**, заключающаяся в максимальном использовании модельных представлений и априорных данных и состоящая из ряда звеньев: выделения региональной компоненты,
связанной с глубинными горизонтами земной коры; анализа взаимосвязи региональной компоненты с основными физико-петрологическим границами литосферы Земли и выбора нижнего ограничения магнитоактивной толщи; выбора начального приближения; итерационного моделирование методом подбора.

2. **Трехмерные магнитные модели земной коры** Восточно-Европейской платформы м-ба 1 : 5 000 000, ее юго-запада (района Курского-Прибалтийской аномалии МАГСАТ) м-ба 1 : 2 500 000, запада Украинского щита и Днепровско-Донецкого авлакогена м-ба 1 : 500 000, свидетельствующие о латеральной и вертикальной неоднородности земной коры. В пределах этих регионов выделяются крупные участки земной коры со средневзвешенной намагниченностью 0,5—1,0 A/m и максимальными размерами до 300х500 км. Источники региональных магнитных аномалий имеют намагниченность 0,5—4,0 A/m и поперечники 50—140 км. Последние представлены фемическим и сиальмафическим петромагнитными типами. При этом установлена повышенная концентрация ("зараженность") локальных тел над областями расположения глубинных источников и их боковыми kontaktами.

3. **Эволюционная магнитная модель земной коры территории Украины** свидетельствующая о том, что коровые магнитные неоднородности с величинами намагниченностей 0,5—4,0 A/m сформировались в результате суперпозиции магнитных источников, образовавшихся во временных интервалах: 2,9—3,2(?); 2,75—2,80; 2,25—2,55; 1,90—2,00; 1,60—1,75(?); 1,30—1,35; 0,90—0,95; 0,56—0,68; 0,35—0,44 млрд лет. При этом источники представлены основными и средними породами, которые формировались циклически и приурочены к ранним стадиям крупных тектономагматических циклов, характеризующихся условиями преобладающего растяжения земной коры, и "маркируют" архейские проторифтоиды, раннепротерозойские протогеосинклинали, рифей-вендские и палеозойские палеорифты архей-протерозойские и фанерозойские субдукционные зоны.
4. Методика геомагнитных исследований и объемного магнитного моделирования для регионального и локального прогнозирования распределения углеводородов, предусматривающая получение надежных исходных данных (поля \(\Delta T \)а, схем намагниченности земной коры, величин магнитной восприимчивости пород и т.д.), теоретическое и экспериментальное обоснование структурно-генетических связей между этими данными и поисковыми объектами (в данном случае нефтегазоносные области и провинции в целом, их отдельные районы и конкретные месторождения), выдвижение рабочих гипотез (для регионального и локального прогноза), их качественную и количественную проверку.
Литература

40. Василевский А.Н., Витте Л.В., Шарловская Л.А. Дейтероорогенная перестройка коры и магнитная модель юга Восточной Сибири // Аномальное

45. Воларович М.П., Курскеев А.К. Геолого-геофизическое приложение данных о физических свойствах горных пород и минералов при высоких давлениях и температуре (на примере Казахстана) // Физические свойства горных пород при высоких термодинамических параметрах. — Баку, 1978. — С. 258.

65. Гершанок Л.А. О методике магнитных наблюдений при исследованиях на нефть и газ // Геофизические методы поисков и разведки месторождений нефти и газа. — Пермь, 1982. — С.100—104.

105. Егорова Т.П., Курганова Л.В., Старостенко В.И. Объемное плотностное моделирование Кропивненского рудного тела: опыт применения

112. Завойский В.Н., Неижсал Ю.Е. Декомпозиционно-терационный метод решения обратной задачи магниторазведки // Геофиз.журн. — 1979. — т.1, № 2. — С.57—65

120. Зорин Н.А., Новоселова М.Р., Рогожина В.А. Глубинная структура территории МНР. — Новосибирск: Наука, 1982. — 93с.

144. Красовский С.С., Кутас Р.И., Пашкевич И.К. Некоторые особенности строения литосферы платформенной части Украины. Плотностные, магнитные и геотермические неоднородности// Литосфера

146. Кропоткин П.Н., Фролов Б.Н. Напряженное состояние и сколовые деформации в коре и верхней мантии. Физические свойства, состав и строение верхней мантии. — М.: Наука,1974. — С.86—91.

187. Максимчук В.Е., Орлюк М.И., Городиський Ю.М., Кузнецова В.Г., Чоботок И.А. Изучение короткопериодных вариаций геомагнитного поля ΔT.

190. Маракушев А.А., Генкин А.Д. Термодинамические условия образования карбидов металлов в связи с их нахождением в базитах гипербазитах и в медно-никелевых сульфидных рудах // Вестн. МГУ. Геология. — 1972. — № 5. — С. 7—27.

201. Милашин А.П. Глубинная структура южных и дальневосточных морей СССР в связи с перспективами нефтегазоносности // Автореф. дис. ... д-ра геол.-мин. наук. — М.: ВНИИГЕОФИЗИКА, 1975. — 40 с.

212. Объяснительная записка к тектонической карте УССР и МССР м-ба 1 : 1 000 000. — Киев: Мингео УССР, 1972. — 114 с.

222. Орлюк М.И. Магнитная модель по геотраверсу III // Сб. I республиканского семинара молодых геофизиков Украины // Деп. в ВИНТИ 5.11.87г., N 7768—В87.

230. Орлюк М.И., Пашкевич И.К. О взаимосвязи палеонапряженного состояния земной коры и источников региональных магнитных аномалий // Тез. докл. II Весс. Симпозиума "Експериментальная тектоника в решении

238. Оровецкий Ю. П. Эндогенно-геодинамическая модель развития Восточно-Европейской платформы в докембрии// Геофизич.журн.—1993.— 15, № 6. —С.44—54.

242. Пашкевич И.К., Кутовая А.П., Орлюк М.И. К вопросу о юго-западной крае Восточно-Европейской платформы // Геофизич.журн.—1985.— 6, № 5.—С.74—82.

280. Скопиченко М.Ф. Некоторые особенности геомагнитного и гравитационного аномальных полей Центральной части Причерноморской

284. Соколовский К.И., Орлюк М.И., Пашкевич И.К., Демянчук С.В. Оценка распределения источников магнитных аномалий в разрезе земной коры по результатам продолжения поля в нижнее боковое полупространство // Аномалии геомагнитного поля и глубинное строение земной коры. — Киев: Наук.думка, 1981. — С. 77—81.

289. Страхов В.Н. Некоторые применения функциональных аналитических методов в математической теории гравитационных и
магнитных аномалий // Автореф. дис. ... д-ра физ.-мат. наук. — М.: Наука. — 78 с.

312. Тяпкин К.Ф., Голиздра Г.Я. Краткий обзор современных методов ослабления регионального фона гравитационного и магнитного полей. — М.: Изд-во ОНТИ ВИМС, 1963.—51с.

320. Фильштинский Л.Е. Комплексирование геофизических данных при прогнозе нефтегазоносности Украины // Автореферат дисс. ... докт. геол.-мин. наук. — К., 1981. — 32 с.

344. Ярош А.Я. О связи гравитационных и магнитных аномалий с геологическим строением восточных районов Русской платформы и западного Приуралья // Разведочная геофизика. — 1966. — Вып. 47. — С. 48—35.

362. Hahn A., Wonik T. Interpretation of aeromagnetic anomalies // European Geotraverse (EGT) Project. Data compilations and synoptic

