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Preface

Object for study is multicomponent media characterized by the internal exchanged
processes. Intrinsic inhomogeneities give rise to the remarkable/unusual nonlinear be-
haviors demonstrated by these media at quasistatic and dynamic mechanical loads. The
purpose of this book is to describe the dynamic behaviors of multicomponent media in
terms of physically motivated models. Traditionally it is believed that under long-wave
(both linear and nonlinear) perturbations, such media can be modeled as homogeneous
ones. In some sense it is so. However, the suggested approach enables us to separate
the influence of medium structure on nonlinear waves. The information contained in
evolutionary nonlinear wave turns out to be sufficient to reproduce the medium struc-
ture with certain accuracy and to obtain the concentration of individual components.
The theoretical principles for new method of structure diagnostics by means of the long
nonlinear waves and for the control of wave action in the multicomponent media are
suggested. The research of nonlinear evolution equations as applied to the evolution of
wave fields is carried out. The special attention is focused on development of models
for describing both complex stress-strain properties of a sandstone sample under qua-
sistatic loading and longitudinal vibration resonance in bar-shaped sedimentary rocks.
The models reproduce the main experimental effects. The important result is theoret-
ical prediction of a dynamic effect analogous to the widely known quasistatic effect of
hysteresis with discrete (end-point) memory. Following the theoretical prediction, our
colleagues TenCate and Shankland at Los Alamos National Laboratory have performed
experimental measurements and verified this prediction. These exclusive experimen-
tal results stimulate us to carry out additional simulation, where resonance curves for
sandstone were reproduced by using the previously suggested model of the resonance
response. Thus, the models we developed can adequately describe the experimental
results and can be applied for future research.
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Chapter 1

Introduction

Natural media, in the general case, should not be treated as structureless. The experi-
ments have shown that the intrinsic structure of a medium influences the wave motions
[17, 22, 55, 67, 70, 106, 115, 126, 130, 131]. Existing inhomogeneities complicate the
problem and, at the same time, are fully manifested under the propagation of non-
linear waves. Fast high-gradient processes, such as earthquakes, explosions, etc., lead
to irreversible processes [130, 131]. The principal part of the problem is associated
with the phenomena caused to by the nonlinear behavior of natural media such as (a)
soliton-like properties of P-waves [46], and (b) larger increase of nonlinear effects in
structured media compared to homogeneous ones [17, 22, 55, 67, 70, 115].

The wave processes in heterogeneous media are usually described in terms of more
or less complicated models. Under the conditions of local equilibrium, the media are
traditionally modeled irrespective of their structure. In the framework of continuum
mechanics, the known idealization of a real medium as a homogeneous one has been
fairly successive in the description of wave processes (see, for instance, [4, 8, 151]). The
continuum models are commonly applied to the mixtures whose dispersive dissipative
properties are treated with regard for the interactions between the components [18, 86,
92, 121, 122]. On this level the media are modeled in the framework of a homogeneous
elastic, viscous elastic, and elastic plastic media [86, 110]. In this case the features of
the medium structure are taken into account indirectly through the kinetic parameters
(relaxation time, viscous coefficients etc.) [8, 18, 67, 70, 86, 92, 110, 106, 121, 122].

The model of multivelocity interpenetratable continua was developed in terms of
classical continuum mechanics [108] and statistical physics [138] in order to describe
the dynamical behavior of multi-component media. A fundamental assumption in
the theory of mixtures [122] reproduces the assumption in the model of multivelocity
interpenetratable continua [108]; namely, that each micro-volume dv is occupied by a
particle of each constituent. The equations of motion for each component involve the
terms describing the mass, force and energy interactions between the components. The
problem is complicated by the necessity to employ, in the general case, the experimental
data for establishing theoretical relations between the macroparameters at the the
component interaction level. Moreover, if the component interaction is determined,
then these models would be indispensable in the theory of multi-component media.

In all the models mentioned, the formalism of continuum mechanics is based on the
principle of local action as well as on the generalization of the mechanics laws relating
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2 Introduction

the point mass to the continuum [151].
When going from the integral equations to differential balance equations, the ex-

istence of a differentially small microvolume dv is assumed. On the one hand, this
volume is so small that the mechanics laws of the point can be extended to the whole
microvolume. On the other hand, the volume contains so many structural elements of
the medium that, in this sense, it can be regarded as macroscopic one in spite of its
smallness as compared to the entire volume occupied by the medium. So, the passage
to the differential balance equations is based on the assumption that microstructural
scales ε are small as compared to the characteristic macroscopic scale of the λ, and
the passage should be made to the limiting case ε/λ → 0. Contraction of the volume
dv to the point is in the general case correct for continuous functions [122, 151]. This
means that all points within the differentially small volume are equivalent. Hence, for
the case of a mixture, the equivalence of the points implies that field characteristics
should be averaged over dv. Hence, it is assumed that the equations of motion can
be written in terms of average density, mass velocity, and pressure of each individual
component. We note that these models do not contain explicit sizes of components.

, �

, �

, �d

Figure 1.1: Model of the layered medium with two homogeneous components in period.

The application of the models of a homogeneous medium to the description of the
dynamical wave processes in a structured natural medium is associated with certain
fundamental difficulties [55, 67, 110, 106, 130, 131]. In what follows we treat the
medium structure at the macrolevel. We abandon the assumption that the differentially
small volume dv contains all the components of the medium, nevertheless we consider
the longwave approach with the wavelength λ much greater than the characteristic
length of the medium structure ε. We consider a structured medium (Fig. 1.1) in which
separated components are considered as a homogeneous medium (the differentially
small volume dv is much smaller than the characteristic size of a particular component
ε).

We describe the wave processes in non-equilibrium heterogeneous media in terms
of an asymptotic averaged model [168, 169, 170, 164, 171, 172]. In this case the ob-
tained integral differential system of equations cannot be reduced to the average terms
(pressure, mass velocity, specific volume) and contains the terms with characteristic
sizes of individual components.

On the microstructure level of the medium, the dynamical behavior is governed only
by the laws of thermodynamics. On the macrolevel, the motion of the medium can be
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described by the wave-dynamical laws for the averaged variables with the integrodif-
ferential equation of state containing the characteristics of the medium microstructure.
A rigorous mathematical proof is given to show that on the acoustic level, the propa-
gation of long waves can be properly described only in terms of dispersive dissipative
properties of the medium, and in this case, the dynamical behavior of the medium can
be modeled by a homogeneous relaxing medium. However, finite-amplitude long waves
respond to the structure of the medium in such a way that the homogeneous medium
model is insufficient for the description of the behavior of the structured medium. An
important result that follows from this model is that, for a finite-amplitude wave, the
medium structure (in particular, existence of microcracks) produces nonlinear effects
even if the individual components of the medium are described by a linear law. It turns
out that the known Lyakhov model for the natural multi-component media [92, 150]
is an actual case of the asymptotic averaged model, i.e., it is inherently asymptotic.

We have considered averaged systems of hydrodynamical equations in both La-
grangian and Eulerian coordinates. These systems are not expressed in the average
hydrodynamical terms, hence the dynamical behavior of the medium cannot be mod-
eled by a homogeneous medium even for long waves, if they are nonlinear. The structure
of the medium influences the nonlinear wave propagation. The heterogeneity of the
medium structure always introduces additional nonlinearity that does not arise in a ho-
mogeneous medium. This effect makes it possible to formulate the theoretical grounds
of a new diagnostic method that determines the characteristics of a heterogeneous
medium with the use of finite-amplitude long waves (inverse problem). This diagnostic
method can also be employed to find the mass contents of individual components.

Natural physical phenomena possess, in general, complicated nonlinear features.
Recent advances in nonlinear science have been rather considerable. Starting from the
general idea of relaxing phenomena in real media via hydrodynamical approach, we
will derive a nonlinear evolution equation for the high-frequency waves. At the same
time we will show how to obtain an equation by modeling the propagation of high-
frequency waves in a relaxing medium. Historically, the suggested equation has been
called the Vakhnenko equation (VE) and we shall follow this name. Periodic and soli-
tary traveling wave solutions are found by direct integration. Some of these solutions
are loop-like in nature. The VE can be written in an alternative form, now known as
the Vakhnenko–Parkes equation (VPE), by changing the independent variables. The
VPE can also be written in Hirota bilinear form. Then it is possible to determine the
interaction of two solitons. In contrast to the Korteweg-de Vries (KdV) equation, the
VE contains different kinds of phaseshifts. From the mathematical point of view, the
ambiguous solution does not introduce difficulties, while the physical interpretation of
the ambiguity always introduces some difficulties. We suggest the physical interpre-
tation of an ambiguous solutions. A number of states with their thermodynamical
parameters can occupy one microvolume. In this sense the nonequilibrium state of
the suggested model is assumed to describe several states with different hydrodynamic
parameters.

We suggest a transformation that enables one to reduce, with certain accuracy (the
transformation is exact for planar symmetry as well as for stationary flows), the known
solutions of gas-dynamic problems to the two-phase media with arbitrary volume por-
tion of incompressible components. It is proved that there is a similarity in motions
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of gas and two-phase medium with incompressible component. This transformation
is very important from the viewpoint of the study of multi-component media. In-
deed, this transformation enables one to obtain the solution of many problems for
multi-component media with incompressible phases, provided the solution of a similar
problem for a homogeneous compressible medium is known. In this case it is not nec-
essary to solve directly the problem for the medium with incompressible component,
and it is sufficient just to transform the known solution of the similar problem for
a homogeneous medium. Thus, the solutions of many hydrodynamical problems for
multi-component media with incompressible phases can be obtained without solving
the initial system of equations. The scope for the suggested transformation is demon-
strated by the reference to the strong explosion state in a two-phase medium.

The features of the dynamical behavior of two-component media with interphase
interaction will be considered by solving a problem associated with the strong explosion
stage. This problem attracts interest also in view of the practical possibility to estimate
the efficiency of medium as localizer of shock wave action. The attenuation of shock
waves in gas-liquid foam generated by condensed explosive charges will be described
in terms of a relaxed transfer of heat from the gas phase to the condensed phase. The
problem is how to describe/find the dependence of the flow behind the shock front
on the thermophysical properties of the medium and the completeness of relaxation
processes. We will analyze the dependence of the shock damping parameters on the
thermal relaxation time in order to provide a deeper understanding of the damping
of shock waves in such media and to determine their effectiveness as localizing media.
Besides, it is of interest to define the dependence of shock wave attenuation on the
shock loading, especially on the explosion energy.

An important object for investigation is earth materials. Sedimentary rocks, par-
ticularly sandstones, possess grain structure. The peculiarities of grain and pore struc-
tures give rise to a variety of remarkable nonlinear mechanical properties demonstrated
by rocks, under both quasistatic and alternating dynamical loading.

A phenomenological model describing complex stress-strain properties of a sand-
stone sample under slow loading is presented. In order to treat the elastic and nonlin-
ear behavior observed in stress cycling experiments, we consider a combination of three
mechanisms. The mechanisms of the interior equilibration processes in a sandstone are:
the standard solid relaxation mechanism, the sticky-spring mechanism, and the per-
manent plastic deformation mechanism. With a small number of parameters, the
overall model displays both qualitatively and quantitatively the principal experimental
observations of the stress-strain trajectories for the Berea sandstone, in particular, the
details of the end-point memory under the quasistatic loading.

We have developed and thoroughly examined a model of longitudinal vibration
resonance in bar-shaped sedimentary rocks. These materials exhibit memory that
originates from an essential asymmetry of rupture and recovery of the intergrain and
interlamina cohesive bonds. The theory relies on an appropriate isolation and ade-
quate formalization of two mutually dependent subsystems, namely, a subsystem of
ruptured bonds and a subsystem of internal longitudinal displacements. The subsys-
tem of ruptured bonds is shown to be of a soft-ratchet type, so that its response to an
alternating internal stress is characterized by broken symmetry and appears as nonzero
long-term temporal and spatial changes in the concentration of ruptured bonds. The
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internal stress is generated by an alternating external drive acting both directly through
the subsystem of longitudinal displacements and indirectly through temporal and spa-
tial modifications of the Young modulus due to the changes in the concentration of
ruptured bonds. The scheme reproduces the main experimental effects by using the
simplest linear form of attenuation in an elastic subsystem and realistic assumptions
of the stress-strain relation. In particular, it correctly describes: hysteretic behavior
of the resonance curve on both its upward and downward slopes; linear softening of
the resonance frequency under the increase of the driving level; gradual (almost loga-
rithmic) recovery (increase) of the resonance frequency under low dynamical strains
that follow the high-strain conditioning of the sample; and temporal relaxation of the
response acceleration amplitude for fixed frequency. These are the most interesting
observations typical of forced longitudinal oscillations of sandstone bars in the nonlin-
ear regime. Moreover, we can trace how water saturation enhances the hysteresis and
simultaneously decreases the quality factor due to the increase in the equilibrium con-
centration of ruptured cohesive bonds. We also predict theoretically a dynamical effect
analogous to the widely known quasistatic effect of hysteresis with discrete (end-point)
memory. Following the theoretical prediction, our colleagues TenCate and Shankland
from Los Alamos National Laboratory have performed experimental measurements in
order to verify this prediction.

These exclusive experimental results obtained at Los Alamos National Laboratory
stimulate us to carry out additional simulation. The experimental resonance curves
for the Fontainebleau sandstone were reproduced by using the suggested model of
the resonance response for the sandstone. The models we developed can adequately
reproduce the experimental results and can be applied for future research.
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Chapter 2

Asymptotic averaged model for
structured medium

The current status of experimental researches demands to develop the models of dy-
namical behavior of media with account of their inner structure. The real media are
not structureless. For example, the geophysical medium has a complicated hierar-
chical structure. It turns out that the ratio of typical sizes between the neighboring
hierarchical levels is a constant value [124, 126, 130]. The inner structure of a medium
affects the propagation of waves, which appear as a result of high-gradient fast processes
(explosion, earthquake) [125, 130].

Within continuum mechanics [88] the known idealization of a real medium as homo-
geneous has a wide application to model their dynamic behavior. In these models the
effect of heterogeneity is taken into account indirectly throughout the kinetic parame-
ters such as a viscous coefficient and relaxation time. The inner processes in this case
are manifested through dispersive dissipative properties of a medium. Traditionally,
it was considered that in heterogeneous media with wavelength appreciably exceeding
the size of the structural heterogeneities, the perturbations propagate in the same way
as in homogeneous media [4, 8, 122]. However, this statement should be proved, and
we shall show that this approximation is not universally true. In general case, the wave
propagation can not be described in terms of the average characteristics (continuum
model).

The properties of a medium deviate from the equilibrium state under the propaga-
tion of intensive waves. Moreover, an unperturbed medium can be in one of unstable
stationary states. So, a geophysical medium, within a current physical concept, is an
open thermodynamic system, which essentially influences on the exchanges of energy
and mass. Thus, a description of open systems should take into account the peculiar-
ities of their inner structure, dynamical processes occurring on the level of structural
elements. What is more, the state of media under the action of high-frequency wave
perturbations departs from equilibrium, and, thus, the behavior of media can not be
described in the framework of equilibrium thermodynamics. Consequently, there is
necessity to develop the new mathematical models in order to take into account the
nonlinear wave perturbations and irreversible inner exchange processes.

7



8 Chapter 2. Asymptotic averaged model

2.1 Background and initial equations

The simplest heterogeneous media for which the effect of the structure can be ana-
lyzed are media with a regular structure. Features of the propagation of long wave
perturbations will be investigated by using as an example, a periodic medium under
conditions of an equality of stresses and mass velocities on the boundaries of neighbor-
ing components. It is supposed that the microstructure elements of medium dv (see
Fig. 1.1) are large enough that it is possible to submit to the laws of classical contin-
uum mechanics for each individual component. At the same time the inner processes
in each component will be considered within a relaxation approach. The notions based
on the relaxation nature of a phenomenon are regarded to be promising and fruitful.
We consider that the properties of the medium, such as density, sound velocity and
relaxation time vary in a periodic manner (although this assumption is unessential in
the final result).

2.1.1 Motion equations for individual component

The analysis of wave motions is based on the hydrodynamic approach. This restriction
can be imposed for the modeling of nonlinear waves in watersaturated soils, bubble
media, aerosols, etc. [86, 92]. The set of acceptable media could be extended to solid
media where the powerful loads are studied in the condition that the strength and
plasticity of the material can be neglected [89]. In the hydrodynamic approach we
have considered the media without tangential stresses while there are equalities of the
stresses as well as of mass velocities on boundaries of neighboring components. Also,
we assume that the medium is barothropic. The individual components of the medium
are considered to be described by the classical equations of hydrodynamics. In the
Lagrangian coordinate system (l, t) the equations of one-dimensional motion for each
individual component have the form

∂rν

∂lν
=

V

V0

, u =
∂r

∂t
,

∂u

∂t
+ V0

(r
l

)ν−1 ∂p
∂l

= 0.

(2.1.1)

The equation of continuity can also be used in the alternative form

∂V

∂t
− νV0

∂rν−1u

∂lν
= 0. (2.1.2)

Here V = ρ−1 is the specific volume, ν is a parameter of symmetry, where ν = 1 is
planar symmetry, ν = 2 is cylindrical one, ν = 3 is spherical one; the index 0 relates
to the initial state. The other notations are those that are generally accepted.

Conditions for matching are the equality of mass velocities and pressures on the
boundaries of the components

[u] = 0, [p] = 0. (2.1.3)
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2.1.2 Dynamic state equation

Considering the models of a relaxing medium as more general than the equilibrium
models for describing the evolution of high-gradient waves, we will take into account
the relaxing processes for each component. Thermodynamic equilibrium is disturbed
owing to the propagation of fast perturbations in a medium. There are processes of
the interaction that tend to return the equilibrium. The parameters characterizing this
interaction are referred to as the inner variables unlike the macroparameters such as
the pressure p, mass velocity u, and density ρ. In essence, the change of macropa-
rameters caused by the changes of inner parameters is a relaxation process. From
the nonequilibrium thermodynamics standpoint, the models of a relaxing medium are
more general than the equilibrium models for describing the wave propagation.

An equilibrium state equation of a barothropic medium is an one-parameter equa-
tion. As a result of relaxation, an additional variable ξ (inner parameter) appears in
the state equation. It defines the completeness of the relaxation process

p = p(ρ, ξ). (2.1.4)

There are two limiting cases:

(i) the lack of the relaxation (inner interaction processes are frozen) ξ = 1,

p = p(ρ, 1) = pf (ρ), (2.1.5)

(ii) the relaxation complete (there is the local thermodynamic equilibrium) ξ = 0,

p = p(ρ, 0) = pe(ρ). (2.1.6)

The equations of state (2.1.5) and (2.1.6) are considered to be known. These relation-
ships enable us to introduce the sound velocities for fast processes

c2f = dpf/dρ (2.1.7)

and for slow processes

c2e = dpe/dρ. (2.1.8)

The slow and fast processes are compared by means of the relaxation time τp. The
dynamic state equation is written down in the form of the differential first-order
equation

τp

(
dρ

dt
− c−2f

dp

dt

)
+ (ρ− ρe) = 0. (2.1.9)

The equilibrium equations of state are considered to be known

ρe − ρ0 =

p∫
p0

c−2e dp. (2.1.10)
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Clearly, for the fast processes (ωτp � 1) we have the relation (2.1.5), and for the slow
ones (ωτp � 1) we obtain (2.1.6).

The substantiation of Eq. (2.1.9) within the framework of the thermodynamics of
irreversible processes has been given in [30, 35, 88, 209]. As far as we know the first
work in this field was the article by Mandelshtam and Leontovich [96] (see also Section
81 in [88]). We note that the mechanisms of the exchange processes are not defined
concretely when deriving Eq. (2.1.9), and the thermodynamic and kinetic parameters
appear only in this equation. These characteristics can be found experimentally.

The phenomenological approach for describing the relaxation processes in hydro-
dynamics has been developed in many publications [86, 88, 92, 209]. The dynamic
equation of state was used (a) for describing the propagation of sound waves in a re-
laxing medium [88], (b) for taking into account the exchange processes within media
(gas-solid particles) [209], (c) for studying wave fields in gas-liquid media [86] and in
soil [92]. In most works, the equation of state has been derived from the concept of con-
crete mechanism for the inner process. Within the context of mixture theory, Biot [18]
attempted to account for the non-equilibrium in velocities between components directly
in the equations of motion in the form of dissipative terms.

We assume that the relaxation time and sound velocities do not depend on time,
but they are functions of pressure and the individual properties of the components.
This means that in the process of a relaxation interaction we can take into account the
exchange of moment and heat but not that of mass. Peculiarities of the intrastructure
interaction are determined by the dynamic equation of state for each component.

The equations of motion (2.1.1) have been written in the Lagrangian coordinate
system. The necessity of such a description stems from the fact that the dynamic
equation of state (2.1.9) has been written to the mass element of a medium. Besides,
the use of the Lagrangian coordinates is important for the application of the method
of asymptotic averaging, since in these coordinates the structure is independent of a
wave process.

2.2 Asymptotic averaged system of equations

A regularity of structure and a nonlinearity of long-wave processes investigated here
specify the choice of mathematical methods. One way of studying this heteroge-
neous medium is based on a method of asymptotic averaging of equations with high-
oscillating coefficients [11, 12, 16, 132, 164]. The essence of this method consists in
the application of a multiscale method in combination with a space averaging. In
accordance with this method, the mass space coordinate m = lν/V0 is divided into two
independent coordinates: slow coordinate s and fast one ξ, wherein

m = s+ εξ,
∂

∂m
=

∂

∂s
+ ε−1

∂

∂ξ
. (2.2.1)

The slow coordinate s corresponds to a global change of the wave field and s is a
constant value during a period, while the fast coordinate ξ traces the variations of a
field in the structure period. The dependent functions are presented as a degree series
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over the structure period ε

V (m, t) = V (0)(s, t, ξ) + εV (1)(s, t, ξ) + ε2V (2)(s, t, ξ) + . . .

p(m, t) = p(0)(s, t, ξ) + εp(1)(s, t, ξ) + ε2p(2)(s, t, ξ) + . . .

u(m, t) = u(0)(s, t, ξ) + εu(1)(s, t, ξ) + ε2u(2)(s, t, ξ) + . . . .

rν(m, t) = (rν)(0)(s, t, ξ) + ε(rν)(1)(s, t, ξ) + ε2(rν)(2)(s, t, ξ) + . . .

(2.2.2)

where p(i), u(i), V (i), r(i) are defined as the one-period functions of ξ. In the Lagrangian
mass coordinates the period is a constant which allows the averaging procedure to be
performed.

We now will prove that p(0) = p(0)(s, t), p(1) = p(1)(s, t), u(0) = u(0)(s, t), (rν)(0) =
(rν)(0)(s, t) are independent of the fast variable ξ. Indeed, after substitution of Eqs. (2.2.1)
and (2.2.2) into the initial equations of motion, we obtain

−ε−1
∂(rν)(0)

∂ξ
+ ε0

(
∂(rν)(0)

∂s
− ∂(rν)(1)

∂ξ
− V (0)

)
+ . . . = 0,

ε0
(
u(0) − ∂r(0)

∂t

)
+ . . . = 0,

−ε−1ν(rν−1)(0)
∂(p(0)

∂ξ
+ ε0

(
∂u(0)

∂t
+ ν(rν−1)(0)

∂p(0)

∂s

+ν(rν−1)(1)
∂p(0)

∂ξ
+ ν(rν−1)(0)

∂p(1)

∂ξ

)
+ . . . = 0,

−ε−1ν
∂(rν−1)(0)u(0)

∂ξ
+ ε0

(
∂V (0)

∂t
+ ν

∂(rν−1)(0)u(0)

∂s

−ν
∂(rν−1)(1)u(0)

∂ξ
− ν

∂(rν−1)(0)u(1)

∂ξ

)
+ . . . = 0,

According to the general theory of the asymptotic method, the terms of equal pow-
ers of ε should vanish independently of each other. Thus, ∂p(0)/∂ξ = 0, ∂u(0)/∂ξ = 0,
∂(rν−1)(0)/∂ξ = 0, i.e. p(0) = p(0)(s, t), u(0) = u(0)(s, t), r(0) = r(0)(s, t) are independent
of ξ. Furthermore

∂(rν)(0)

∂s
+

∂(rν)(1)

∂ξ
= V (0),

u(0) =
∂r(0)

∂t
,

∂u(0)

∂t
+ ν(rν−1)(0)

∂p(0)

∂s
+ ν(rν−1)(0)

∂p(1)

∂ξ
= 0,

∂V (0)

∂t
− ν

∂(rν−1)(0)u(0)

∂s
− ν

∂(rν−1)(1)u(0)

∂ξ
− ν

∂(rν−1)(0)u(1)

∂ξ
= 0.

(2.2.3)

Thus, we can average the equations during the period ξ. We define 〈·〉 = ∫ 1

0
(·)dξ,

and perform the normalization
∫ 1

0
dξ = 1. Since p(1), u(1) and r(1) are periodic, the
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integrals can be calculated as 〈∂p(1)/∂ξ〉 = 0, 〈∂u(1)/∂ξ〉 = 0, 〈∂r(1)/∂ξ〉 = 0. Moreover,
as 〈u(0)〉 = u(0), 〈p(0)〉 = p(0) than ∂p(1)/∂ξ = 0. This means that p(1) does not also
depend on ξ. After integrating over the structure period the equations containing the
value of zero order of ε, we obtain the averaged system

∂(rν)(0)

∂s
= 〈V (0)〉,

u(0) =
∂r(0)

∂t
,

∂u(0)

∂t
+ ν(rν−1)(0)

∂p(0)

∂s
= 0,

∂〈V (0)〉
∂t

− ν
∂(rν−1)(0)u(0)

∂s
= 0

(2.2.4)

with the averaged equation of state

d
〈
V (0)
〉
= −

〈
(V (0))2

c2f

〉
dp−

〈
V (0)

τpVe(p(0))

(
V (0) − Ve(p

(0))
)〉

dt. (2.2.5)

Unlike the values u(0), p(0), p(1) and r(0), the specific volume V (0) is a function of ξ.
Hereafter, we will consider only the zero approximation of the equations and, therefore,
the upper index 0 is omitted. Choosing the wavelength λ to be large enough we can
always reduce the effect to zero from other approximation terms.

The averaged system of equations (2.2.4), (2.2.5) is an integro-differential one and,
in the general case, is not reduced to the averaged variables p, u and 〈V (0)〉. The
derivation of equations (2.2.4), (2.2.5) relates to a rigorous periodic medium. How-
ever, it may be shown that equations (2.2.4), (2.2.5) are also relevant to media with a
quasi-periodic structure. Indeed, the pressure p and the mass velocity u are indepen-
dent of the fast variable ξ. Hence on a microscale ξ, the action is statically uniform
(waveless) over the whole period of the medium structure, while on the slow scale s,
the action of perturbation is manifested by the wave motion of the medium. On a
microlevel the behavior of medium adheres only to the thermodynamic laws. There
is a mechanical equilibrium. On a macrolevel, the motion of medium is described by
the wave dynamics laws for averaged variables. Mathematically, in the zero-order case
of ε, the size of the period is infinitesimal (ε → 0). This signifies that the location
of particular components in the period is irrelevant. The equations (2.2.4), (2.2.5) do
not change their form if the components are broken and/or change their location in an
elementary cell. This means that equations (2.2.4), (2.2.5) describe the motion of any
quasi-periodic (statistical heterogeneous) medium which has a constant mass content
of components on the microlevel, and the location of these components within the cell
is not important.

In the case of nonlinear wave propagation, the individual components suffer dif-
ferent compressions. The structure of medium is changed, with the result that the
averaged specific volume 〈V 〉 is changed. This change differs from the change of the
specific volume for homogeneous medium under the same loading. Thus, the structure
of medium is manifested in the wave motion, despite the fact that the equations of
motion (2.2.4) (but not the equation of state) are written down for the averaged values
u, p, 〈V 〉 only.
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2.3 System of equations in Eulerian coordinates

In certain cases of theoretical analysis it is more convenient to use the Eulerian coor-
dinate system. The immediate employment of the averaging asymptotic method in
Eulerian variables is impossible because of the variability of the microstructure sizes.
However, from the zero approximation in the equations of motion (2.2.1), which are
presented by the averaged values p, u, 〈V 〉, the equations can be rewritten in the Eu-
lerian system of coordinates (r, tE) by means of a transformation from the Lagrangian
system (s, t) [164, 168, 169, 170, 171, 172]

r = r(s, t), tE = t. (2.3.1)

There is an important presumption that the velocity of the particle in the zero
approximation is constant over a period of the structure and, consequently, we can
describe an averaged trajectory for the particle(

∂r(s, t)

∂t

)
s

= u(s, t). (2.3.2)

From the physical point of view, it is clear that the position of the particle is unam-
biguously defined by its coordinate and time

drν = Ads+ νrν−1udt, tE = t. (2.3.3)

From the mathematical point of view this means that in the transformation (2.3.3) the
value drν is a total differential. Therefore, we must have

∂A

∂t
=

∂νrν−1u

∂s
.

This condition is satisfied if A = 〈V 〉, because the equation converts into the continuity
equation (2.2.4). We obtain the following transformation between Lagrangian and
Eulerian systems of coordinates:

drν = 〈V 〉ds+ νrν−1udt, tE = t. (2.3.4)

It is reasonable to define the slow Lagrangian coordinate (non-mass one) as

Rν = s〈V 〉. (2.3.5)

Equations (2.2.4) in the Eulerian system of coordinates then take the form

∂〈V 〉−1
∂tE

+
∂rν−1u〈V 〉−1

∂r
= 0,

∂u

∂tE
+ u

∂u

∂r
+ 〈V 〉∂p

∂r
= 0.

(2.3.6)

It is convenient to determine the fast Eulerian coordinate ζ as(
∂ζ

∂ξ

)
t

=
ρ̃

ρ(ξ)
. (2.3.7)
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It should be noted that the average density ρ̃ in the Eulerian coordinates is a value
usually used for density. A chain of identities

〈V 〉 =
1∫

0

V (ξ)dξ =

1∫
0

V
ρ

ρ̃
dζ = ρ̃−1 (2.3.8)

proves that 〈V 〉−1 is the average density of the medium in the Eulerian coordinates.
Note that ρ̃ �= 〈ρ〉. The value ρ̃ is a real density. The value 〈V 〉 is the specific volume
averaged in units of mass over the period and it is expressed as the ratio of the volume
to the mass inside this volume. This value can be determined experimentally. At
the same time the averaged values p and u coincide in both Lagrangian and Eulerian
systems of coordinates. Now the equations of motion (2.3.6) can be written in the
usual form of the averaged density ρ̃.

The notation of the equations of motion in the averaged values enables us to suggest
the method of the computer solution for the system of equations, where the integration
step is restricted by the perturbation wavelength and not by the period of the structure
[171, 172] (see point 2.4.3) Then the main computational problem associated with the
smallness of the integration step can be avoided, and the equations of motion can be
solved at large distance of wave propagation within a reasonable time.

2.4 Analysis of the averaged system of equations

In this section we will study some general properties of the averaged system of equa-
tions, and will obtain a rigorous mathematical proof that for the acoustic level the long
wave dynamic behavior of the medium with a microstructure can be modeled within
the framework of a homogeneous relaxing medium. At the same time the description
of nonlinear waves can not be reduced to the average characteristics of wave field [164].

2.4.1 Acoustic waves

Let us consider an acoustic wave (p′ = p − p0, p
′ � p0). We shall prove that the

propagation of the acoustic waves in a periodic medium with a calculable number of
relaxation components is similar to that in a homogeneous medium with the same
number of independent relaxation processes.

Now we shall show it for a two-layer periodic medium with one process of relaxation
in each structure element. The averaged equation of state (2.2.5)

d 〈V 〉 = −
〈
V 2

c2f

〉
dp−

〈
V

τVe(p)
(V − Ve(p))

〉
dt

for small perturbations in this medium can be represented as

−〈V ′〉 = 〈V 2/c2f
〉
p′ + κ

V 2
1 (c

−2
1e − c−21f )

1 + τ1 per
d
dt

p′ + (1− κ)
V 2
2 (c

−2
2e − c−22f )

1 + τ2 per
d
dt

p′, (2.4.1)

〈
V 2/c2e

〉
= κV 2

1 /c
2
1e + (1− κ)V 2

2 /c2e,
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where index 1 relates to the first component, and index 2 — to the second component.
Here κ is a coordinate of the boundary between the components in the elementary cell.
Note that the values κ and 1− κ are equal to the mass concentration of the first and
the second component, respectively.

For comparison we take the homogeneous medium with two independent relaxation
processes. The state equation of this medium for small perturbations has a form [88]

−V ′ =
V 2

c2f
p′ +

V 2(c−2e1 − c−2f1 )

1 + τ1 hom
d
dt

p′ +
V 2(c−2e2 − c−2f2 )

1 + τ2 hom
d
dt

p′, (2.4.2)

c−2f =
∑
i

c−2fi .

It should be noted that the alphanumeric indices for the homogeneous medium and for
the periodic one have a reverse succession. Here, index 1 relates to the first relaxation
process, and index 2 — to the second process.

Now we can write six relationships

κiV
2
i (c

−2
ie − c−2if )per = V 2(c−2ei − c−2fi )hom,

〈V 2/c2e〉 = V 2
∑
i

c−2ei ,
〈
V 2/c2f

〉
=
(
V 2/c2f

)
hom

,

τi per = τi hom, κ1 = κ, κ2 = 1− κ, i = 1, 2.

(2.4.3)

These equations show that for any two-component medium with the two relaxation
components (τi per, cie, cif ) (see Eq. (2.4.1)) we can pick up the homogeneous medium
with two relaxation processes (τi hom, cei, cfi) (see Eq. (2.4.2)). In such media the
perturbations 〈V 〉, p, u move in a similar way. Regarding the density 〈ρ〉 this statement
is incorrect. The result can be easily expanded on the media with a calculable number
of the relaxation components. This result proves the statement that in the studies
of acoustic wave propagation in a periodic medium with N relaxation components,
this medium can be substituted by a homogeneous medium in which there are N
independent relaxation processes.

The similarity of the propagation of small perturbation in periodic and homoge-
neous media has been verified numerically. As it was expected, we obtained the tradi-
tional result. An inner structure of the medium manifests itself only by means of the
dispersive dissipative properties. For the acoustic level the long wave dynamic behavior
of the medium with a microstructure can be modeled within the homogeneous relaxing
medium. In the past such a statement was accepted a priori. In our case we have
obtained a rigorous mathematical proof of this statement on the basis of a account, in
details, of the structure of medium.

2.4.2 Nonlinear waves

We will analyze the propagation of nonlinear waves in a structured medium. To make
the results more clear, we will restrict our consideration to a nonrelaxation media
(c = cf = ce). The averaged equation of state in this case is simplified to the form

d〈V 〉 = −
〈
V 2

c2

〉
dp, (2.4.4)
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and we can introduce an effective sound velocity by the formula

ceff =

√
〈V 〉2

/〈
V 2

c2

〉
. (2.4.5)

We obtain a traditional representation of the system of equations (2.2.4), (2.2.5) and
(2.4.4).

The system of the equations is concerned in the hyperbolic type of a system. Now
we restrict ourselves to the plane symmetry (ν = 1). Substituting the equation of state
(2.4.4) into the equation of the continuity (2.1.1), we get〈

V 2

c2

〉
∂p

∂t
+

∂u

∂s
= 0. (2.4.6)

The combination of this equation with the last equation (2.1.1) (ν = 1) leads to the
relationships(

∂u

∂t
±
〈
V 2

c2

〉1/2
∂p

∂t

)
±
〈
V 2

c2

〉−1/2(
∂u

∂s
±
〈
V 2

c2

〉1/2
∂p

∂s

)
= 0. (2.4.7)

From this relationship it is seen that the averaged system of the equations pertains to
the hyperbolic system. The equations for the characteristic in Lagrangian coordinates
(mass space coordinate) have the forms

ds

dt
= ±

〈
V 2

c2

〉−1/2
. (2.4.8)

In characteristic the relations are the following

I± = u±
∫ 〈

V 2

c2

〉1/2

dp. (2.4.9)

Analogously to the homogeneous medium we call these relations as the Riemann invari-
ants. The value (2.4.8) has the physical meaning, namely, it is the averaged velocity
of the wave propagation in the Lagrangian coordinates. This velocity depends on a
pressure and integrally on a structure. Note the special case. It is known that in vac-
uum the wave does not propagate. This result also follows formally from Eq. (2.4.8).
The hyperbolism of a system points up that this system can describe the shock wave.
The equations for the characteristic (2.4.8) and the Riemann invariants (2.4.9) are the
integro-differential equations, since they retain the variable 〈V 2/c2〉, which depends on
the properties of the structure elements in medium.

Normalization on the averaged specific volume 〈V 〉 and the initial sound velocity
ceff allows us to compare the results for various media. For convenience we have chosen
that the acoustic waves in these media propagate in a similar way (see Eq. (2.4.3)).

It should be noted that ceff is not an averaged value, i.e. c2eff �= 〈c2〉. Evidently, the
structure of the medium introduces a certain contribution to the nonlinearity. In fact,
even if cf �= f(p), then in the general case the value of ceff is a function of pressure.
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The system of equations (2.2.4) is hyperbolic ones, and this specifies the breaking
solutions which are shock waves. For the analysis of such solutions, it is necessary to
present Eq. (2.2.4) in the form of integral conservation laws∮

[〈V 〉 ds+ udt] = 0,

∮
[uds− pdt] = 0. (2.4.10)

Now we can easily formulate the conditions on the shock front, when there is con-
servation of the fluxes of mass and of impulse through the shock front

(〈V1〉 − 〈V0〉)D + u1 − u0 = 0, (u1 − u0)D − p1 + p0 = 0, (2.4.11)

where indexes 0 and 1 relate to the parameters of the flow before and after the front,
respectively. Hence, the formula for the averaged velocity of the shock front in terms
of the Lagrangian variable D (dimension [D] is kg/s) and the mass velocity u follow
from the following relations:

D =
√

(p1 − p0)/(〈V0〉 − 〈V1〉),

u1 − u0 =
√
(p1 − p0)(〈V0〉 − 〈V1〉).

(2.4.12)

2.4.3 Analytical–numerical calculation method

Simultaneously with the analytical methods for theoretical investigation, we have car-
ried out the purposeful numerical experiments that are universal to solve the problems
considered here. The calculation has been focused both to confirm the analytical results
and obtain the features of the studied wave propagation.

The equations of motion (2.2.4)

∂rν

∂s
= 〈V 〉, u =

∂r

∂t
,

∂u

∂t
+ νrν−1

∂p

∂s
= 0,

are to be written in the averaged variables p, u, 〈V 〉, r depending only on slow space
coordinate s and time t. The equation of state (2.2.5)

d 〈V 〉 = −
〈
V 2

c2f

〉
dp−

〈
V

τpVe(p)
(V − Ve(p))

〉
dt

is integro-differential one with two independent variables — slow coordinate s and
fast coordinate ξ. The method for finding of the solutions for the equation system
(2.2.4)–(2.2.5) is not obvious.

Let us describe the conceivable approaches in order to reduce the equation of state
to the form where the desired variables are to be dependent on slow variable s and
time t only [165, 167, 170, 171, 172]. A number of possible ways can be suggested to
obtain such form of the equation of state. Now we write two of them. First, there is an
universal way with the application of the Fourier transformation [165, 170, 171, 172].
Second, in special case for the layered media we suggest to use the orthogonal basis
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which consists of segmentwise permanent functions. This approach allows to carry on
the required calculation with suitable computational resource.

At first we consider the universal way. All functions depending on ξ are presented
in a form of the Fourier series on interval associated with structure period of a medium.
It is convenient to apply a relationship

ρV = 1, (2.4.13)

which is also valid for zero-approximation ρ(0)V (0) = 1.
In equations (2.2.5), (2.4.13) the values ρ, c−2f , c−2e , V , τ−1p depending on ξ are

written as Fourier series on interval ξ ∈ [0, 1], for example, for V (ξ)

V (ξ) = V ′0 +
∞∑
n=1

(V ′n cos(2πξn) + V ′′n sin(2πξn)). (2.4.14)

The series expansion coefficients can be defined from the known formulas [85]. We now
rewrite the relationship (2.4.13) in the Fourier transform. Equation (2.4.13) should be
multiplied by the factor cos(2πξn) (k = 0, 1, 2, . . .), and then after the integration
over ξ, we obtain for k = 0

1 = ρ′0V
′
0 +

1
2

∞∑
n=1

(ρ′nV
′
n + ρ′′nV

′′
n ) ≡ ψ(ρ, V ), (2.4.15)

and for k = 1, 2, 3, . . .

0 = ρ′0V
′
k + ρ′kV

′
0 +

1
2

∞∑
n=1

(ρ′nV
′
n+k + ρ′n+kV

′
n + ρ′′nV

′′
n+k + ρ′′n+kV

′′
n )

+1
2

k−1∑
n=1

(ρ′nV
′
k−n − ρ′′nV

′′
k−n) ≡ ψk(ρ, V ).

(2.4.16)

Similar to this procedure the equation (2.4.13) can be multiplied by the factors sin(2πξn)
with k = 1, 2, 3, . . ., then we have

0 = ρ′0V
′′
k + ρ′′kV

′
0 +

1
2

∞∑
n=1

(ρ′nV
′′
n+k − ρ′n+kV

′′
n + ρ′′n+kV

′
n − ρ′′nV

′
n+k)

+1
2

k−1∑
n=1

(ρ′k−nV
′′
n − ρ′′nV

′
k−n) ≡ ϕk(ρ, V ).

(2.4.17)

For the sake of convenience we introduce the function ψk(ρ, V ) and ϕk(ρ, V ).
Now we rewrite the equation of state (2.2.5) in an appropriate form in order to

present it in Fourier transform(
dρ

dt
− c−2f

dp

dt

)
+ c−2f τ−1p (p− p0) + τ−1p (ρ− ρ0) = 0. (2.4.18)

The equation (2.4.18) reviles the product of no more than two functions depending on
ξ, namely, c−2f τ−1p , τ−1p (ρ − ρ0). The existence of terms with product of two functions
only depending on ξ allows one to simplify the finding of the solutions.
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In the Fourier transform from the equation of state we obtain 2k + 1 equations.
Indeed, multiplying by factor cos(2πξn) or sin(2πξn) for each k = 0, 1, 2, . . . and
integrating over period ξ ∈ [0, 1], we obtain

dρ′0
dt

− (c−2f )′0
dp

dt
− ψ(c−2f , τ−1p )(p− p0) + ψ(τ−1p , ρ− ρ0) = 0.

dρ′k
dt

− (c−2f )′k
dp

dt
− ψk(c

−2
f , τ−1p )(p− p0) + ψk(τ

−1
p , ρ− ρ0) = 0.

dρ′′k
dt

− (c−2f )′′k
dp

dt
− ϕk(c

−2
f , τ−1p )(p− p0) + ϕk(τ

−1
p , ρ− ρ0) = 0.

(2.4.19)

As a result, we have the infinite system of equations (2.4.14)–(2.4.19) in which the
variables p, u, ρk, Vk are the functions of s and t only. The density and the specific
volume as functions of a slow variable s can be found from the sums of the Fourier
series. In numerical calculations we can restrict ourselves by the partial sums of the
finite Fourier series, whereas in this case the equation system is the closed system.
The accuracy in the describing wave processes is defined by the accuracy of the finite
Fourier series to reproduce the structure of a medium.

The described method is universal for finding the solutions of integral differential
system of the equations. However, if the components differ widely in sizes, then a
calculation throughout finite Fourier series becomes cumbersome. For overcoming of
this restriction we suggest to use the orthonormalized basis which could be appropriate
for studying a model period medium. For a layered medium, the components can be
described by the segmentwise permanent functions while the sizes of components are
constant in the Lagrangian system of coordinates. It is clear that the segmentwise
permanent basis is to be more appropriate for describing these segmentwise permanent
functions. Then the sought variables in this basis can be expanded in the finite series.

Let us consider the layered medium consisting of the N -components. Let κi be the
coordinate of the boundary of i component in the fast variable ξ within one structure
period. It is important that the boundaries in the Lagrangian coordinates are indepen-
dent of wave process, i.e. κi = const. The segmentwise permanent orthogonal basis is,
by definition, as follows

g0 = 1, κ0; (2.4.20)

gi(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 0 ≤ ξ < κi−1;

k−1i (1− κi), κi−1 ≤ ξ < κi;

k−1i (κi−1 − κi), κi ≤ ξ < 1;

i = 1, 2, . . . , N − 1,

where k2
i = (1 − κi−1)(1 − κi)(κi − κi−1). The graphical illustration of the basic

functions is presented in Fig. 2.1. It is early to verify that gi(ξ) are orthogonal, since∫ 1

0
gigjdξ = δij. The reduce of the equation system to the form depending only on

slow coordinate can be carried out in manner that is similar to the procedure when the
Fourier series were applyed. The functions depending on ξ are rewritten in form, for
example, for specific volume

V (ξ) =
N−1∑
i=0

giVi. (2.4.21)
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NN-1N-221
... ...

. . . . . . . . . . . . . . . . .

Figure 2.1: One period of the layered medium (upper). The basic functions gi (lower).

The coefficients Vi are independent of the fast variable ξ. Let us expand the equa-
tions (2.4.13) in basis (2.4.20). Multiplying this equation by gi and integrating over
structure period, we obtain

1 =
N−1∑
i=0

ρiVi ≡ μ0(ρ, V ),

0 = ρ0Vk + ρkV0 + akρkVk ≡ μk(ρ, V ), k = 1, 2, . . . , N − 1.

(2.4.22)

The coefficients ai are found from relationships

ai =
1− 2κk + κk−1

κk

.

The same procedure for state equation (2.4.18) gives

ṗ(c−2f )k + ρ̇k + μk(τ
−1
p , c−2e )(p− p0)− μk(ρ− ρ0, τ

−1
p ) = 0. (2.4.23)

As a result, we have the system of 2N +2 equations (2.2.4), (2.4.13), (2.4.22), (2.4.23),
where the functions depend only on slow space variable s and time t. In this case, the
structure of the layered medium is reproduced exactly by finite series in contrast when
the Fourier series are used. It allows to carry out the calculations for model media,
while their components differ in sizes.

Consequently, we have overcame the principal difficulty, namely, now the equation
system consists of the functions depending only on s and t but not on ξ. The numerical
algorithm for finding of wave fields can be realized without account of component sizes
but with account of wavelength of a perturbation. Thus, this approach enables one to
describe the wave fields for long distances.

2.5 Lyakhov model as special case of an asymptotic

averaged model

The derivation of the averaged equations of motion (2.2.4) and (2.2.5) gives the rigorous
mathematical foundation for the use of one-velocity continuous models for a heteroge-
neous medium, and these models are of asymptotic origin. One of these models is a
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well-known Lyakhov model. Over several years this last model has been successfully
applied to describe explosions and nonlinear waves in soil [91, 92, 150]. Now we will
prove that the Lyakhov model is particular case of the asymptotic averaged model.

The experiments which have been conducted over a number of years on the action
of explosive and shock loading on the soft soil (see Ref. [204]) show an effect of time
lag of the strain with respect to the stress (relaxation effect) and large deformations
of the soil. The Lyakhov model enables us to take into account all these effects and
describe the propagation of nonlinear waves (explosion, shock waves) in soil and also in
a bubble media [91, 92]. In this approach the multicomponent medium is considered as
a homogeneous continuum with a special equation of state. The macrovolume includes
all the components that compose the medium. The average values: pressure pL, specific
volume VL, mass velocity uL are defined in the standard way. The equations of motion
have the following form in the Lagrangian coordinate system [92]:

∂VL

∂t
− νVL0

∂rν−1L uL

∂Rν
= 0, uL =

∂rL
∂t

,

∂uL

∂t
+ VL0

( r
R

)ν−1 ∂pL
∂R

= 0.

(2.5.1)

There is a direct connection between Lyakhov model and the averaged equations (2.2.4)
and (2.2.5). First we will show that the variable VL introduced by Lyakhov is nothing
more than the averaged value of the specific volume in the mass Lagrangian coordinate
〈V 〉. In order to do it we will start by making the following transformation. The value
of a specific volume VL is expressed through the initial volume content of the i-th com-
ponent αi by the formula (see p. 56 in Ref. [92]) VL = VL0

∑3
i=1 αiVi/Vi0. It is easily

seen that

VL

V0L

=
3∑

i=1

αi
ρi0
ρi

=
3∑

i=1

ρ̃0
ρi0

βi
ρi0
ρi

= ρ̃0

3∑
i=1

βiVi = 〈V0〉−1〈V 〉. (2.5.2)

where we used the connection between the parameter αi and the size of i-th component
βi (in mass Lagrangian coordinates)

αi = βi
ρ̃0
ρi0

. (2.5.3)

The value βi is the mass content of the i-th component. Obviously, βi is constant and
independent of the wave motion.

As shown earlier in the asymptotic averaging method for zero order, the pressure
and mass velocity are independent of the fast coordinate ξ. At the same time in
Lyakhov model it is suggested, a priori, that the pressure in all components is equal,
and these components move with equal velocities. Comparing the equations of mo-
tion (2.2.4) and (2.2.5), we can see that there are connections between the values of
pressure pL = p(0), the values of mass velocities uL = u(0), and the values of Eulerian
space coordinates rL = r(0). Hereafter, the index L on p, u and r is omitted.

The microstructure is taken into account by means of the dynamic equation of state
in Lyakhov model [92]

V̇L

VL0

= ϕ(pL)ṗL − α1

η
ψ(pL, VL), (2.5.4)
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ϕ(pL) = −
3∑

i=2

αi

ρi0c2i0

[
γi(pL − p0)

ρi0c2i0
+ 1

]−(1+γi)/γi

,

ψ(pL, VL) = pL − p0 − ρ10c
2
10

γ1

×
⎧⎨⎩
[
VL

V0L

−
3∑

i=2

αi

(
γi(pL − p0)

ρi0c2i0
+ 1

)−1/γi]−γ1
αγ1
1 − 1

⎫⎬⎭ .

(2.5.5)

Here the index number 0 relates to the initial nonperturbed state; 1 corresponds to the
parameters of air; 2 — to the parameters water; 3 — to the solid substance; αi is the
initial volume content of the i-th phase in soil;

∑3
i=1 αi = 1; and γi is the exponent

in the Tait equations of state. The coefficient of the volume viscosity η plays an
important role in Lyakhov equations of state. Whereas, in the general case it depends
on the pressure and the specific volume η = η(p, VL).

At ṗ = 0 and V̇L = 0 we obtain the following equation of the equilibrium compress-
ibility medium:

VL

V0L

=
3∑

i=1

αi

(
γi(pL − p0)

ρi0c2i0
+ 1

)−1/γi
. (2.5.6)

The sound velocity in such a process can be found by the formula [92]

cL =

3∑
i=1

αi

(
γi(pL − p0)

ρi0c2i0
+ 1

)−1/γi
{
V −1L0

3∑
i=1

αi

ρi0c2i0

[
γi(pL − p0)

ρi0c2i0
+ 1

]−(1+γi)/γi
}1/2

. (2.5.7)

Let us now compare the equations of state (2.2.5) and (2.5.4). We shall prove that
the equation of state (2.5.4) in Lyakhov model implies that the medium cannot be
considered as homogeneous one and this equation of state is an averaged equation.

At first we shall consider the nonrelaxation medium. In this case the equation of
state (2.5.4) takes the form of equation (2.5.6). It can be shown that expressions (2.5.6)
and (2.4.4) coincide if in equation (2.2.5) the dependence of the sound velocity on the
pressure is concretely defined by Tait relationship as in equation (2.5.6). Therefore, we
must check the case p → p0. The substitution of expression (2.5.3) into equation (2.5.7)
gives

cL0 =

(
V −1L0

3∑
i=1

αi

ρ2i c
2
i0

)−1/2
= VL0

(
3∑

i=1

βi
V 2
i0

c2i0

)−1/2

= 〈V0〉
〈
V 2
0

c20

〉−1/2
= (ceff)0.

Hence, we have proved that the sound velocity cL0 is an effective averaged sound
velocity for the periodic medium ceff0 (2.4.5). Thus the expression (2.5.7) changes to the
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equation (2.4.4). Let us take into account the processes of relaxation and consider the
dynamic equation of state in Lyakhov model (2.5.4), (2.5.5). For weak perturbations
we have

ψ(p, VL)= Δp− ρ10c
2
10

γ1

⎡⎣{ VL

VL0

−
3∑

i=2

αi

(
γiΔp

ρi0c2i0
+ 1

)−1/γi}−γ1
αγ1
1 − 1

⎤⎦
= Δp− ρ10c

2
10

γ1

[{
VL − (VL)e

VL0

+ αi

(
γiΔp

ρi0c2i0
+ 1

)−1/γ1}−γ1
− 1

]

= Δp− ρ10c
2
10

γ1

(
−γ1

VL − (VL)e
α1VL0

+
γ1Δp

ρi0c2i0

)
= ρ10c

2
10

VL − (VL)e
α1VL0

,

where (VL)e is defined by Eq. (2.5.6). The equation of state takes the form

V̇L

VL0

= ϕ(pL)ṗL − ρ10c
2
10

η

VL − (VL)e
α1VL0

. (2.5.8)

We will now consider the value of ϕ in equation (2.5.5). The sum is calculated for the
solid components (i = 2, 3) and this signifies that the high-frequency sound velocity of
a multicomponent medium is determined by the sound velocity in the solid components.
The gas phase is considered as incompressible one for these perturbations [92] (c1f →
∞). We will now restore this term and take the high-frequency sound velocity c1f equal
to the sound velocity in the solid component, and under the condition p → p0 we can
obtain

ϕ(p) = −
3∑

i=2

αi

ρi0c2i0
= −

3∑
i=1

αi

ρi0c2if
= −〈V0〉−1

〈
V 2

c2f

〉
. (2.5.9)

Finally, when we use the notation of the model of asymptotic averaging vL = 〈V 〉
together with Eq. (2.5.9) then the Lyakhov equation of state (2.5.8) takes the following
form:

〈V̇ 〉 = −
〈
V 2

c2f

〉
ṗ− 〈V 〉 − 〈Ve〉

τ
. (2.5.10)

where τ = ηV10/c
2
e1. Thus, we see that expression (2.5.10) is the averaged equation of

state. It does not reduced to the averaged variables p, u, 〈V 〉, τ because of the term
〈V 2/c2f〉.

Let us compare expression (2.5.10) with the dynamic equation of state for a pe-
riodic medium (2.2.5). In a periodic medium the relaxation processes are considered
to occur in each component. Eq. (2.2.5) becomes the expression (2.5.10) only when
one component is a relaxing component, whereas in Lyakhov model the dependence of
sound velocity on pressure is concretely defined.

Thus, a rigorous mathematical analysis has shown that for both models the equa-
tions of motion are written in terms of averaged values p, u, 〈V 〉, while the properties of
separate components are contained in the equations of state. It is shown that the equa-
tions of motion coincide completely. The dynamic equations of state of the averaged
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description for these models also coincide in the sense that only one relaxation process
is considered in the Lyakhov model. However, in Lyakhov model the dependence of
sound velocity on the pressure is defined concretely, and the gas phase is considered
incompressible for high-frequency perturbations. Our approach explains these details
in a rigorous manner. Therefore, using an asymptotic method Lyakhov model has been
directly verified. Thus, it is proved that Lyakhov model is of asymptotic origin.

2.6 Conclusions

Thus, in this chapter we present an asymptotic averaged model to explain the propa-
gation of long nonlinear waves in a nonequilibrium medium with a regular structure.
In the general case, the averaged system of equations is integrodifferential and does not
reduce to the averaged variables p, u, 〈V 〉. On a microstructure level of the medium the
dynamic behavior adheres only to the thermodynamic laws. On a macrolevel the mo-
tion of the medium can be described by wave dynamic laws for averaged variables with
an integrodifferential equation of state containing the characteristics of microstruc-
ture in medium. The suggested model justifies the one-velocity continuous model. A
comparison of this model was carried out with Lyakhov model for the natural multi-
component media. We have shown that the Lyakhov model is of asymptotic origin.
A rigorous mathematical proof is provided for the statement that on an acoustic level
for long waves the inner structure of the medium manifests itself only by means of
the dispersive dissipative properties, and the dynamic behavior of the medium can be
modeled in the framework of a homogeneous relaxing medium. However, the long wave
with a finite amplitude responds to the structure of the medium so that the behavior
of the structured medium cannot be modeled by a homogeneous medium.

An important result (which will be proved in Sec. 6.1) foretold by this model is that
the medium structure always increases the nonlinear effects on the long waves, and a
nonlinearity takes place even if the individual components are described by a linear
law. In chapter 6 we will prove that this effect provides the basis for a new method
of diagnostics to define the properties of multicomponent media using the evolution of
long nonlinear waves.



Chapter 3

Solitons in homogeneous relaxing
medium

The physical phenomena and processes that take place in nature generally have com-
plicated nonlinear features. This leads to nonlinear mathematical models for the real
processes. The modern physicist should be aware of aspects of nonlinear wave theory
developed over the past few years. There is much interest in the practical issues in-
volved, as well as the development of methods to investigate the associated nonlinear
mathematical problems including nonlinear wave propagation. An early example of
the latter was the development of the inverse scattering method for the Korteweg-de
Vries (KdV) equation [47] and the subsequent interest in soliton theory.

Starting from a general idea of relaxing phenomena in real media via a hydro-
dynamic approach, we will derive a nonlinear evolution equation for describing high-
frequency waves. To develop physical models for wave propagation through media with
complicated inner kinetics, notions based on the relaxational nature of a phenomenon
are regarded to be promising. From the nonequilibrium thermodynamics standpoint,
models of a relaxing medium are more general than equilibrium models.

We will show how the KdV equation arises in modeling the propagation of low-
frequency waves in a relaxing medium. In high-frequency case the waves in a re-
laxing medium are described by an equation called now in scientific literature as the
Vakhnenko equation (VE). The VE is related to a particular form of the Whitham
equation. Periodic and solitary traveling wave solutions are found by direct integra-
tion. Some of these solutions are loop-like in nature. The VE can be written in an
alternative form, now known as the Vakhnenko-Parkes equation (VPE), by a change
of independent variables. The VPE can be written in Hirota bilinear form. It is then
possible to show that the VPE has the N -soliton solution. This solution is found by
using a blend of the Hirota method and ideas originally proposed by Moloney and
Hodnett [101]. This solution is discussed in detail, including the derivation of phase
shifts due to the interaction between solitons. Hence, the suggested equation has am-
biguous loop-like solutions. It is established that a dissipative term, with a dissipation
parameter less than some limit value, does not destroy these loop-like solutions.

25
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3.1 Low-frequency and high-frequency perturbations

in relaxing medium

To analyze the wave motion in relaxing medium, we shall use the hydrodynamic equa-
tions in planar symmetry (ν = 1): the mass conservation law (2.1.2)

∂V

∂t
+

∂u

ρ0∂x
= 0 (3.1.1)

and the momentum conservation law (2.1.1)

∂u

∂t
− ∂u

ρ0∂x
= 0. (3.1.2)

The closed system of equations consists of two motion equations (3.1.1), (3.1.2) and
the dynamic state equation (2.1.9)

τρ

(
dpe
dt

− c2f
dρ

dt

)
+ (p− pe(ρ)) = 0

that is applied to account for the relaxation effects.
Let us consider a small perturbation p′ � p0. The equations of state for fast (2.1.4)

and slow (2.1.5) processes are considered to be known. They can be expanded as the
power series with accuracy O(p′2)

Vf (p0 + p′) = V0 − V 2
0 c
−2
f p′ +

1

2

d2Vf

dp2

∣∣∣∣
p=p0

p′2 + . . . ,

Ve(p0 + p′) = V0 − V 2
0 c
−2
e p′ +

1

2

d2Ve

dp2

∣∣∣∣
p=p0

p′2 + . . . .

(3.1.3)

Hereafter, the velocities ce, cf are related to the initial pressure p0. Combining these two
relationships with the equations of motion (3.1.1) and (3.1.2), we obtain the equation
in one unknown quantity (the dash in p′ is omitted) [153, 158]:

τp
∂

∂t

(
∂2p

∂x2
− c−1f

∂2p

∂t2
+

1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

∂2p2

∂t2

)

+

(
∂2p

∂x2
− c−1e

∂2p

∂t2
+

1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

∂2p2

∂t2

)
= 0.

(3.1.4)

A similar equation has been obtained in Ref. [30], but without nonlinear terms.
The hydrodynamic nonlinearity p∂p/∂x and the complicated dispersive law are

inherent in medium which is described by the evolution equation (3.1.4). Now we
consider the dispersive relation which follows from equation (3.1.4) after a substitution
of the slow perturbation in a form p′ ∼ exp[i(kx− ωt)],

−iωτp
c2e
c2f
(ω2 − c2fk

2) + (ω2 − c2ek
2) = 0. (3.1.5)
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From this relationship we obtain the functional dependence k = k(ω)

k2 =
ω2

c2f
· τ 2pω

2

1 + τ 2pω
2
·
(
1 +

i

τpω
· c

2
f − c2e
c2e

+
1

τ 2pω
2
· c

2
e

c2f

)
. (3.1.6)

Taking the roots we write the result in a form k = k′ + ik′′. It is clear that k′′ is
associated with the speed of wave attenuation as a function of the distance [88], while
a value c = ω/k′ can be considered as the velocity of the perturbation propagation.
The expressions for k′ and k′′ take the form

k′ = a1

√√
a22 + a23 + a2, k′′ = a1

√√
a22 + a23 − a2,

a1 =
τ 2pω

2

√
2cf
√
1 + τ 2pω

2
, a2 = 1 +

c2f
τ 2pω

2c2e
, a3 =

c2f − c2e
τpωc2e

.

In Fig. 3.1, for example, we show the dependencies c and k′′ on τpω for water-
saturation soil with concentration of air 0.1. For this medium cf = 1620 m/s and
ce = 260 m/s [92]. The velocity c increases monotonically from ce to cf at bottom-up
sweep τpω. The dependence k′′ = k′′(ω) points that at ω → 0 the dispersion is absent,

Figure 3.1: The dependencies of the velocity c and the attenuation factor k′′ on fre-
quency τpω.

while at high frequency the variable k′′ becomes a constant and does not depend on ω
(see Fig. 3.1) with the limit value

τpk
′′ =

c2f − c2e
2c2fc

2
e

.

Hence, the energy in high-frequency wave dissipates always. For this wave the
pressure attenuation is the same as at fixed distance and does not depend on frequency
ω.
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The equation of state in the form (2.1.9) enables us to describe the effects associated
with bulk viscosity of a medium. Let us show that for slow processes (since for these
processes the notion of viscosity coefficient is defined, i.e. for processes in which a
small deviation from equilibrium is taken into account in linear approximation) a bulk
viscosity coefficient relates to the relaxation time τρ = τpc

2
e/c

2
ρ [30, 88, 96]

ζ = τρρ(c
2
f − c2e). (3.1.7)

Let us rewrite (2.1.9) in a form of the power series p in τρd/dt. To do it, we differentiate
equation (2.1.9) with respect to time t and substitute the result into the same equa-
tion (2.1.9). Repeating several times this procedure, we obtain with required accuracy
the expression

dp = c2edρ+ τρ(c
2
f − c2e)dρ̇− τ 2ρ (c

2
f − c2e)dρ̈+ . . . . (3.1.8)

Let us consider two terms only in this relation. The value c2edρ associates with increase
of a pressure dpe in infinitely slow process, i.e. dpe = c2edρ. It is noted that the
value p acquires more general sense than merely a pressure. With accuracy of a sign
the value (−p) is nothing other than a stress πii. By definition, in the low-frequency
approximation the stress is written through the bulk viscosity coefficient [88]

πii = −pe + ζ
∂u

∂x
.

Then it is easily to obtain the expression for the bulk viscosity coefficient in the
form (3.1.7).

Now we shall show that for low-frequency perturbations the equation (3.1.4) is
reduced to the Korteweg-de Vries-Burgers (KdVB) equation, while for high-frequency
waves we shall obtain the equation with hydrodynamic nonlinearity and term that
appeared in the Klein-Gordon equation. To analyze the equation (3.1.4) let us apply
the multiscale method [99, 105]. The value ε ≡ τpω is chosen to be small (large)
parameter where the quantity ω is the characteristic frequency of wave perturbation.
For the sake of convenience we rewrite the equation (3.1.4) as follows:

τpω
∂

∂tω

(
∂2p

∂(xω)2
− c−2f

∂2p

∂(tω)2
+ αf

∂2p2

∂(tω)2

)
+

+

(
∂2p

∂(xω)2
− c−2e

∂2p

∂(tω)2
+ αe

∂2p2

∂(tω)2

)
= 0,

(3.1.9)

αf =
1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

, αe =
1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

,

and introduce the new independent variables

T0 = tω, X0 = xω, T−2 = tω/ε2, X−2 = xω/ε2. (3.1.10)

The dependent variable p is a function of T0, X0, T−2, X−2, i.e. p = p(T0, X0, T−2, X−2).
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The existing derivatives in (3.1.9) are to be rewritten in the new independent variables

∂

∂xω
=

∂

∂X0

+ ε−2
∂

∂X−2
,

∂

∂tω
=

∂

∂T0

+ ε−2
∂

∂T−2
,

∂2

∂(xω)2
=

∂2

∂X2
0

+ 2ε−2
∂2

∂X0∂X−2

+ ε−4
∂2

∂X2
−2

,

∂2

∂(tω)2
=

∂2

∂T 2
0

+ 2ε−2
∂2

∂T0∂T−2
+ ε−4

∂2

∂T 2
−2

,

∂3

∂(tω)3
=

∂3

∂T 3
0

+ 3ε−2
∂3

∂T 2
0 ∂T−2

+ 3ε−4
∂3

∂T0∂T 2
−2

+ ε−6
∂3

∂T 3
−2

,

∂3

∂tω∂(xω)2
=

∂3

∂X2
0∂T0

+ ε−2
(

∂3

∂X2
0∂T−2

+ 2
∂3

∂T0∂X0∂X−2

)
+ε−4

(
∂3

∂T0∂X2
−2

+ 2
∂3

∂X0∂X−2∂T−2

)
+ ε−6

∂3

∂X2
−2∂T−2

.

(3.1.11)

It is precisely these variables that cause the equations [155, 166, 168, 170, 171], obtained
within the framework of multiscale method [99, 105]

O(ε+1) :
∂

∂T0

(
∂2p

∂X2
0

− c−2f

∂2p

∂T 2
0

+ αf
∂2p2

∂T 2
0

)
= 0,

O(ε0) :
∂2p

∂X2
0

− c−2e

∂2p

∂T 2
0

+ αe
∂2p2

∂T 2
0

= 0,

O(ε−1) :

(
∂3

∂X2
0∂T−2

+ 2
∂3

∂T0∂X0∂X−2

)
p

−3c−2f
∂3p

∂T 2
0 ∂T−2

+ 3αf
∂3p2

∂T 2
0 ∂T−2

= 0,

O(ε−2) :
∂2p

∂X0∂X−2

− c−2e

∂2p

∂T0∂T−2
+ αe

∂2p2

∂T0∂T−2
= 0,

O(ε−3) :

(
∂3

∂T0∂X2
−2

+ 2
∂3

∂X0∂X−2∂T−2

)
p

−3c−2f

∂3p

∂T0∂T 2
−2

+ 3αf
∂3p2

∂T0∂T 2
−2

= 0,

O(ε−4) :
∂2p

∂X2
−2

− c−2e

∂2p

∂T 2
−2

+ αe
∂2p2

∂T 2
−2

= 0,

O(ε−5) :
∂

∂T−2

(
∂2p

∂X2
−2

− c−2f

∂2p

∂T 2
−2

+ αf
∂2p2

∂T 2
−2

)
= 0,

(3.1.12)

to be partially uncoupled. The two leading equations depend on T0 and X0 only, while
the last two equations include the independent variables T−2 and X−2 only. Thus, the
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low-frequency perturbations are described by the two leading equations, and the high-
frequency perturbations — by the last two equations. An interaction between these
perturbations is described by the three center equations.

Let us write out the equations of motion for low-frequency and high-frequency
perturbations in the initial variables x and t. For low-frequency perturbations the
main terms ∂2p/∂X2

0 and c−2e ∂2p/∂T 2
0 (and only they) appear in the first and second

equations of the system (3.1.12), while for high-frequency perturbations the main terms
∂2p/∂X2

−2 and c−2f ∂2p/∂T 2
−2 (and only they) appear in the sixth and seventh equations

of the system (3.1.12).
For low-frequency perturbations (τpω � 1) propagating in one direction (∂/∂x −

c−1e ∂/∂t � 2∂/∂x), we obtain an evolution equation

∂p

∂t
+ ce

∂p

∂x
+ αec

3
ep

∂p

∂x
− βe

∂2p

∂x2
+ γe

∂3p

∂x3
= 0, (3.1.13)

αe =
1

2V 2
0

d2Ve

dp2

∣∣∣∣
p=p0

, βe =
c2eτp
2c2f

(c2f − c2e),

γe =
c3eτ

2
p

8c4f
(c2f − c2e)(c

2
f − 5c2e).

This equation can be derived in the following way. A dispersion relation for the lin-
earized equation (3.1.4) can be written down with an accuracy O(k3) in the form
ω = cek + iβek

2 − γek
3, if the terms ∂p/∂x and c−1e ∂p/∂t are the main ones. For this

dispersion relation we write a linear equation in which a nonlinear term is reconstructed
in agreement with the initial equation.

The equation (3.1.13) is the well-known KdVB equation. It is encountered in many
areas of physics to describe nonlinear wave processes [3, 45, 37, 112, 107]. In [139] it
was shown how hydrodynamic equations reduce to either the KdV or Burgers equation
according to the choices for the state equation and the generalized force when analyzing
the gasdynamical waves, waves in shallow water [139], hydrodynamic waves in cold
plasma [48], and ion-acoustic waves in cold plasma [205].

As is known, the investigation of the KdV equation (βe = 0) in conjunction with
the nonlinear Schrödinger (NLS) and sine-Gordon equations give rise to the theory of
solitons [3, 37, 43, 47, 63, 64, 107, 112, 139, 206]. These equations inherent the striking
properties. This is above all the integrability. The equations can be integrated, for
instance, by the inverse scattering method. The details on the study of the mentioned
equations can be found in monographs [3, 37, 112]. Now let us clarify one of features,
namely, the existence of the soliton solution. The soliton points to the distinctive
features for these equations. The inverse scattering method, Hirota method, Bäcklund
transformation, conservation laws and integrability are concerned with the nonlinear
equations. Consequently, the finding of the soliton solutions for another equations
involves a considerable interest.

For high-frequency perturbations (τpω � 1), using the last two equations of the
system (3.1.12), we get the following evolution equation:

∂2p

∂x2
− c−2f

∂2p

∂t2
+ αfc

2
f

∂2p2

∂x2
+ βf

∂p

∂x
+ γfp = 0. (3.1.14)
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αf =
1

2V 2
0

d2Vf

dp2

∣∣∣∣
p=p0

, βf =
c2f − c2e
τpc2ecf

, γf =
c4f − c4e
2τ 2p c

4
ec

2
f

.

In addition to the nonlinear term with coefficient αf , the equation has dissipative
βf∂p/∂x and dispersive γfp terms. If αf = βf = 0, this is a linear Klein-Gordon
equation. There is a Green function for this equation [203] that enables us to find the
solution in quadrature, at least. The numerical solutions of the Klein-Gordon equation
modeling the propagation of high-frequency perturbations in gas-liquid media have
been presented in [95]. A similar evolution equation for high-frequency perturbations
was described in monograph by Whitham [208]. However, it coincides with Eq. (3.1.14)
only when αf = 0 and γf = 0.

Landau and Lifshitz showed that for high frequencies the dissipative term under
high transport of heat agrees with corresponding term in the equation (3.1.14) (see
section 79 and 81 in [88]). Thus, the dynamic state equation (2.1.9) enables us to
take into account the dissipative processes completely. But the form of the dissipative
terms describing the inner exchange processes (transport of heat and momentum) are
different for the high and low frequencies.

We call attention to the fact that the dispersion relations ω = ω(k) for the linearized
equations (3.1.13) and (3.1.14) have been restricted by the finite power series in k and
in k−1, respectively:

ω = cek + iβek
2 − γek

3, τpω � 1,

ω2 = c2fk
2(1 + iβfk

−1 − γfk
−2), τpω � 1.

At the time we were carrying out our research, it turned out that equation (3.1.14)
had not been investigated much. It is likely that this is connected with the fact, noted
by Whitham in Ref. [208], that high-frequency perturbations attenuate very quickly.

3.2 Evolution equation for high-frequency pertur-

bations

The equation (3.1.14), which we are interested in,

∂2p

∂x2
− c−2f

∂2p

∂t2
+ αfc

2
f

∂2p2

∂x2
+ βf

∂p

∂x
+ γfp = 0

is written down in a dimensionless form. Let us restrict our consideration to the prop-
agation of high-frequency waves in positive direction x, then with necessary accuracy
we can write the operator

∂2

∂x2 − c−2f

∂2

∂t2
=

(
∂

∂x
− c−1f

∂

∂t

)(
∂

∂x
+ c−1f

∂

∂t

)
→ 2

∂

∂x

(
∂

∂x
+ c−1f

∂

∂t

)
.

In the moving coordinates system with velocity cf , the equation has the form in di-
mensionless variables

x̃ =

√
γf
2
(x− cf t), t̃ =

√
γf
2
cf t, ũ = αfc

2
fp
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(tilde over variables x̃, t̃, ũ is omitted) [153, 154, 157, 158]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ α

∂u

∂x
+ u = 0. (3.2.1)

The constant α = βf/
√
2γf is always positive. The equation (3.2.1) without the

dissipative term has the form of the nonlinear equation [119, 154]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u+ u = 0. (3.2.2)

Historically, the equation (3.2.2) has been called the Vakhnenko equation (VE) and
we shall follow this name.

It is interesting to note that equation (3.2.2) follows as a particular limit of the
following generalized Korteweg-de Vries equation

∂

∂x

(
∂u

∂t
+ u

∂u

∂x
− β

∂3u

∂x3

)
= γu (3.2.3)

derived by Ostrovsky [114] to model the small-amplitude long waves in a rotating fluid
(γu is induced by the Coriolis force) of finite depth. Subsequently, the equation (3.2.2)
was known by different names in the literature, such as the Ostrovsky-Hunter equa-
tion, the short-wave equation, the reduced Ostrovsky equation and the Ostrovsky-
Vakhnenko equation.

The consideration here of equation (3.2.2) has interest not only from the viewpoint
of the investigation of the propagation of high-frequency perturbations, but more specif-
ically from the viewpoint of the study of methods and approaches that may be applied
in the theory of nonlinear evolution equations. This equation was investigated in many
papers, here we cite only some of them [102, 119, 153, 154, 157, 158, 162, 163, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192].

3.2.1 The connection with the Whitham equation

Now we show how an evolution equation with hydrodynamic nonlinearity can be rewrit-
ten in the form of the Whitham equation. The general form of the Whitham equation
is as follows [208]:

∂u

∂t
+ u

∂u

∂x
+

∞∫
−∞

K(x− s)
∂u

∂s
ds = 0. (3.2.4)

On the one hand, the equation (3.2.4) has the nonlinearity of hydrodynamic type; on
the other hand, it is known (see, section 13.14 in [208]) that the kernel K(x) can be
selected to give the dispersion required. Indeed, the dispersion relation c(k) = ω(k)/k
and the kernel K(x) are connected by means of the Fourier transformation

c(k) = F [K(x)], K(x) = F−1[c(k)]. (3.2.5)
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Consequently, for the dispersion relation ω = −1/k corresponding to the linearized
version of (3.2.2), the kernel is as follows

K(x) = F−1[−1/k2] = 1
2
|x|. (3.2.6)

Thus, the VE (3.2.2) is related to the particular Whitham equation [208]

∂u

∂t
+ u

∂u

∂x
+

1

2

∞∫
−∞

|x− s|∂u
∂s

ds = 0. (3.2.7)

Since we can reduce the VE to the Whitham equation, we can assert that the VE shares
interesting properties with the Whitham equation; in particular, it describes solitary
wave-type formations, has periodic solutions and explains the existence of the limiting
amplitude [208]. An important property is the presence of conservation laws for waves
decreasing rapidly at infinity

d

dt

∞∫
−∞

udx = 0,
d

dt

∞∫
−∞

u2dx = 0,
d

dt

∞∫
−∞

(
1
3
u3 + K̂u

)
dx = 0, (3.2.8)

where by definition K̂u =
∫∞
−∞

K(x− s)u(s, t)ds.

For equation (3.2.1) the kernel is K(x) = 1
2
[α(2Θ(x)− 1) + |x|], where Θ(x) is the

Heaviside function. Hence, (3.2.1) can be written down as

∂u

∂t
+ u

∂u

∂x
+ αu+

1

2

∞∫
−∞

|x− s|∂u
∂s

ds = 0. (3.2.9)

There is no derivative in the dissipative term αu of Eq. (3.2.9).

3.2.2 Loop-like traveling wave solutions

An important step in the investigation of nonlinear evolution equations is to find travel-
ing wave solutions. These are solutions which are stationary with respect to a moving
frame of reference. In this case, the evolution equation (a partial differential equation)
becomes an ordinary differential equation which is considerably easier to solve.

For the VE (3.2.2) it is convenient to introduce a new dependent variable z and
new independent variables η and τ defined by

z = (u− v)/|v|, η = (x− vt)/|v|1/2, τ = t|v|1/2, (3.2.10)

where v is a non-zero constant [119]. Then the VE becomes

zητ + (zzη)η + z + c = 0, (3.2.11)

where c = ±1 corresponding to v ≷ 0. We now seek stationary solutions of (3.2.11) for
which z is a function of η only so that zτ = 0 and z satisfies the ordinary differential
equation

(zzη)η + z + c = 0. (3.2.12)
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After one integration (3.2.12) gives

1
2
(zzη)

2 = f(z), (3.2.13)

f(z) = −1
3
z3 − 1

2
cz2 + 1

6
A = −1

3
(z − z1)(z − z2)(z − z3).

A is a constant and for periodic solutions z1, z2 and z3 are real constants such that
z1 ≤ z2 ≤ z3. Since there is only one independent constant A in (3.2.13), one root is
independent only, let it be z3. The two roots z1 and z2 can be defined through z3

z2,1 =
1
2

(
−q ±

√
q2 − 4z3q

)
, q ≡ 3

2
v + z3.

On using results 236.00 and 236.01 of [26], we may integrate (3.2.13) to obtain

η =

√
6z1√

z3 − z1
F (ϕ,m) +

√
6(z3 − z1)E(ϕ,m), (3.2.14)

sinϕ =
z3 − z

z3 − z2
, m =

z3 − z2
z3 − z1

. (3.2.15)

F (ϕ,m) and E(ϕ,m) are incomplete elliptic integrals of the first and second kind
respectively. We have chosen the constant of integration in (3.2.14) to be zero so that
z = z3 at η = 0. The relations (3.2.14) give the required solution in parametric form
with z and η as functions of the parameter ϕ.

An alternative route to the solution is to follow the procedure described in [142].
We introduce a new independent variable ζ defined by

dη

dζ
= z (3.2.16)

so that (3.2.13) becomes

1
2
z2ζ = f(z). (3.2.17)

By means of result 236.00 of [26], the equation (3.2.17) may be integrated to give
pζ = F (ϕ,m), where p2 = (z3 − z1)/6. Thus, on noting that sinϕ = sn(pζ|w), where
sn(·) is a Jacobian elliptic function, we have

z = z3 − (z3 − z2) sn
2(pζ|w). (3.2.18)

With result 310.02 of [26], the equations (3.2.16) and (3.2.18) give

η = z1ζ +
√
6(z3 − z1)E(pζ), (3.2.19)

where E(pζ) := E(am pζ,m). Relations (3.2.18) and (3.2.19) are equivalent to (3.2.15)
and (3.2.14) respectively and give the solution in parametric form with z and η in
terms of the parameter ζ.

We define the wavelength λ of the solution as the amount by which η increases
when ϕ increases by 2π; from (3.2.14) we obtain

λ =
2
√
6√

z3 − z1
[z1K(m) + (z3 − z1)E(m)] , (3.2.20)
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where K(m) and E(m) are complete elliptic integrals of the first and second kind
respectively.

For c = 1 (i.e. v > 0), there are periodic solutions for 0 < A < 1 with λ < 0,
z2 ∈ (−1, 0) and z3 ∈ (0, 0.5); an example of such a periodic wave is illustrated by
curve 2 in Fig. 3.2. A = 1 gives the solitary wave limit

u = 3
2
v sech2(ζ/2), η = −ζ + 3 tanh(ζ/2) (3.2.21)

as illustrated by curve 1 in Fig. 3.2. The periodic waves and the solitary wave have a
loop-like structure as illustrated in Fig. 3.2.

-1 0 1 2
0,0

0,5

1,0

1,5

�/u

�

1

2

Figure 3.2: Traveling wave solutions with v > 0.

For c = −1 (i.e. v < 0), there are periodic waves for −1 < A < 0 with λ > 0,
z2 ∈ (0, 1) and z3 ∈ (1, 1.5); an example of such a periodic wave is illustrated by curve
2 in Fig. 3.3. When A = 0 and λ = 6 the periodic wave solution simplifies to

u(η)/|v| = −1
6
η2 + 1

2
, −3 ≤ η ≤ 3, u(η + 6) = u(η). (3.2.22)

This is shown by curve 1 in Fig. 3.3. For A � −1 the solution has a sinusoidal form
(curve 3 in Fig. 3.3). Note that there are no solitary wave solutions.

A remarkable feature of the equation (3.2.2) is that it has a solitary wave (3.2.21)
which has loop-like form, i.e. it is a multi-valued function (see Fig. 3.2). Whilst
loop solitary waves (3.2.21) are rather intriguing, it is the solution to the initial value
problem that is of more interest in a physical context. An important question is the
stability of the loop-like solutions. Although the analysis of stability does not link with
the theory of solitons directly, however, the method applied in [119] is instructive, since
it is successful in a nonlinear approximation.

We will prove (see subsection 3.3.3) that the solitary wave (3.2.21) is, in fact, a
soliton.
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Figure 3.3: Traveling wave solutions with v < 0.

3.3 Interaction of solitons

The multi-valued solutions obtained in the last section 3.2.2 obviously mean that the
study of the VE (3.2.2) in the original coordinates (x, t) leads to certain difficulties.
These difficulties can be avoided by writing down the VE in new independent coordi-
nates. We have succeeded in finding these coordinates. Historically, working separately,
Vyacheslav Vakhnenko in Ukraine and John Parkes in the UK independently suggested
such independent coordinates in which the solutions become one-valued functions. It
is instructive to present the two derivations here. In one derivation a physical ap-
proach, namely a transformation between Eulerian and Lagrangian coordinates, was
used whereas in the other derivation a pure mathematical approach was used.

3.3.1 The Vakhnenko-Parkes equation

Let us define new independent variables (X, T ) by the transformation

ϕdT = dx− u dt, X = t. (3.3.1)

The function ϕ is to be obtained. It is important that the functions x = θ(X,T ) and
u = U(X,T ) turn out to be single-valued ones. In terms of the coordinates (X, T ) the
solution of the VE (3.2.2) is given by single-valued parametric relations. The transfor-
mation into these coordinates is the key point in solving the problem of the interaction
of solitons as well as explaining the multiple-valued solutions [158]. The transforma-
tion (3.3.1) is similar to the transformation between Eulerian coordinates (x, t) and
Lagrangian coordinates (X,T ). We require that T = x if there is no perturbation,
i.e. if u(x, t) = 0. Hence ϕ = 1 when u(x, t) = 0.

The function ϕ is the additional dependent variable in the equation system (3.3.3), (3.3.4)
to which we reduce the original Eq. (3.2.2). We note that the transformation inverse
to (3.3.1) is

dx = ϕdT + U dX, t = X, U(X, T ) ≡ u(x, t). (3.3.2)
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Then, by taking into account the condition that dx is an exact differential, we obtain

∂ϕ

∂X
=

∂U

∂T
. (3.3.3)

This equation, together with Eq. (3.2.2) rewritten in terms of ϕ(X, T ), U(X, T ),
namely

∂2ϕ

∂X2
+ Uϕ = 0, (3.3.4)

is the main system of equations. The equation system (3.3.3), (3.3.4) can be reduced
to a nonlinear equation in one unknown W defined by

WX = U. (3.3.5)

We study solutions U that vanish as |X| → ∞ or, equivalently, solutions for which W
tends to a constant as |X| → ∞. From (3.3.3) and (3.3.5) and the requirement that
ϕ → 1 as |X| → ∞ we have ϕ = 1+WT ; then, by eliminating ϕ from (3.3.4) we arrive
at the transformed form of the VE (3.2.2)

WXXT + (1 +WT )WX = 0 (3.3.6)

or, in equivalent form,

UUXXT − UXUXT + U2UT = 0. (3.3.7)

Furthermore it follows from (3.3.2) that the original independent space coordinate
x is given by

x = θ(X,T ) = x0 + T +W, (3.3.8)

where x0 is an arbitrary constant. Since the functions θ(X, T ) and U(X, T ) are single-
valued, the problem of multi-valued solutions has been resolved from the mathematical
point of view.

Alternatively, in a pure mathematical approach, we introduce new independent
variables X, T defined by

x = θ(X,T ) = T +

X∫
−∞

U(X ′, T ) dX ′ + x0, t = X, (3.3.9)

where u(x, t) = U(X,T ), and x0 is a constant. From (3.3.9) it follows that

∂

∂X
=

∂

∂t
+ u

∂

∂x
,

∂

∂T
= φ

∂

∂x
, with φ(X,T ) = 1 +

X∫
−∞

UT dX ′, (3.3.10)

so that

φX = UT . (3.3.11)
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From (3.2.2) and (3.3.10) we obtain

UXT + φU = 0. (3.3.12)

By eliminating φ between (3.3.11) and (3.3.12) we obtain the quation (3.3.7) or, on
introducing W , the equation (3.3.6).

The suggested transformation was originally derived in Refs. [102, 179, 181]. Fol-
lowing the papers [1, 42, 90, 94, 212], hereafter equation (3.3.6) (or in alternative
form (3.3.7)) is referred to as the Vakhnenko-Parkes equation (VPE).

For example we will rewrite the solutions (3.2.15) and (3.2.14) for equation (3.2.2)
in the transformed coordinates (X,T ), i.e. find the traveling wave solutions for equation
(3.2.2) in new coordinates. Differentiating the relationship (3.2.14) with respect to X,
we take

±
√

2
3

∂η
∂X

= ±
√

2
3

(
−v + ∂x

∂X

)
= ±

√
2
3
(−v +WX(X, T )) = ±

√
2
3
z

= z√
(z − a1)(z − a2)(a3 − z)

∂z
∂X

,

or

±
√

2
3
=

1√
(z − a1)(z − a2)(a3 − z)

∂z

∂X
.

Then after integration, we obtain

Figure 3.4: Traveling wave solutions with v > 0 in coordinates (X, T ).

±
√

2
3
X =

a3∫
z

dz√
(z − a1)(z − a2)(a3 − z)

=
2√

a3 − a1
F (ϕ, k). (3.3.13)



3.3. Interaction of solitons 39

Together with z = U(X, T )+v this relationship (3.3.13) determines the desired depen-
dence U(X, T ) in parametrical form. Thus, we have the solution for equation (3.2.2)
in new coordinates (X,T ).

The solutions for v > 0 in coordinates (X,T ) are illustrated in Fig. 3.4. The curves
1, 2 in this figure relate to the curve 1, 2 in Fig. 3.2. The solutions in coordinates
(X,T ) for v < 0 are ploted in Fig. 3.5. The curves 1, 2, 3 in this figure relate to the
curve 1, 2, 3 in Fig. 3.3.

Figure 3.5: Traveling wave solutions with v < 0 in coordinates (X,T ).

On the one hand, we have attained the goal, namely, we have found the solutions
in new coordinates in which the solutions become one-valued functions. On the other
hand, it is important that periodical solution shown by curve 1 in Fig. 3.3, i.e. the
solution consisting of parabolas becomes not periodical in new coordinates. Hence,
we reveal some accordance between curve 1 in Fig. 3.4 and curve 1 in Fig. 3.5. This
feature is important for finding the solutions by inverse scattering method [181, 184,
188, 190, 191, 192].

3.3.2 Hirota method

Various effective approaches have been developed to construct exact wave solutions of
completely integrable equations. One of the fundamental direct methods is undoubt-
edly the Hirota bilinear method [63, 64, 65, 100], which possesses significant features
that make it practical for the determination of multiple soliton solutions.

In the Hirota method the equation under investigation should first be transformed
into the Hirota bilinear form [63]

F (DX , DT )f · f = 0, (3.3.14)

where F is a polynomial in DT and DX . Each equation has its own polynomial. The
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Hirota bilinear D-operator is defined as (see section 5.2 in [63])

Dn
TD

m
Xa · b =

(
∂

∂T
− ∂

∂T ′

)n(
∂

∂X
− ∂

∂X ′

)m

a(T,X)b(T ′, X ′)

∣∣∣∣
T=T ′, X=X′

. (3.3.15)

If the polynomial F satisfies conditions (see (5.41), (5.42) in [63])

F (DX , DT ) = F (−DX ,−DT ), F (0, 0) = 0, (3.3.16)

then the Hirota method can be applied successfully. The dispersion relations is of
importance in this method

F (2ki,−2ωi) = 0, i = 1, . . . , N. (3.3.17)

In order to find the soliton solutions to the VPE (3.3.6)

WXXT + (1 +WT )WX = 0

by using the Hirota method [63] we need to express (3.3.6) in the Hirota form [179].
The transformation (3.3.9) of the independent variables in the original equation (3.2.2)
is a key step in finding an exact explicit N -soliton solution to (3.3.6) by use of the
Hirota method, and hence an exact implicit N -soliton solution to (3.2.2). By taking

W = 6(ln f)X , (3.3.18)

we find that

WX =
3D2

Xf · f
f 2

and WXXT +WXWT =
3DTD

3
Xf · f

f 2
(3.3.19)

and the bilinear form of the VPE is as follows

F (DX , DT )f · f = 0, F (DX , DT ) := DTD
3
X +D2

X . (3.3.20)

3.3.3 The one and two loop soliton solutions

The solution to (3.3.20) corresponding to one soliton is given by

f = 1 + e2η, where η = kX − ωT + α, (3.3.21)

and k, ω and α are constants. The dispersion relation (3.3.17) is F (2k,−2ω) = 0 from
which we find that ω = 1/4k, and then

η = k(X − cT ) + α with c = 1/4k2. (3.3.22)

Substitution of (3.3.21) into (3.3.18) gives

W (X, T ) = 6k(1 + tanh η) (3.3.23)

so that

U(X, T ) = 6k2 sech2 η. (3.3.24)
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The one loop soliton solution to the VE is given by

u(x, t) = U(t, T ), x = θ(t, T ), θ(X,T ) = T +W (X,T ) + x0. (3.3.25)

with (3.3.23) and (3.3.24). From (3.3.25) with v = 1/c we have

x− vt = −v(X − cT ) + 6k(1 + tanh[k(X − cT ) + α]) + x0. (3.3.26)

Clearly, from (3.3.24) and (3.3.26), U(X,T ) and x − vt are related by the parameter
χ = X − cT so that u(x, t) is a soliton that travels with speed v in the positive x-
direction. That this soliton is a loop may be shown as follows. From (3.3.10) we
have ux = φ−1UT , and on using (3.3.22) and (3.3.24) we also have φ = 1 − cU and
UT = −cUX . Hence

ux = −cUX/(1− cU). (3.3.27)

Thus, as χ goes from ∞ to −∞ in (3.3.26), so that x− vt goes from −∞ to +∞, UX

changes sign once and remains finite, whereas ux given by (3.3.27) changes sign three
times and goes infinite twice. The one loop soliton solution may be written in terms
of the parameter χ as

u =
3v

2
sech2

(√
v χ

2

)
, x− vt = x̃0 − vχ+ 3

√
v tanh

(√
v χ

2

)
(3.3.28)

with v(> 0) and x̃0 arbitrary. The solution (3.3.28) is essentially the one loop soliton
solution given by (3.2.21) (see [154, 119] too).

Usually it is assumed that the value α is real in order that the solution U(X, T )
is a real function. However, the real solution is obtained also at α = −iπ + α̃ (α̃ is
real value). In this case the soliton solution (singular soliton solution) is discontinuous
one [207]

U(X,T ) = 6k2 sinh−2 η. (3.3.29)

The solution to (3.3.20) corresponding to two solitons is given by

f = 1 + e2η1 + e2η2 + b2e2(η1+η2), where ηi = kiX − ωiT + αi, (3.3.30)

b2 = − F [2(k1 − k2),−2(ω1 − ω2)]

F [2(k1 + k2),−2(ω1 + ω2)]
, (3.3.31)

and ki, ωi and αi are constants. The dispersion relation is F (2ki,−2ωi) = 0 from which
we find that ωi = 1/4ki, and then

ηi = ki(X − ciT ) + αi with ci = 1/4k2
i . (3.3.32)

Without loss of generality we may take k2 > k1, and then

b =
k2 − k1
k2 + k1

√
k2
1 + k2

2 − k1k2
k2
1 + k2

2 + k1k2
. (3.3.33)
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Substitution of (3.3.30) into (3.3.18) gives the two soliton solution of the VPE. Fol-
lowing Hodnett and Moloney [66, 101], we may write W (X, T ) in the form

W = W1 +W2, where Wi = 6ki(1 + tanh gi) (3.3.34)

and

g1(X, T ) = η1 +
1
2
ln

[
1 + b2e2η2

1 + e2η2

]
,

g2(X, T ) = η2 +
1
2
ln

[
1 + b2e2η1

1 + e2η1

]
.

(3.3.35)

It follows that U may be written as

U = U1 + U2, where Ui = 6ki
∂gi
∂X

sech2 gi. (3.3.36)

The two loop soliton solution to the VE is given by (3.3.25) with (3.3.34) and (3.3.36)
[179].

Figure 3.6: The interaction process for two loop solitons with k1 = 0.99 and k2 = 1 so
that δ1 < 0.

In the interaction of two solitons for the VE [102, 179, 180, 181, 185] there are
features that are not typical for the KdV equation (see Figs. 3.6–3.8). The larger
soliton moving with larger velocity catches up with the smaller soliton moving in the
same direction. For the sake of convenience in Fis. 3.6–3.8, the interactions of solitons
are shown in coordinates moving with the speed of the centre mass. After the nonlinear
interaction the solitons separate, their forms are restored, but phaseshifts arise. The
larger soliton always has a forward phaseshift, while the smaller soliton can have three
kinds of phaseshift. Note that this property is not typical for the KdV equation. There
is a special value of the ratio (k1/k2)c = 0.88867. The different kinds of phaseshift are
illustrated in Figs. 3.6–3.8.
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Figure 3.7: The interaction process for two loop solitons with k1 = 0.88867 and k2 = 1
so that δ1 = 0.

• For k1/k2 > (k1/k2)c the phaseshift of smaller soliton is in the opposite direction
to the phaseshift of the larger soliton (Fig. 3.6).

• For k1/k2 = (k1/k2)c the smaller soliton has no phaseshift (Fig. 3.7).

• For k1/k2 < (k1/k2)c both solitons have phaseshifts in the same direction
(Fig. 3.8).

3.4 Ambiguous solutions

The ambiguous structure of the loop-like solutions is similar to the loop soliton solu-
tion to an equation that models a stretched rope [76]. Loop-like solitons on a vortex
filament were investigated by Hasimoto [60] and Lamb, Jr [87]. From the mathematical
point of view an ambiguous solution does not present difficulties whereas the physical
interpretation of ambiguity always presents some difficulties. In this connection the
problem of ambiguous solutions is regarded as important. The problem consists in
whether the ambiguity has a physical nature or is related to the incompleteness of the
mathematical model, in particular to the lack of dissipation.

We will consider the problem related to the singular points when dissipation takes

place (see Eq. (3.2.9)). At these points the dissipative term α∂u
∂x

tends to infinity. The

question arises: are there solutions of the equation (3.2.9) in a loop-like form? That
the dissipation is likely to destroy the loop-like solutions can be associated with the
following well-known fact [37]. For the simplest nonlinear equation without dispersion
and without dissipation, namely

∂u

∂t
+ u

∂u

∂x
= 0, (3.4.1)
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Figure 3.8: The interaction process for two loop solitons with k1 = 0.5 and k2 = 1 so
that δ1 > 0.

any initial smooth solution with boundary conditions

u|x→+∞ = 0, u|x→−∞ = u0 = const > 0

becomes ambiguous in the final analysis. When dissipation is considered, we have the
Burgers equation [25]

∂u

∂t
+ u

∂u

∂x
+ μ

∂2u

∂x2
= 0.

The dissipative term in this equation is coincident with the dissipative term in equation
(3.1.13) for low frequency. The inclusion of the dissipative term transforms the solutions
so that they cannot be ambiguous as a result of evolution. The wave parameters are
always unambiguous. What happens in our case for high frequency when the dissipative
term has the form αu (see Eq. (3.2.9))? Will the inclusion of dissipation give rise to
unambiguous solutions?

By direct integration of equation (3.2.1) (written in terms of the variables (3.2.10))
within the neighborhood of singular points z = 0 where zη → ±∞ and zτ � zη, it
can be derived (see Ref. [158]) that the dissipative term, with dissipation parameter
less than some limit value α∗, does not destroy the loop-like solutions. Now we give a
physical interpretation to ambiguous solutions.

Since the solution to the VE has a parametric form (3.2.14), (3.2.15) or (3.2.18),
(3.2.19), there is a space of variables in which the solution is a single-valued function.
Hence, we can solve the problem of the ambiguous solution. A number of states with
their thermodynamic parameters can occupy one microvolume. It is assumed that the
interaction between the separated states occupying one microvolume can be neglected
in comparison with the interaction between the particles of one thermodynamic state.
Even if we take into account the interaction between the separated states in accor-
dance with the dynamic state equation (3.1.9) then, for high frequencies, a dissipative
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term arises which is similar to the corresponding term in Eq. (3.1.14), but with the
other relaxation time. In this sense the separated terms are distributed in space, but
describing the wave process we consider them as interpenetratable. A similar situa-
tion, when several components with different hydrodynamic parameters occupy one
microvolume, has been assumed in mixture theory (see, for instance [122, 138]). Such
a fundamental assumption in the theory of mixtures is physically impossible (see [122],
p.7), but it is appropriate in the sense that the separated components are multi-velocity
interpenetratable continua.

Consequently, the following three observations show that, in the framework of
the approach considered here, there are multi-valued solutions when we model high-
frequency wave processes: 1) All parts of loop-like solution are stable to perturba-
tions [119]. 2) The dissipation does not destroy the loop-like solutions. 3) The investi-
gation regarding the interaction of the solitons has shown that it is necessary to take
into account the whole ambiguous solution, and not just the separate parts.
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Chapter 4

Waves in relaxing two-component
medium

In this chapter we will simulate the wave fluids in media consisted of the uniform
distributed gaseous and condensed components (solid particles, liquid, etc.). The gas-
suspensions, foams, bubble media are the mixtures with regular structure.

Of special interest is the decrease of a shock wave action under propagation of
shock waves in two-phase media [81, 83, 84, 164, 173, 174, 175, 177, 178]. The analysis
of this phenomena shows that effectiveness of a medium as a means for shock wave
location depends on capacity to retain heat in a condensed phase. The intensity of the
heat transfer is determined by the complex physical chemical processes involved in the
interaction between components.

Unfortunately, nowadays the experimental results on various interactions between
components are insufficient in order to formulate the mechanisms of interaction and,
consequently, to formalize them in mathematical models. There can be no doubt
that the inner processes (although their mechanism is not known in details) manifest
themselves in the behavior of a medium. We will study the action of inner processes
on a change of macroparameters within the relaxation notations. As a result of inner
interaction is the effect of the relaxation of macroparameters. Additionally the medium
can be subject to the external actions, for example, wave perturbation, shock wave,
dynamic loading, etc. The medium as a dynamic system is specified both the relaxation
time and the time of propagation of the shock wave perturbation. We consider the
wave processes when the relaxation time and time of an external action are the values
of the same order. An irreversible energy loss in a gaseous component (a pressure
of gas predetermins the pressure medium as a whole) through the heat transfer by
radiation and/or by means of contact considerably influences on shock wave parameters.
These processes, associated with the transfer of energy from one form that specifies
a pressure in medium to another form that does not possess partial pressure, are
definitely important for describing the attenuation of shock waves. We will consider
these various processes from general point of view as the thermal relaxation. The
processes of thermal relaxation will be described by dynamic state equation suggested
in the next section 4.1.
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4.1 Asymptotic averaged model for mixture with

thermal relaxation

For mathematical modeling of dynamic behavior of a medium with thermal relaxation,
we will consider the constitutive properties, basing upon following assumptions. The
partial pressure of the condensed phase is negligibly small, while the medium pressure
is specified by the gaseous component only. The gaseous component is generally the
relaxing gas. The condensed components show the evidence of relaxation too.

Let us refine the asymptotic averaged model in order to remove the restriction
connected with a barothropic medium (as it is studied in Chapter 2). The constitutive
hydrodynamic equations for describing one-dimensional motions (2.1.1), (2.1.2)

∂rν

∂lν
=

V

V0

, or
∂V

∂t
− νV0

∂rν−1u

∂lν
= 0,

u =
∂r

∂t
,

∂u

∂t
+ V0

(r
l

)ν−1 ∂p
∂l

= 0.

are added by the energy equation for each individual component

∂E

∂t
+

V0p

lν−1
∂rν−1u

∂l
= 0. (4.1.1)

We analyze the longwave perturbations and assume that the velocities of gas and
condensed phase are equal. Similarly to Chapter 2 let us apply the method of asymp-
totic averaging, whereas the variable E is expanded in series (see, for example, (2.2.2))

E(m, t) = E(0)(s, t, ξ) + εE(1)(s, t, ξ) + ε2E(2)(s, t, ξ) + . . . , (4.1.2)

where m = lν/V0, m = s+ εξ, s and ξ are slow and fast space variables, respectively.
The procedure similar to that in Section (2.2) enables us to obtain additionally the

averaged energy equation (index (0) is omitted). Then the system of the equations in
the Lagrangian coordinates (s, t) has the form

∂rν

∂s
= 〈V 〉, or

∂〈V 〉
∂t

− ν
∂rν−1u

∂s
= 0,

u =
∂r

∂t
,

∂u

∂t
+ νrν

∂p

∂s
= 0,

∂〈E〉
∂t

+ νp
∂rν−1u

∂s
= 0.

(4.1.3)

Note that the averaged variables p, u, r, 〈V 〉, 〈E〉 appear in Eqs. (4.1.3). Here variable
r is a dependent value.
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Now we can rewrite out the equations of motion in the Eulerian coordinates (r, tE)
(now r is an independent variable) (2.3.4)

drν = 〈V 〉ds+ νrν−1udt, tE = t.

Finally the averaged equations of motion in the slow Eulerian coordinate have the
form (index E in t is omitted).

∂ 〈V 〉−1
∂t

− 1

rν−1
∂rν−1 〈V 〉−1 u

∂r
= 0,

∂u

∂t
+ u

∂u

∂r
+ 〈V 〉 ∂p

∂r
= 0,(

∂

∂t
+ u

∂

∂r

)
〈E〉+ p

rν−1
∂rν−1u

∂r
= 0.

(4.1.4)

Consequently, the equations of motion are reduced to the terms of the average
values p, u, 〈V 〉, 〈E〉 only. It is necessary to note that the structure of medium is
evidently taken into account only in the equation of state, since the averaged state
equation can not be reduced to the values p, u, 〈V 〉, 〈E〉 only. This statement will be
proved in Section 4.2.

It is worthwhile that at this point we can avoid the restriction in which the structure
of medium should be strong periodic. The wavelength is long and covers many periods
(see Fig. 1.1). In suggested approximation, the pressure p and mass velocity u are not
changed over period. Let us imagine that in one of the structured sell the initial struc-
ture changes so that the period increases in two times. Obviously the field parameters
in this case do not change. Determining the period size as arbitrarily small, we come
to the conclusion that the averaged system of the equations is valid for medium with
the constant concentrations of the components (statistic uniform distribution of the
components).

4.2 Dynamic state equation for mixture with ther-

mal relaxation

The practical interest in the gas-liquid-solid mixtures is connected with a capacity of
such media to damp the shock waves. We focus our attention upon the study of such
inner processes that revel the transfer of a energy defining the medium pressure to the
other energy that does not contribute in partial pressure. As a result of the existence
of inner processes, we have that the functional dependence between energy E, specific
volume V and pressure p (state equation) is ambiguous. For gas-liquid-solid mixture
under the assumption of one-velocity approximation, the state equation can be justified
from general notions on thermal relaxation.

It is convenient to write a state equation for each individual component in the
form of dependence of specific energy E on a pressure p and specific volume V , i.e.
E = E(p, V ). Let us use the gas-like form for this relation

E =
pV

γ − 1
, (4.2.1)
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which can successfully be applied both for gaseous component and for condensed com-
ponent. Generally, both gas and condensed phase are relaxing components. Now we
will derive the dynamic state equation for mixture with thermal relaxation [164, 173,
175, 177, 178]. For one-velocity model, there are two limiting cases: (i) full equilib-
rium between phases; (ii) lack of transfer of heat between phases. Let us introduce the
notations for fast and slow processes for the two components.

1. For gaseous component

Eg =
pV

γgf − 1
, τEgω � 1, Eg =

pV

γge − 1
, τEgω � 1. (4.2.2)

2. For condensed component

Es =
pV

γsf − 1
, τEsω � 1, Es =

pV

γse − 1
, τEsω � 1. (4.2.3)

According to the formalism [209, 210, 211], we can write a dynamic state equation for
each individual component (see Section 3.1)

τEi
d

dt

(
E − pV

γif − 1

)
+

(
E − pV

γie − 1

)
= 0, i = g, s. (4.2.4)

It is clear that at τEiω � 1 and τEiω � 1 we have respective equations (4.2.2), (4.2.3).
The procedure of the asymptotic average leads to the dynamic state equation that
describes the thermal relaxation in mixture

d 〈E〉 = −dp

〈
V

γf − 1

〉
−
〈
E

τE

〉
dt− p

〈
V

τE(γe − 1)

〉
dt. (4.2.5)

Hence the dynamic state equation (4.2.5) is not reduced to the variables p, u, 〈V 〉, 〈E〉
only.

However, in particular case it is possible to simplify the dynamic state equa-
tion (4.2.5). The appropriate conditions are realized in the two-components medium
with gaseous component and incompressible component. Indeed, for this medium
γsf = γse = 1 and then time relaxation τEs can be defined arbitrarily. For the sake
of convenience we define τEs = τEg = τE. We consider the heat transfer from gas to
the some inner reservoir. Hence, the specific heat of gaseous component is not con-
stant, i.e. gas is the relaxing component. It is clear that the mentioned reservoir is the
condensed phase, whereas, on the one hand, this phase is incompressible, on the other
hand, the partial pressure of this phase is negligibly small. It is convenient hereafter to
introduce the new notations Γ0 = γge, γ = γgf . Note that for gas-containing mixture
the parameter

Γ0 = γ
σg + σsc/cpg
σg + γσsc/cpg

(4.2.6)

is close to 1, while the inequality Γ0 > 1 always holds. In the relationship (4.2.6) the
values σs and c are mass concentration and specific heat of the condensed component;
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the values σg and cp are mass concentration and specific heat at constant pressure of
the gaseous component, respectively.

Now the averaged dynamic state equation (4.2.5) can be reduced to the form

τE
d

dt

[
〈E〉 − p〈V 〉(1− ε)

γ − 1

]
+

[
〈E〉 − p〈V 〉(1− ε)

Γ0 − 1

]
= 0, (4.2.7)

where ε is a volume fraction of the condensed phase, whereas this value is uniquely
defined through 〈V 〉

ε = ε0
〈V0〉
〈V 〉 . (4.2.8)

The equation (4.2.7) describes the nonequilibrium transition of a mixture from one
state

〈E〉 = p〈V 〉(1− ε)

γ − 1
+ const (4.2.9)

to other state

〈E〉 = p〈V 〉(1− ε)

Γ0 − 1
. (4.2.10)

Rudinger [127, 128, 129] was the first who established the equilibrium state equation
for mixture with incompressible component (4.2.10).

Thus, the equation (4.2.7) together with equations (4.1.4) constitutes the closed sys-
tem of equations. For this system of the differential equations the initial and boundary
conditions depending on problem being studied should be given.

The suggested asymptotic averaged model allows one to analyze the influence of
relaxation under the wave propagation in gas-liquid-solid media.

4.3 Similarity in motions of gas and two-phase

medium with incompressible component

In this section we compare the motion of a perfect gas and that of a two-phase medium
with any volume occupied by the incompressible condensed component. It is known [9,
127, 128, 129] that in one-velocity approach at low volume portion of the condensed
phase ε, the motion of a two-phase medium is similar to the motion of gas. To describe
the motion of two-phase medium without restriction on a value of the volume portion
ε, it is necessary to introduce this value ε as additional variable in the system of the
hydrodynamic equations in contrast to the usual gas-dynamic equations. In approaches
of other authors [117, 141] such an extended system of equations have been treated by
solving it separately for each particular ε.

We focus our attention on transformation between the equations for a perfect gas
and the equations describing, in one-velocity approach, the two-phase medium with
any volume occupied by the incompressible phase [83, 159, 160, 174, 177]. It shall be
proved that the motion of a two-phase medium in the transformed coordinate system
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is similar with certain accuracy to that of a perfect gas. It means that the solutions
obtained for perfect gas can be used to solve the wave problems for media with incom-
pressible component. There is no necessity directly to solve the problem for medium
with incompressible component, and it is only sufficient to transform the known solu-
tion of the similar problem for a homogeneous medium. Thus, the solutions of many
hydrodynamic problems for multi-component media with incompressible phase can be
obtained without solving the original system of equations. The scope for the suggested
transformation is demonstrated by reference to the strong explosion in a two-phase
medium.

4.3.1 System of equations in the Lagrangian coordinates

One of a concept consists in analyzing the considered problem in the Lagrangian co-
ordinates (ζ, τ). Let us consider a two-phase medium consisting of a condensed phase
and a gaseous phase uniformly distributed in a volume. The incompressible condensed
component can occupy an arbitrary partial-specific volume ε. We assume the following:
(a) the condensed phase is incompressible; (b) the partial pressure of the condensed
phase is negligibly small; (c) the velocities of the condensed phase and gaseous phase
equal each other. The conservation laws for mass, momentum, and energy give us the
following system of the equations for the one-dimensional motions in the Lagrangian
coordinates [78, 134] (see equations (2.2.4) in the Chapter 2):

rν−1

ζν−1

(
∂r

∂ ζ

)
τ

=
v

v0
, u =

(
∂r

∂τ

)
ζ

,(
∂u

∂τ

)
ζ

+ v0

(
r

ζ

)ν−1(
∂p

∂ζ

)
τ

= 0,

∂E

∂τ
+ pv0ζ

1−ν

(
∂rν−1u

∂ζ

)
τ

= 0.

(4.3.1)

For convenience of the description, we here introduce new notations for independent
variables t → τ , s → ζν/v0 as well as for dependent variables 〈V 〉 → v, 〈E〉 → E.

The parameter ν that determines the symmetry of the two-phase flow is equal to
1, 2, and 3 correspondingly for planar, cylindrical and spherical symmetries. Index 0
relates the variables to the unperturbed state of medium. Note that the Eulerian space
coordinate r = r(ζ, τ) is a dependent variable. Within the accepted assumptions the
state equation for the two-phase medium is conveniently written in the form [84, 117,
127]

E =
pv (1− ε)

γ − 1
. (4.3.2)

Since the state equation (4.3.2) contains value of the volume portion as additional
value, then

ε = ε0
v0
v
. (4.3.3)
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Eq. (4.3.2) does not coincide with the state equation for a perfect gas with certain
effective adiabatic parameter γ. Considering the adiabatic flow γ to be constant, the
equation for energy can be reduced to the form [78]:(

∂p (v − ε0v0)
γ

∂τ

)
ζ

= 0. (4.3.4)

Thus, the closed system of the equations consists of first three equations of sys-
tem (4.3.1) and equations (4.3.3), (4.3.4).

Since the Eulerian space coordinate r = r(ζ, τ) is a dependent variable, we write
this dependence through the Lagrangian independent coordinates (ζ, τ)

dr =
ζν−1

rν−1
v

v0
dζ + udτ. (4.3.5)

We now show that (i) for planar motions (ν = 1), (ii) for stationary motions of any
symmetry, and (iii) for self-similar flows at ν �= 1 but with certain accuracy, one can
find new variables in which all equations (4.3.1), (4.3.3), (4.3.4) coincide with equations
for a perfect gas and are explicitly independent of ε.

The following physical background provides a basis for eliminating the volume por-
tion ε from (4.3.1)–(4.3.4). Indeed, if the condensed phase does not vary its volume
(condition (a)) and does not contribute into partial pressure (condition (b)), and moves
along the paths of the compressible gaseous phase (condition (c)), then we can assume
that eliminating of the volume occupied by the condensed phase ε should substantially
simplify the mathematical description of motion.

4.3.2 Similarity of stationary flows

We need to reduce the system of equations (4.3.1)–(4.3.4) to the system of equations
describing the motion of a perfect gas (hereafter the notations for gas primed)(

r′

ζ ′

)ν−1(
∂r′

∂ζ ′

)
τ ′
=

v′

v′0
, u′ =

(
∂r′

∂τ ′

)
ζ′
,(

∂u′

∂τ ′

)
ζ′
+ v′0

(
r′

ζ ′

)ν−1(
∂p′

∂ζ ′

)
τ ′
= 0,

(
∂p′(v′)γ

∂τ ′

)
ζ′
= 0.

(4.3.6)

For the latter system (4.3.6) the relation between the Eulerian space coordinate
and the Lagrangian coordinates is as follows:

dr′ =

(
ζ ′

r′

)ν−1
v′

v′0
dζ ′ + u′dτ ′. (4.3.7)

One of the key requirement is as follows: the time should be equivalently running
in all systems of coordinates t = τ = τ ′.

The perturbations in incompressible component propagate with infinite velocity.
Hence, the volume occupied by incompressible phase can be eliminated, then the con-
nection between the equation (4.3.4) and the last equation (4.3.6) is presented in the
form

v′ = v − ε0v0, (4.3.8)



54 Chapter 4. Waves in relaxing two-components medium

p′ = p. (4.3.9)

The relationship (4.3.8) indicates that the volume occupied by incompressible com-
ponent is eliminated, and all masses of the medium are distributed over the residual
volume of the compressible component.

Comparing the mass equations with each other, i.e. first equations from sys-
tem (4.3.1) and system (4.3.4), the condition

ε0 + (1− ε0)

(
r′

ζ ′

)ν−1(
∂r′

∂ζ ′

)
τ ′
=

(
r

ζ

)ν−1(
∂r

∂ζ

)
τ

. (4.3.10)

should be satisfied.
We need also to make consistent the momentum equations (i.e. third equation

in (4.3.1) and third equation in (4.3.6)). The required condition after several reductions
can be written as(

∂u

∂τ

)
ζ

− γp0

(
r

ζ

)ν−1(
v′0
v′

)γ+1
1

1− ε0

(
∂v′

∂ζ

)
τ

= 0, (4.3.11)

(
∂u′

∂τ ′

)
ζ′
− γp′0

(
r′

ζ ′

)ν−1(
v′0
v′

)γ+1(
∂v′

∂ζ ′

)
τ ′
= 0. (4.3.12)

For deriving (4.3.11) we use the relation(
∂p

∂ζ

)
τ

= −γp0
vγ0 (1− ε0)

γ

(v − ε0v0)γ+1

(
∂v

∂ζ

)
τ

= −γp0

(
v′0
v′

)γ+1
1

v0(1− ε0)

(
∂v′

∂ζ
.

)
τ

,

which follows from

p(v − ε0v0)
γ = p0(v0 − ε0v0)

γ.

Let us take advantage of key relationship between the independent variables in the
Eulerian coordinates

dr′ = (1− ε)dr + εudt (4.3.13)

appearing in the transformation for planar motion (ν = 1) [83, 174, 177]. Owing
to the relation (4.3.5) the terms with ε collected together in (4.3.13) yield the value
εdr− εudt = ε0dζ. Then the relation (4.3.13) has a form dr′ = dr− ε0dζ that confirms
the physical interpretation for (4.3.13), namely, the volume (in planar symmetry (ν =
1) the distance) occupied by the incompressible component ε0dζ can be eliminated.

The suggestion (4.3.13) enables us to assume that the connection between variables
r and r′ for any symmetry could be presented in the form:

r′ν−1dr′ = rν−1dr − ε0ζ
ν−1dζ. (4.3.14)

Thus we satisfy the important condition: the value dr′ is an exact differential. That
in turn enable us to rewrite the relationship (4.3.14) in the integral form:

r′ν = rν − ε0ζ
ν . (4.3.15)
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The connection between the mass velocities follows immediately from (4.3.14)

r′ν−1u′ = rν−1u. (4.3.16)

Substitution of the relation (4.3.15) directly into the condition (4.3.10) reduces this
condition to the transformation

ζ ′ν = (1− ε0)ζ
ν . (4.3.17)

Trying to transform Eq. (4.3.11) into (4.3.12) we can obtain new equation in which in
addition to all terms of the equation (4.3.12) we get unfortunately the additional term

u′
(
r′

r

)ν−1(
∂ (r/r′)ν−1

∂τ

)
ζ

. (4.3.18)

The additional term (4.3.18) vanishes for stationary flows as well as for any flows with
planar symmetry, and possibly for self-similar motions.

Consequently, the transformation (4.3.8), (4.3.9), (4.3.15)–(4.3.17) between the sys-
tems of equations (4.3.1)–(4.3.4) and (4.3.6) is valid (i) at least for stationary flows,
i.e. one can state that for cylindrical (ν = 2) and spherical (ν = 3) symmetries, the
stationary motion of the two-phase medium is completely similar to the stationary
motion of gas as well as (ii) there is a similarity in motions for all planar flows.

In the next Subsection 4.3.3 we analyze the transformation (4.3.8), (4.3.9), (4.3.15)–
(4.3.17) between equation systems (4.3.1), (4.3.4) for self-similar motions in order to
estimate the error included in the term (4.3.18).

4.3.3 Self-similar motions with shock waves

The above-mentioned transformation allows one to use its advantage for describing the
self-similar problems. Let us apply the method for solving the problem related to the
strong explosion stage in a two-phase medium.

Let a finite amount of energy E0 be instantaneously deposited in an infinitely small
volume of a two-phase medium. We restrict ourselves to distances from the explosion
source where the wave can be considered as strong one, i.e. when we can neglect
the initial internal energy of the medium in comparison with E0. We consider the
propagation of the shock wave moving with velocity

D =
drf
dt

, (4.3.19)

where rf is a place of the shock wave front, rf = rf (t) is a function of time only. Note
that ζf = rf .

Let us define new dimensionless variables for the equation systems describing the
two-phase flow (4.3.1), (4.3.3), (4.3.4)

P = v0p/D
2, U = u/D, V = v/v0, μ = ζ/ζf ,

η = r/ζf , χ = ζf/τ0D, z =
ζf
D2

dD

dτ
,

(4.3.20)
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and gas (4.3.6)

P ′ = v′0p
′/D′2, U ′ = u′/D′, V ′ = v′/v′0, μ′ = ζ ′/ζ ′f ,

η′ = r′/ζ ′f , χ′ = ζ ′f/τ0D
′, z′ =

ζ ′f
D′2

dD′

dτ ′
, D′ =

dζ ′f
dτ

.

(4.3.21)

According to (4.3.15) we write

r′f
ν
= (1− ε0)rf

ν , r′f
ν−1

D′ = (1− ε0)rf
ν−1D. (4.3.22)

At strong explosion in a two-phase medium the self-similar motion is realized,
whereas, the derivatives with respect to χ are equal to zero, and z = z′ = −ν/2
(see, for example, [78, 117, 134, 141]). Then we can rewrite the systems of equations
for the two-phase medium as

ην−1

μν−1

dη

dμ
= V , zU − μ

dU

dμ
+

ην−1

μν−1

dP

dμ
= 0,

P (V − ε0)
γ μν = const

(4.3.23)

with boundary conditions at shock wave front [117, 141])

U = P =
2(1− ε0)

γ + 1
, V =

γ − 1 + 2ε0
γ + 1

,

and for the homogeneous medium (perfect gas) in the form(
η′

μ′

)ν−1
dη′

dμ′
= V ′, z′U ′ − μ′

dU ′

dμ′
+

(
η′

μ′

)ν−1
dP ′

dμ′
= 0,

P ′V ′γμ′ν = const

(4.3.24)

with boundary conditions

U ′ = P ′ =
2

γ + 1
, V ′ = γ − 1

γ + 1
.

We prove the last equation in (4.3.23) only. Let us consider the sequence of relations
taking into account (4.3.4) and (4.3.20),(

∂P (V − ε0)
γμγ

∂τ

)
ζ

=

(
∂v0pD

−2(v − ε0v0)
γv−γ0 (ζ/ζf )

ν

∂τ

)
ζ

= v1−γ0 D−2(ζ/ζf )
ν

(
∂p(v − ε0v0)

γ

∂τ

)
ζ

+ v1−γ0 ζνp(v − ε0v0)
γ

(
∂D−2ζ−νf

∂τ

)
ζ

= 0 + v1−γ0 ζνp(v − ε0v0)
γ

(
−2ζ−νf D−3dD

dτ
− νζ−ν−1f D−2dζf

dτ

)
= v1−γ0 ζνp(v − ε0v0)

γ(−2ζ−ν−1f D−1z − νζ−ν−1f D−1) = 0.
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The transformation (4.3.8), (4.3.9), (4.3.15)–(4.3.17) is easy reduced to the dimen-
sionless form

(1− ε0)V ′ = V − ε0, (1− ε0)P
′ = P,

(1− ε0)

(
η′

η

)ν−1

U ′ = U, ην = (1− ε0)η
′ν + ε0μ

ν , μ = μ′.

(4.3.25)

It turns out that for self-similar motion with shock wave (in contrast to the station-
ary flow) the transformation between systems (4.3.22) and (4.3.23) is not succeeded in
finding. Anyway for ν �= 1 there is the difference between system (4.3.22) and system
appeared from (4.3.23) by means of transformation (4.3.25). The transformed system
contains the additional term

U ′η′
(
η′

η

)ν−1
d(η/η′)ν−1

dη
.

Figure 4.1: The profiles of dimensionless velocity U . The solutions calculated by two
methods equal each other.

Using the point explosion as an example, we estimate the error introduced by the
additional term. The results of the calculations for strong explosion are demonstrated
in Figs. 4.1–4.4. We calculate the dimensionless specific volume V , velocity U and
pressure P by two methods. First, the system of equations (4.3.23) is directly solved
at some particular values ε0. This is the exact solution V , U , P . For the sake of
convenience we use the dimensionless density R = V−1 instead of the dimensionless
specific volume V−1. In Figs. 4.1–4.3 the variables U , R, P are plotted by curves 1, 2,
3. Second, the variables U , R, P are found by means of the transformation (4.3.25)
of the solution U ′, R′, P ′ for perfect gas (4.3.24). The solution thus obtained U , R,
P are the approximate solution of the equation system (4.3.23). The approximate
solutions are illustrated by curves 2’, 3’. In Figs. 4.1–4.4 the curves 1 relate to gas
(ε0 = 0, γ = 1, 4), curves 2, 2’ and 3, 3’ — to two-phase media with ε0 = 0.1, γ = 1, 1
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and ε0 = 0.5, γ = 1, 005, respectively. It is very important that complete agreement
is observed for U , R calculated by two methods, therefore, in Figs. 4.1, 4.2 the curves
2’, 3’ are not plotted, they completely coincide with curves 2, 3, respectively. While
for the values P at ν �= 1 (see Fig. 4.1) the distinction between the exact solutions
(curves 2, 3) and the approximate solutions (curves 2’, 3’) are largest. We note that
for curves 3, 3’ the initial volume portion is ε0 = 0.5, i.e. one-half of the initial volume
is occupied by the incompressible component. At small γ − 1 � 1 almost all mass of
the condensed phase is accumulated near the front of shock wave (see Fig. 4.4).

Figure 4.2: The profiles of dimensionless density R = V−1. The curves calculated by
two methods coincide with each other.

Figure 4.3: The profiles of dimensionless pressure P . Curves 2 and 3 are the exact
solutions. Curves 2’ and 3’ are the approximate solutions.

Thus, since for a problem of strong explosion in gas the self-similar solution is known
in forms of analytical dependencies [78, 134] and tabulated data [73], one can obtain
with certain accuracy the solution for strong explosion in two-phase medium with
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incompressible component. Moreover, the solution obtained in this manner has the
analytical dependencies on value of volume portion of incompressible phase ε0. Hence,
the influence of value ε0 on two-phase flows can be estimated through the analytical
dependencies.

We present below the example of successful applying the analytical transformation
to estimate the velocity of shock wave propagation in two-phase medium [83, 174, 177].

Figure 4.4: The distributions of volume portion of incompressible component ε0 in
shock wave.

4.3.4 Shock front parameters

It is fairly simple to establish analytically the effects of the volume portion of condensed
phase on the motion of the shock wave and the shock front parameters without finding
the distributions P , V and R [164]. We need to trace only the energy balance in volume
of medium involved by the shock wave

E0 = σ(ν)

rf∫
0

(
p(1− ε)

γ − 1
+ ρ

u2

2

)
rν−1dr, (4.3.26)

where σ(ν) ≡ 2(ν − 1)π + (ν − 2)(ν − 3). For this purpose we transform (4.3.26) by
means of (4.3.25) as follows:

E0 = σ(ν)ρ0D
2rνf

1∫
0

(
P (1− ε)

γ − 1
+R

V2

2

)
(η)ν−1dη

= σ(ν)ρ0D
2rνf

(1− ε0)
2

γ − 1

1∫
0

(
P ′ +

γ − 1

2
R′(V ′)2

)
(η′)ν−1dη′.

(4.3.27)
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The dimensional method [134] allows us to obtain the equation for the shock wave

rf =

(
E0

αρ0

)1/(ν+2)(
τ

1− ε0

)2/(ν+2)

,

D =
2

(ν + 2)(1− ε0)

√
E0

αρ0
r
−ν/2
f ,

(4.3.28)

α =
4σ(ν)ψ

(ν + 2)(γ − 1)
, ψ =

1∫
0

(
P ′ +

γ − 1

2
R′(V ′)2

)
(η′)ν−1dη′.

For γ → 1 the integral ψ tends to a finite limit and for γ = 1 we have ψ = (2ν)−1.
If we derive ψ from the available theoretical and tabulated data such as in [73], we find
that in the entire range in γ from 1.1 to 1.4 the value of the integral is close to the
limiting value ψ = (2ν)−1 and differs from it by ±3%. Then the expression for α can
be put as

α =

(
2

ν + 2

)2
σ(ν)

2ν(γ − 1)
. (4.3.29)

We use (4.3.28), (4.3.29) and (4.3.20) to get a relation between the shock front pressure
and the distance from the explosion center:

p =
2(1− ε0)

γ + 1
ρ0D

2 =
4ν

σ(ν)

γ − 1

γ + 1

E0

1− ε0
r−νf . (4.3.30)

These equations indicate that the increase in the shock wave parameters when the
medium contains an incompressible phase is due to the increase in the shock wave
velocity by a factor (1 − ε0)

−1 in comparison with ε0 → 0 for a given ratio of the
mass concentrations. In the limiting case ε0 → 1 the shock wave velocity tends to
infinity. This feature is evident from the physical viewpoint because the velocity of the
perturbation tends to infinity for an incompressible medium.

It follows from (4.3.30) that the minimum pressure occurs at a given distance from
the explosion center in a medium having the maximal shock compressibility for the
gas phase (by definition (γ + 1)/(γ − 1)) with the minimum value of ε0. Therefore,
in the general case of arbitrary ε0 the pressure field and the shock wave velocity in a
two-phase medium are dependent not only on the density ρ0, the explosion energy E0,
and α [50] but also on the volume portion of condensed phase ε0.

Consequently, we have suggested the transformation that allows one to obtain the
wave fields in two-component media with arbitrary volume portion of the incompress-
ible component from the similar problem for perfect gas. The solutions of many hy-
drodynamic problems for mixtures with incompressible component can be obtained
without solving the original system of equations. The scope for the suggested transfor-
mation is shown through the analysis of the strong explosion in a two-phase medium.



Chapter 5

Blast waves in medium with
structure

The features of dynamic behavior of two-component media, the influence of interphase
interaction under the wave propagation can be elucidated by means of solution of
a problem related to the strong explosion in a two-phase medium. This problem
attracts interest also in practical possibility to estimate the efficiency of a medium for
localizing the sock wave action. The expanded range of pulsed materials processing
requires the development of means for localizing the effect of high-power energy sources
used to excite the shock waves in the surrounding medium. In addition to the special
chambers, recently the multiphase media (bubble screens in liquids [49, 152], gas-liquid
foam [82, 84], foam plastics [75], etc.) have been used for damping of the shock waves.
The studies have shown that the energy of explosions is most efficiently absorbed by
the water foam [75].

A qualitative theoretical analysis of strong shock waves in two-phase media with a
small volume fraction of condensed material shows that the potential capacity of foam
to damp the shock waves is greater. It turns out that the estimated parameters of shock
waves at a fixed distance can be below the parameters found in experiments [50, 84].
It is noticed that the failure to reach the calculated parameters can apparently be
explained by means of the fact that the characteristic time of interphase relaxations,
which describe the conversion of thermal energy from the gaseous component (which
determines the pressure of a medium) to the internal energy of the condensed phase
(which does not contribute to the pressure), are substantially greater than the time
required to peak the pressure at the shock front. We will clarify that the properties
of own medium determine the attenuation of shock waves. We will analyze the
dependence of the shock wave attenuation on the thermal relaxation time in order to
understand the damping of shock waves by such media and find out their effectiveness
as localizing media as well. Besides, it is of interest to define the dependence of the
shock wave attenuation on a shock loading, in particular, on an explosion energy [164].

In many problems of blasting, the formation of cracks in a rock under the explosion
action is of decisive importance. The crack formation exerts an influence on the change
in physical mechanical rock properties, particularly, the rock-mass permeability. As the
permeability in the near-well zone of the productive strata rises, the producing well
discharge increases. One of a perspective method is the method of controlled change

61
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in mechanical properties of rocks using the pulse action, including explosion energy.
The model of rock fracture is suggested with due regard for the attenuation of wave
loading governed by the geometrical divergence of wave and irreversible losses in rock.
The obtained analytical relations enables us, on the one hand, to indicate the blast
wave characteristics which affect the fracture process and, on the other hand, to lay
the theoretical foundations for estimating the blast wave properties by means of the
known fracture area.

5.1 System of equations for describing the strong

explosion

The molecular relaxation following an explosion in a gaseous or liquid medium proceeds
so fast that the perturbation front can be regarded as a discontinuity surface (a shock
wave). This makes it correct to use the self-similar theory of point explosion [73, 78, 134]
for describing the evolution of a shock wave during the high-intensity stage of the
explosion process also at distances where the shape of the energy source does not
play a significant role. Hence, in this classical case where there are no relaxation
processes in flow behind the front of a shock wave, the unsteady motion of a medium
induced by the instantaneous release of energy at a point is described by a self-modeling
solution [73, 78, 134]. Then the pressure and velocities of the wave flows are uniquely
determined by the energy of explosion and the thermophysical properties of the gas
surrounding the energy source.

However, there are media in which the relaxation processes occur in flow behind the
shock front. If the medium possesses the relaxation processes with characteristic time
compared with a time of wave propagation, the parameters behind the front depend
significantly on the completeness of relaxation processes in a medium. One glowing
example of these media is the gas-liquid foam. After explosion in a two-phase medium
only the gaseous component reaches equilibrium immediately, owing to the inertia of
condensate particles at a wave front. There is the wide relaxation zone behind the
shock front, since the equalization time between the parameters of the phases is well
long than the relaxation time in a gas [82, 84]. Consequently, formation of a shock
wave after explosion in two-phase medium cannot any more be regarded as occurring
within an infinitesimally short time, and the relaxation processes in wave should be
taken into account [84] to define the shock wave.

This chapter is concerned with the effect of thermal relaxation behind the shock
front on the evolution of a shock wave. For example, the attenuation of shock waves
in gas-liquid foam generated by the condensed explosive charge shall be described in
terms of a relaxed heat transfer from the gas phase into the condensed phase [83, 84,
173, 175, 178]. Let an explosion occur in this medium and, as a result, an energy
E0 producing a shock wave be released instantaneously within an infinitesimally small
volume. The problem consists in defining a flow behind the shock front as a dependence
on thermophysical properties of a medium as well as on completeness of relaxation
processes. The existence of relaxation processes makes considerably more complicated
the calculations of strong shock because the flow is not a self-similar one. This means
that a time-dependent system of differential equations must be solved. Analyzing the
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shock flows in two-phase media, we made the following assumptions : (a) components in
two-phase media are uniformly in volume; (b) density and specific heat of the condensed
phase are constant; (c) gaseous phase obeys the state equation for an ideal gas; (d)
there are no mass transitions between phases; (e) gaseous phase and the condensate
phase move at the same velocity; (f) energy of the mixture is an additive quantity;
(g) time for thermal relaxation between gas and condensed component is constant; (h)
transfer of perturbations from the relaxation zone to the front of the shock wave obeys
the hydrodynamics lows.

On the basis of these assumptions, the fundamental system of equations for describ-
ing the shock-wave flows at point explosion in mixture (spherical symmetry ν = 3)
will be put in the form of the asymptotic averaged model (4.1.4), (4.2.7) created in
Sections 4.1, 4.2.

∂ 〈V 〉−1
∂t

− 1

r2
∂r2 〈V 〉−1 u

∂r
= 0, (5.1.1)

∂u

∂t
+ u

∂u

∂r
+ 〈V 〉 ∂p

∂r
= 0, (5.1.2)(

∂

∂t
+ u

∂

∂r

)
〈E〉+ p

r2
∂r2u

∂r
= 0, (5.1.3)

τE
d

dt

[
〈E〉 − p〈V 〉(1− ε)

γ − 1

]
+

[
〈E〉 − p〈V 〉(1− ε)

Γ0 − 1

]
= 0. (5.1.4)

The dynamic state equation (5.1.4) relates to the certain mass of medium, thereby
the full derivative with respect of time t is to be d/dt = ∂/∂t + u∂/∂r. The volume
fraction of a condensed phase ε is one-valued function of an averaged specific volume
〈V 〉 (4.2.8)

ε = ε0〈V0〉/〈V 〉.
Since there is an additional variable rf = rf (t) (or velocity of a shock wave D =

drf (t)/dt), the system of equations is supplemented by the balance equation of the
total energy: the energy of the medium bounded by the shock wave is equal to the
initial energy of the medium E(p0, ρ0) and the energy of the explosion E0

E0 +
4
3
πρ0E(p0, ρ0)r

3
f=

4
3
π

sf∫
0

〈
E + 1

2
u2
〉
ds

= 4π

rf∫
0

(〈E〉
〈V 〉 +

u2

2〈V 〉
)
r2dr.

(5.1.5)

The state equation can be formally rewritten down in a form

〈E〉 = p〈V 〉(1− ε)

Γ̂− 1
, Γ̂ = γ − (γ − Γ)

/(
1 + τE

d

dt

)
. (5.1.6)

The physical sense of the operator Γ̂ concerns in that it specifies the thermophysical
proterties of a medium as well as their changes due to internal relaxation processes. It
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can vary between Γ̂ = γ for flows with the frozen thermal processes, and Γ̂ = Γ0 for
the equilibrium flows. For most processes we have Γ0 < γ. As was noted for two-phase
gas-containing mixtures, Γ0 is usually close to 1, though not exactly equal to it.

For wave propagation it is succeeded to reduce the form Γ̂ by introducing an addi-
tional assumption. The nonequilibrium between phases is considered to arise in shock
front only (here Γ̂ = γ). The wide zone relaxation follows behind shock front, where
the progressive equalization of temperatures between the components takes place. We
assume that in flow behind the shock front, an additional nonequilibrium is not in-
troduced between the components medium. In this case the expression (5.1.6) can be
reduced assuming that the time relaxation τE is a constant value. Although this approx-
imation on flow is not faithful, however, it allows one to present the relationship (5.1.6)
in an algebraic form, and hence, the analysis of wave propagation is essentially simpli-
fied for describing the relaxation processes.

The parameter Γ̂ corresponds to the completeness of relaxation processes, hence, it
is to be depended on the lifetime of a microscopic volume in the shock wave τ ′. Then
in the shock front we have τ ′ = 0 and Γ̂ = γ, while at τ ′ → ∞ we get Γ̂ → Γ0. At these
conditions from (5.1.6) it is easy to obtain the algebraic expression for the effective
parameter Γ to describe the relaxation process [84, 173, 175]

Γ = Γ0 + (γ − Γ0) exp(−τ ′/τE). (5.1.7)

In general, τ ′ is a function of the time t and space coordinate r, i.e. τ ′ = τ ′(r, t), and
satisfies the differential equation

∂τ ′

∂t
+ u

∂τ ′

∂r
= 1 (5.1.8)

with τ ′ = 0 for t = 0 and r = rf .
We shall restrict ourselves the consideration of the strong shock wave where the

initial internal energy of the gas can be neglected 4
3
πr3fρ0E(p0, ρ0) � E0 in Eq. (5.1.5).

Then the boundary conditions at the shock front and center symmetry take the follow-
ing form [117]

u = 0 at r = 0,

uf =
2(1− ε0)

γ + 1
D, pf =

2(1− ε0)

γ + 1
ρ0D

2,

〈V 〉−1f =
γ + 1

γ − 1 + 2ε0
ρ0 at r = rf ,

(5.1.9)

In the case of a point source of energy E0 the initial conditions for the system of
equations can be found from the self-similar solution of the problem [78, 134].

Since the dependence on the volume fraction of a condensed phase ε, as it has been
proved in Sec. 4.3, can be considered separately, the system of equations shall be solved
at the condition ε0 = 0.

Consequently, we have obtained a closed system of equations (5.1.1)-(5.1.3), (5.1.5)-
(5.1.8) with boundary conditions (5.1.9) for the motion of a two-phase medium includ-
ing the thermal nonequilibrium behind the shock front. This system consists of seven
equations which have seven unknown variables: 〈V 〉, u, p, 〈E〉, Γ, τ ′, rf .
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The system of equations (5.1.1)-(5.1.3), (5.1.5)-(5.1.8) is reduced to the dimension-
less form by means of transformation of the dependent variables

R =
〈V 〉0
〈V 〉 , U =

u

D
, P =

p〈V 〉0
D2

, θ =
τ ′

τE
(5.1.10)

and independent variables

η =
r

rf
, χ =

rf
τED

, τE
dχ

dt
= 1− z, z =

rf
D2

dD

dt
(5.1.11)

as follows:

(1− z)χ
∂R

∂χ
+ (U − η)

∂R

∂η
+

R

ην−1
∂ην−1U

η
= 0,

(1− z)χ
∂U

∂χ
+ (U − η)

∂U

∂η
+ zU +

1

R

∂R

η
= 0,(

(1− z)χ
∂

∂χ
+ (U − η)

∂

∂η
+ 2z

)
P

Γ− 1

+
ΓP

(Γ− 1)ην−1
∂ην−1U

η
= 0,

(1− z)χ
∂θ

∂χ
+ (U − η)

∂θ

∂η
= χ,

(1− z)χ
dψ

dχ
+ (2z + ν)ψ = 0,

ψ =
1∫
0

(
P

Γ− 1
+ R

U2

2

)
ην−1dη,

Γ = Γ0 + (γ − Γ0) exp(−θ).

(5.1.12)

We have seven equations for seven unknown variables R, U , P , θ, ψ, Γ, z.
The boundary conditions for this system take the form

U = 0 at η = 0,

Uf =
2

γ + 1
, Pf =

2

γ + 1
, Rf =

γ + 1

γ − 1
at η = ηf = 1.

(5.1.13)

In the limiting case without relaxation processes (Γ = γ = const) the dimensionless
variables R, U , P are self-similar, whereas z(t = 0) = −3/2. These self-similar distri-
butions R, U , P on 0 ≤ η ≤ 1 are considered to determine the initial conditions.

The system of equations (5.1.12) differs from the self-similar system of equation by
the dependence of Γ on time χ and space coordinate η. This difference occurs only in
energy equation (5.1.12) containing the additional term(

(1− z)χ
∂

∂χ
+ (U − η)

∂

∂η

)
ln(Γ− 1).
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It is clearly that at time instant χ � 0 and long time χ � 1 this additional term
becomes negligible small. It means that the solution at these times is close to the
self-similar solution, but with different parameters: Γ = γ at χ � 0 and Γ = Γ0 at
χ � 1.

5.2 Calculation of shock waves

The finding of solution for the equations system is sufficiently complicated by singular-
ities that take place at initial instant of time χ � 0 and in vicinity of symmetry center
η = 0. At η = 0 we meet a singularity of a saddle-point type. Moreover, at time instant
under transition from χ = 0 (here the initial conditions have been specified) to the time
χ > 0, the order of the system of equations (5.1.12) increases. Indeed, at χ = 0 we have
the system of the ordinary differential equations (there is one independent variable η
only), while at χ > 0 we have the system of partial differential equations. To avoid
the singularity concerned with vanishing the terms which include the partial derivative
with respect to χ, we have suggested the following method. For times less than a cer-
tain value χ∗, i.e. at χ < χ∗, when the relaxation processes change insignificantly the
flow with respect to the self-similar flow, all deviations of the dependent variables from
the self-similar values can be defined in form of the linear corrections (the self-similar
variables are denoted by subscript 0)

R = R0(1 + δRt/τE), U = U0(1 + δU t/τE), P = P0(1 + δP t/τE). (5.2.1)

After the linearization the linear system has been solved by the numerical method.
For η < η∗ (η∗ is some value selected at numerical experiment) we use the asymptotic
approximation to avoid the singularity of the saddle-point type at η = 0. Hence, we
can obtain the solutions which hold true until certain χ∗, i.e. at χ ≤ χ∗.

For χ > χ∗ the method of solution is based on the implicit finite-difference schemes
analogous to those given in [135]. With an implicit scheme it is possible to avoid
the strict limitation on the time step. The differential equations (5.1.12) can be ap-
proximated to the first order by an implicit finite-difference scheme of the triangular
type (running calculation). The calculation starts from the shock front, where all the
flow parameters are known. The implementation of the implicit scheme is complicated
by the nonlinearity of the equations and therefore the variables were found using the
method [40], adopted to the case of two independent variables. It is essential at numer-
ical calculation that the integral relation in (5.1.12) and the boundary condition U = 0
are to be satisfied simultaneously. By varying the value of z, these two requirements
can be satisfied using the method of successive approximations. A singularity of the
saddle-point type near the center of symmetry was crossed by varying z. Starting from
a certain η∗, when the lowest values of the density are reached, the value of the velocity
is extrapolated by the linear dependence U = U(η∗)η/η∗ for 0 ≤ η ≤ η∗ in order to
avoid the significant errors at calculation of the kinetic energy.

In order to suppress the possible high-frequency computational oscillations in the
finite-difference procedure we have used the smoothing method (see Ref. [73]). The
resulting smoothing coefficients (0.002 for the density and 0.005 for the pressure and
velocity) lead to the desired result and do not accumulate errors in the flow parameters.
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The occurrence of thermal relaxation is shown to make the description of the shock
waves more complicated [164]. The features arise in form of changes of profiles for
pressure P , mass velocity U and density R. The relaxation in medium affects on rate
of damping shock wave, on ratio between kinetic and internal energies, on impulse
of the pressure in transient shock wave. In general case the shock wave parameters
depend on properties of a medium ρ0, γ, Γ0, τE and explosion energy E0. The principal
features of flow in the relaxing medium appear even at initial time instant.

The calculations show that at the initial time χ ≤ χ∗ the flow parameters devi-
ate linearly, with an accuracy of 15%, from the self-similar parameters of a flow in a
nonrelaxing medium. The more rapid damping of the shock velocity under thermal
relaxation leads to an increase of the relative velocity U as compared with the self-
similar solution. Because of this the relative fraction of the mass in the central region
decreases, but increases near the front. The pressure at the shock front decreases mono-
tonically. The deviations from the self-similar parameters given by the formulas (5.2.1)
are shown in Fig. 5.1 for γ = 1.4 and Γ0 = 1.01.
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Figure 5.1: Distributions of the corrections to the self-similar solution for the density
δR, mass velocity δU , and pressure δP .

The effect of heat exchange on the attenuation of pressure in the shock wave is
conveniently characterized by the parameter s which relates the pressure at the shock
front pf to the distance from the center of the energy source in a form p ∼ r−sf . If
kinematic equilibrium exists between components we get

s = − d ln p

d ln rf
= −2

d lnD

d ln rf
. (5.2.2)

It should be noted that for strong shocks, in which the relaxation processes occur
within the shock front, the variable s is a constant, whereas, in particular, for spherical
symmetry we have the value s0 = 3. Then the reduction in the pressure drop with
distance is related only to the geometric divergence of the flow. At the same time, for
a medium in which the shock is damped more rapidly than in a uniform medium, the
parameter s must exceed the value s0 related to the self-similar solution. The deviation
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from the self-similar value s0 for t < τE is conveniently characterized by the quantity

δs =
s− s0
s0

t

τE
. (5.2.3)

Table 5.1 shows the computed corrections δs for spherical symmetry. We note that the
correction δs characterizes the rate of damping of the shock at initial time.

Table 5.1: Correction δs

Γ0 δs for γ
1.1 1.2 1.4 1.66

1.2 – 0.0 0.505 0.655
1.1 0.0 0.560 0.760 0.800
1.05 0.610 0.840 0.885 0.870
1.01 1.095 1.065 0.985 0.925
1.001 1.205 1.115 1.010 0.940

The dependence of pressure attenuation on the relative distance R̃ = rf/E
1/3
0 (E0

is energy of explosive charge) with different dimension parameters ρ0, E0, γ, Γ0, τE at
initial instant of time, is represented in Figs. 5.2. From Fig. 5.2a it follows that for
τE = const the reduction of Γ0 by changing the mass concentration of the condensed
phase leads to a substantially more rapid damping of the wave than for the same
values of Γ0 at the lower mass concentrations, however, in the limiting case without
heat exchange (τE → ∞) the shock parameters are the same in both cases.

This effect is explained by the fact that, despite of the heat exchange, the enhanced
concentration of the condensed phase leads to a attenuation of the velocity of shock
wave. When a heat exchange occurs in the medium, then the time required for the
shock to travel a fixed distance increases and, consequently, this leads to the more
completeness of the thermal relaxation between the phases.

For given ρ0, γ, Γ0, and τE (see Fig. 5.2b) an increase of the energy by a factor of
10 and 100 causes a reduction by factor of 1.2 and 1.45, respectively, for the distance
where a pressure exceeds a value 5 MPa. The influence of the characteristic heat-
exchange time on the pressure variation with distance is shown in Fig. 5.2c. As would
be expected, the attenuation should be more rapid at more intense heat exchange (all
other conditions are the same). The variation of the initial value γ (the adiabatic index
of the gaseous phase) leads, on one hand, to the different initial pressures and, on the
other, to the more rapid attenuation for smaller γ (see Fig. 5.2d).

For χ > χ∗ the deviations from the self-similar solution do not obey the linear
relations. It is necessary to solve the nonlinear system (5.1.12). The numerical method
we used was described in Sec. 5.1.

At t � τE the basic features of the evolution of strong shock waves in a relaxing
medium are shown in Figs. 5.3-5.6. The effect of the relaxation process on the change
of the pressure profile is shown in Fig. 5.3. In the central region a decrease in P
is observed at the initial instant of time, but later, as the average thermodynamic
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Figure 5.2: Dependence of the pressure attenuation on the relative distance for different
Γ0, ρ0, E0, τE and γ: (a) γ = 1.4, E0 = 107 J, τE = 150μsec, (1) Γ0 = 1.01, ρ0 =
50 kg/m3, (2) Γ0 = 1.01, ρ0 = 20, (3) Γ0 = 1.001, ρ0 = 10, (4) Γ0 = 1.01, ρ0 = 10,
(5) Γ0 = 1.1, ρ0 = 10, (6) Γ0 = 1.01, ρ0 = 2kg/m3; (b) γ = 1.4, ρ0 = 10 kg/m3,
Γ0 = 1.01, τE = 150μsec, E0 in J: (1) 109, (2) 108, (3) 107; (c) γ = 1.4, E0 = 107 J,
ρ0 = 10 kg/m3, Γ0 = 1.01, τE in μsec: (1) 30, (2) 80, (3) 150, (4) 300; (d) E0 = 107 J,
ρ0 = 10 kg/m3, Γ0 = 1.01, τE = 150μsec, γ: (1) 1.67, (2) 1.4, (3) 1.2, (4) 1.1.

equilibrium is reached, the pressure increases and approaches to the value related to
the self-similar flow with Γ0.

The parameter Γ represented in the form (5.1.7) can be considered as a relaxation
function describing the heat exchange in two-phase medium. If the thermodynamic
equilibrium exists between the phases, Γ0 is identical to the ratio of the specific heats
of the medium at constant pressure and constant volume [108]. In this case a decrease

The parameter Γ represented in the form (5.1.7) can be considered as a relaxation
function describing the heat exchange in two-phase medium. If the thermodynamic
equilibrium exists between the phases, Γ0 is identical to the ratio of the specific heats
of the medium at constant pressure and constant volume [108]. In this case a decrease
of Γ0 is equivalent to an increase of the concentration and/or the specific heat of the
condensed phase (the other conditions are the same).

The presence of the relaxation process leads to a qualitative change in the nature
of the attenuation of the shock wave. Unlike the case of a nonrelaxing medium, where
the pressure and propagation velocity of the shock wave vary according to the power
laws (p ∼ r−sf , D ∼ r−0.5sf ) with a constant exponent s0 = 3, the presence of relaxation
leads to a variation of the exponent. The maximum absolute value smax exceeds (for
the other parameters held constant) later s0 in a medium with a smaller value of Γ0.
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Figure 5.3: The pressure profile of shock wave at different time propagation. For all
curves γ = 1.4, Γ0 = 1.2. Curve (1) relates to t/τE = 0; (2) — t/τE = 1; (3) —
t/τE = 6.

Table 5.2: The time t/τE for maximum value smax at specific values of Γ0 and at fixed
γ = 1.4

Γ0 1.2 1.05 1.01
smax 3.6 6.6 12.2
t/τE 3.2 5.4 7.8

In Table 5.2 we show the dimensionless time t/τE at which the maximum value smax

is reached for specific values of Γ0 and for fixed γ = 1.4. Far from the energy source
and for t � τE the relaxation processes do not really affect the nature of damping of
the velocity and pressure on the shock front. In this case s asymptotically approaches
its limiting value s0 = 3, corresponding to the self-similar solution. Indeed, if wave
propagates over a long time (t � τE) and it remains yet strong shock wave (p � p0),
then all relaxation processes take place in zone near to the shock front only. The flow
behind this zone can be described with necessary accuracy by means of self-similar
solution but with equilibrium parameter Γ0. This is illustrated in Fig. 5.4 where the
dependence of the pressure on the wave front Pf = pτ

6/5
E (ρ0A

2)−1 is shown as a function

of the dimensionless distance l = rf (τ
2/5
E A)−1 (A = (E0/αρ0)

1/5 see (4.3.28)). As is seen
from Fig. 5.4 the curves approach the asymptotic value at the same distance from the
energy source. We note that the increase of the exponent s larger than the self-similar
value s0 = 3 is purely a relaxation effect. This effect is typical for the propagation
of strong shock waves for a wide class of multiphase media (foam [50, 81, 84, 175],
soil [91, 92], bubble-like materials [49, 104, 111, 120]).

An important characteristic related to the attenuation of the shock wave in the
medium with relaxation is the variation of the ratio of the internal energy to the
kinetic one during the relaxation process. The dependence of the energy redistribution
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from the explosion between the internal and kinetic energies of the medium on the
dimensionless time is shown in Fig. 5.5. We see that the energy redistribution in
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Figure 5.5: The dependence of the energy redistribution from the explosion between
the internal Ep and kinetic Ek energies of the medium on the dimensionless time t/τE.
For all curves γ = 1.4. Curve (1) relates to Γ0 = 1.2; (2) — Γ0 = 1.05; (3) — Γ0 = 1.01;
(4) — Γ0 = 1.0.

time also reaches a limiting value corresponding to thermodynamic equilibrium in the
medium, and this process occurs more rapidly for larger value of the parameter Γ0.
However, at any fixed time instant, in a medium with a smaller value Γ0 the ratio of
the internal energy to the kinetic energy is always larger. But at the decrease of Γ0

the difference in the energy redistribution decreases, and finally the ratio of energies
approaches the dependence which is realized for the limiting value Γ0 = 1.0 (curve 4).

The attenuation of shock waves in a relaxing medium is intimately connected with
the need to decrease their intensity in order to avoid the breakup of the structures and
objects. In practice, a breakup is determined in the most cases either by the impulse
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of the shock wave or by a quantity involving the impulse and the pressure on the shock
front [61]. Since the relaxing multiphase media are so widely used in the damping of
shock waves, the knowledge how the impulse of the shock wave changes throughout
relaxation processes is of current interest. This is shown in Fig. 5.6 as the dependence
of the dimensionless impulse of the pressure

J = Iτ
1/5
E (ρ0A)

−1, I =

∞∫
t(r1)

p(r1, t)dt (5.2.4)

on the distance l = rf (τ
2/5
E A)−1. For constant ρ0, a decrease of the parameter Γ0 leads

to a decrease of the impulse of pressure at a fixed relative distance. It must be pointed
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Figure 5.6: The dependence of the dimensionless impulse of the pressure J on the
dimensionless distance l. Curve (1) relates to Γ0 = 1.4; (2) — Γ0 = 1.2; (3) —
Γ0 = 1.05; (4) — Γ0 = 1.01. For all curves γ = 1.4.

out that an increase of the density of the medium (all other properties being equal)
can lead to an increase of the impulse of pressure I even larger than the value for a
less dense nonrelaxation medium (see Fig. 5.6), in spite of the decrease of the peak
pressure p (Fig. 5.4).

5.3 Blast waves in foam

Nature of the relaxation interaction between gas and liquid must be understood in
order to predict the parameters of shock waves generated by the ignition of explosive
in foam. At the explosion in foam the degree of completion of relaxation processes
depends both upon the thermophysical properties of phases and the energy of the
explosion determining the wave attenuation [164].

Considering the attenuation of shock waves generated by nonpoint energy sources,
such as chamical explosives, it should be noted that the increase of the density of the
condensed phase in medium for purposes to reduce the shock wave parameters simulta-
neously causes a decrease of the shock formation region and, hence, an increase of the
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shock parameters at the interface between the two-phase medium and the explosion
products. It is natural to assume that in some region of shock wave formation the
pressure amplitude at the shock front in the two-phase medium will also be greater
than in a gas.

5.3.1 Experimental study

To find the nature of the relaxation interaction between the phases and to obtain
quantitative estimates of shock attenuation in the formation region for the shock waves
generated by solid explosives, we have studied experimentally both the velocity field of
shock waves (see Fig. 5.7) and the pressure at front (see Fig. 5.8) in an air foam with
a mass concentration of liquid of 10–15 kg/m3. The experimental results for air from
Refs. [6, 7, 10, 23, 24, 130] are also represented in Fig. 5.7 and Fig. 5.8.
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Figure 5.7: The velocity of the wave front D as a function of the reduced distance
R̄ = rf/Q

1/3. Curve (1) is the calculated curve; (2) — experiment in foam; (3) —
experiment in air. R0 is radius of explosive charge.

The experiments were conducted with spherical explosive charges having a bulk
mass of 0.5–2.8 kg (E0 = 5.4MJ/kg) and using electrical contact probes. Figure 5.7
shows the observed variation of the shock velocity with the reduced radius R̄ = rf/Q

1/3

(Q is mass of explosive charge) in foam and in air [6]. It can be seen that at closer
distances from the charge, there is a sharp reduction in the differences between the
shock velocities in the foam and gas.

For R > 0.4m/kg1/3 where the direct measurements of the pressure were performed
(a continuous curve in Fig. 5.8) with charges having a mass of 0.5–2.8 kg the difference
between the measured values of the pressure and those calculated from the velocity
lies within the measurement error of 20-30%. Hence, analysis of the experimental data
indicates that the relationship between the Mach number and the ratio of the maximum
pressure in a shock wave pf to the initial pressure p0 is

pf
p0

� M2. (5.3.1)
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Here M = D/c0 is the Mach number, and c20 = Γ0
p0

ρ0(1− ε0)
is the equilibrium sound

velocity in foam. In the zone nearest to the explosion charge the pressure ratio at the
wave front is close to the ratio for kinematic equilibrium between the phases. Thus, we
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Figure 5.8: The pressure on the wave front pf as a function of the reduced distance
R̄ = rf/Q

1/3. Solid curve is experiment in foam. Curve (1) is the calculated curve; (2)
— experiment in air.

may assume with this accuracy that the kinematic interphase equilibrium exists in the
shock front. The curve 1 of Fig. 5.8 represents the pressure field of a point explosion
in foam taking the thermal relaxation into account. As can be seen in Fig. 5.8, when
R ≈ 0.3m/kg1/3 the pressure in a foam becomes comparable to the pressure at a
shock front in air and sharply increases as the charge is approached, whereas at the
boundary of charge, judging from the shock velocity, the pressure must be p = 500MPa.
These data agree with the predictions of the initial parameters of a shock wave at the
interface explosion products of RDX-foam. From the analysis of shock adiabat for
foam at σ = 15 kg/m3 and isentrope of the expansion of the RDX explosion products
for D = 6000m/s and p = 500MPa, the parameters of the wave weakly depend
upon a degree of the completion of thermal relaxation between the phases. Thus, the
attenuation does not occur near the explosive charge and furthermore in this zone the
shock wave parameters in foam can be larger than those in air. This fact must be taken
into account when using a foam as a damping medium.

It is important that there are the abrupt reductions of the wave parameters both
for pressure

p ∼ R−sp , sp = − d ln p

d lnR
= 4 (5.3.2)

and for propagation velocity

D ∼ R−sD , sD = −d lnD

d lnR
= 2 (5.3.3)

in foam with distance. Note that for nonrelaxation medium these exponents can not
exceed the values sp = 3 and sD = 3/2.



5.3. Blast waves in foam 75

0,4 0,5 0,6 0,7 0,8 0,9
0,0

0,1

0,2

0,3

1

3

2

J
,

M

k
g

_
_
_
_
_

1
/3

.
.

R, m/kg
1 3/

P
a

m
s

_

Figure 5.9: The reduced impulse of the pressure J as a function of the reduced distance
R̄ = rf/Q

1/3. Curve (1) is experiment in air; (2) — experiment in foam; (3) — the
calculated curve.

The experimental dependencies of the reduced impulse of the pressure J (5.2.4) on
the reduced distance R̄ are shown in Fig. 5.9. At distance, where we have carried out
the experimental study, there is a monotone reduction of the impulse. The comparison
with experimental data in air (curve 1 in Fig. 5.9) points up the different dependencies
of impulse of the pressure in these media. The dependence observed in air [6, 7] relates
to the shock wave formation. Simultaneously, the monotone dependence of the impulse
in foam points up the more near formation of the shock wave to the explosive charge.
The experimental results confirm that the gas-liquid foam is one of media in which the
relaxation phenomena are more pronounce usually.

The abrupt attenuation of the wave observed in foam in comparison with attenua-
tion in gas is associated with the processes of heat exchange between liquid and gas.
In this case the increase of attenuation of the shock wave parameters, depending on a
distance, enables us to make the conclusion that the thermal relaxation occurs more
slowly than the kinematic equilibrium is established between phases.

5.3.2 The comparison of the calculation with experiment

The correlation between the experimental results for the wave velocity D and the
pressure at front pf , as we have already noted, points up that with accuracy of exper-
imental error the relationship (5.3.1) takes place. In order to the relationship (5.3.1)
be valid, it is important to reach the kinematic equilibrium in contrast to the thermal

equilibrium. Indeed, c20 = Γ0
p0

ρ0(1− ε0)
is slightly dependent on the exchange of Γ0

for γ, i.e. on the completeness of thermal relaxation, while this value c0 essentially
depends on the density of a medium. Hence, to satisfy the relationship (5.3.1) it is suf-
ficient to reach the kinematic (without thermal) equilibrium between phases. Thus,
if the relationship (5.3.1) is true, then we can believe that velocities of the two phases
are equal. It means that the profile of wave behind the shock front is determined by
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other interphase processes. These above-mentioned arguments enable us to apply the
one-velocity model for describing the relaxation effects.

The results of Ref. [51] confirm the suggested approach. It is noted [51] that in
dusty gas at initial time instant the particles lag from the gas. However, henceforth
the gas flow involves the particles and the velocity of particles increases. Furthermore,
the geometrical divergence of gas flow provides the decrease of its velocity and as a
results the particles velocity can exceed the gas velocity. The particles involved by flow
move to the shock front, whereas their velocity becomes sufficient to sustain the shock
wave.

The process of formation and propagation of a shock wave generated by chemical
explosion can be imagined as follows. At explosion of a charge the explosive products
with high pressure transmit gradually the energy to the surrounding medium. Since
the shock wave velocity is lower in two-component medium (the foam) than in gas, the
transfer of energy from explosive products to a foam occurs more fast than to a gas
possessing lesser density. Thus, the shock wave in foam should be formed nearer to a
charge than the shock wave in gas. Here, we point out once again that the formation
of the shock wave in near zone to a charge in foam confirms by the experiments on
the pressure impulse in foam and air (see Fig. 5.9). On the basis of the experimental
results, we can claim that in zone, where the direct measurements of pressure and
impulse have been performed, the shock wave had already been formed.

After the formation of shock wave, the mechanism which energetically supports the
wave perturbation is likely to be caused by both the pressure of a gas phase and the
kinetic energy of a condensed phase. This last process is considered to lead to the
equalization of velocities between phases in flow behind the shock front.

The more near formation of the shock wave to the explosive charge enables us to
use the assumption on the kinematic equilibrium, and, thus, to estimate the pressure
through the Mach number in zone, where the direct measurements of pressure have not
been performed (dashed line 1 in Fig. 5.8). The estimations point that here pressure
in foam exceeds the pressure in air.

In flow behind front, where the kinematic equilibrium is considered to take place,
the relaxation effects concern with other interphase interactions such as heat exchange,
radiation, partial mass exchange between phases, etc. Such internal processes evidently
lead to the loss of energy determining the pressure of medium. The process of thermal
relaxation is slow in a comparison with the time to attain a maximal pressure at wave
front. The effect from the energy transfer caused by above-mentioned processes in
flow behind shock front is not immediately manifested in front parameters of wave.
The hydrodynamic laws constitute the transmission of information on the loss of heat
in gas phase from the deepness of flow to the shock front. Consequently, in order to
describe the propagation of shock wave, it is necessary to solve the time-dependent
hydrodynamic equations. The simulation of propagation of the shock waves generated
by point explosive charge has been carried out in Secs. 5.1, 5.2.

Now we compare computer calculation with experimental results on the propagation
of shock waves in the foam possessing the relaxation effects. The assumption on the
ideal energy source (i.e., the point charge and the instantaneous energy release) does
not allow us to compare directly numerical data with experimental results where waves
have been generated by the real chemical explosion. For example, the comparison
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of the pressure in air from point charge and real one shows that at distances where
the dependence p ∼ R−3 is valid, the energy equivalent of point charge accounts for
60% of energy of a real charge [24]. Hence, it is necessary (i) whether to define the
energy equivalent of point charge, (ii) or to compare the relative values, i.e. the values
of variables in flow in the relaxing medium related to the appropriate values in the
nonrelaxation medium. In the second case it is naturally to compare the experimental
and numerical values of wave parameters in the foam and in the medium which is
described by the state equation for ideal gas without relaxation processes. First of all,
such a medium can be a gas. For instance, the known results on the explosion in air
can be attracted [6, 7, 10, 23]. The energy part of real source forming directly the shock
wave (energy of point source) is estimated from a comparison of the calculated value
pf l

3 and experimental value pR̄3, whereas the value pR̄3 is to be defined in the vicinity
of charge where the relaxation effects are negligible, but the shock wave has already
been formed. For gas-liquid foam the energy equivalent of point charge accounts for 50-
60% of energy of real source. The characteristic time for heat exchange between the gas
and liquid in foam can be estimated by determining the parameter sp (5.3.2) from the
curve slope for dependence of pressure on distance (see Fig. 5.8). For R̄ = 0.5m/kg1/3,
where the shock wave can still be regarded as strong one, we have sp = 4. Given δs = 1
for gas-water foam with mass concentrations of the condensed phase σ ≈ 15 kg/m3

(γ = 1.4, Γ0 = 1.01 − 1.001) and knowing the time propagation of the shock from
the surface of the explosive charge to the specified distance, the equation (5.2.4) can
be easily used to define the characteristic heat exchange time, which is estimated as
τE = 150 − 180μs. At the calculated energy equivalent accounted for 50-60% of the
real energy explosion and the characteristic time of relaxation τ = 150 − 180μs, the
experimental and theoretical dependencies for the shock front velocity D as well as
for the pressure at shock front pf are in agreement with each other within appropriate
accuracy. In Figs. 5.7, 5.8 the calculated values of mentioned variables are illustrated
by dashed lines. In the vicinity of charge R̄ < 0.15m/kg1/3, the calculated values
of the wave velocity in foam exceed the measured values in air. It means that a
zone of the shock wave formation in foam is smaller than in air. For the distances
R̄ > 0.7m/kg1/3, where we do not take into account the internal energy of medium (or
counterpressure) in calculations, the calculated values for pressure and wave velocity
are smaller than the measured values. The neglect of the counterpressure in calculation
of the impulse of pressure causes the larger errors than errors in the calculated pressure
and wave velocity. It is concerned with the different pressure profiles at large distances.
Nevertheless, at distances, where Δp � p0, at measurement of the impulse of pressure
J , the errors caused by the account of a counterpressure p0 and a wave rarefaction are
party mutually compensated. As a result at the distances, where we have performed
the direct measurements of the impulse of pressure, we observe the agreement between
the calculated and measured values for the impulse of pressure (see Fig. 5.9).

Apart from the comparison of absolute values, we have compared the relative values
related to the appropriate values in air. It is interesting to compare the change in
pressure for a transient wave in relaxing medium (foam) and in nonrelaxation one
(for example, in air). Such a value can be the pressure attenuation coefficient. As
usually, by definition the pressure attenuation coefficient is the ratio of the pressure in
nonrelaxation medium to the pressure in relaxing medium at a fixed distance.
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Since the pressure attenuation coefficient under conditions of the kinematic equi-
librium between phases depends only on the heat transfer between phases, then it
becomes possible to deduce the trend of thermal relaxation in a two-phase medium,
without distortion, from experimental data on attenuation of shock waves. In order to
establish the model kinetics here, it is appropriate to compare the experimental curves
of shock wave attenuation in foam and in medium describable in terms of the state
equation for gas without relaxation properties. Since such a medium can, specifically,
serve gas, then the available data on explosion in air [6, 7] can be used for this purpose.

From these experimental data one calculates the pressure attenuation coefficient
as the ratio of pressure in air to pressure in foam at the fixed dimensionless distance.
It must be taken into consideration that in the zone where the energy source cannot
be regarded as a point source, the pressure attenuation coefficient K is lower than
coefficient calculated theoretically. Indeed, in denser medium (foam) the shock wave
begins to ”disregard” the nonideality of the energy source nearer to it than in air [6, 7].
The pressure at the front of shock wave attributable to nonideality of the energy source
within the zone of shock wave formation should be higher in foam than in air.

To predict the shock wave attenuation in foam on the basis of the suggested model,
one needs to have an experimental point as reference, inasmuch as the parameter
τE is involved. In this study the value R̄ = 0.4m/kgl/3 was used as the reference
point for calculations. A better agreement between the pressure attenuation coefficient
calculated from the experimental results (see Fig. 5.8) and estimated theoretically is
observed for τE = 150− 180μs and the energy equivalent accounted for 50-60% of the
energy explosion (see Fig. 5.10).
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Figure 5.10: Pressure attenuation coefficient for a blast wave in foam. The estimated
values are represented by curve (1); the experimental values — by curve (2).

Figure 5.10 depicts the dependence of the pressure attenuation coefficient on the
reduced distance R̄ = rf/Q

1/3, according to experiment (dash line) and according to
theory (solid line). A comparison of these curves indicates that it is possible to describe
the trend of shock wave attenuation in a two-phase medium with Γ0 ≈ 1 and to evaluate
the parameters of a shock wave during the strong stage of the explosion by means of the
suggested model. The disregard of the counterpressure results, as was to be expected,
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in an overestimation of the pressure attenuation coefficient at R̄ > 0.6m/kg1/3.
The represented analysis showed that thermal relaxation significantly changes the

flow parameters and increases the attenuation of strong shock waves in two-phase
media. The dependence of the shock attenuation coefficient on the inner heat-exchange
processes in medium has been demonstrated. It has been found that the parameters
of shock waves in foam are enhanced in comparison with the parameters in gas near
a nonpoint energy source because of the conditions under which energy is transferred
from the source to the medium.

Since the thermal relaxation times obtained by two independent methods correlate,
it appears that an adequate description of the relaxation processes in foam is possible
within the framework of the suggested theory. The results of experimental and theo-
retical investigations of the relaxation phenomena which accompany the propagation
of shock waves in foam indicate that within the scope of relaxation hydrodynamics it
is possible to explain the observed phenomena and estimate the efficiency of medium
as localizer of the sock wave action.

5.4 Estimation of fracture area in rock under blast

The problem of increasing discharge of a productive well is closely connected with the
increase of filtering properties in the rock surrounding the productive well. The crack
exerts an influence on the physical mechanical rock properties, in particular, the gas
and/or oil permeability of rock. As the permeability in the near-well zone of the pro-
ductive strata rises, the producing well discharge increases. However, at exploitation
of the productive well, the different deposits are accumulated in filtering channels of
medium. The well discharge and the coefficient of carbohydrate extraction from the
medium are decreased. It is known that chemical acids, surface-active substances, sol-
vents, different thermal processing, etc are widely applied for intensifying the stratum
permeability [13]. One of a perspective method is the method of controlled change
in mechanical properties of rocks using a powerful impulse action, in particular, the
energy of an explosion [98].

At the present time, there is a number of mathematical models, in the frameworks
of which the action of explosion on rocks and crack formation are described [125, 126].
The Rodionov’s zoned model is the most adequate one, since it takes into account
both the rock properties and the features of fracture [125, 126]. For real conditions,
the theoretical description of crack formation under explosion is a sufficiently compli-
cated problem. This is associated with the fact that rock is inhomogeneous, and the
blast loading is the highly intensive nonlinear actions causing the irreversible processes
within the medium. Based on the solution of system of differential equations with the
postulated state equation, the wave field can be determined only for certain model me-
dia [14, 78, 91]. For real media, it is impossible to calculate the parameters of nonlinear
wave fields and the change in the physical mechanical properties in each case.

In this section, the method for estimating the region of crack formation under
the action of intensive wave loading is suggested [176]. To describe the rock fracture
in propagating blast wave, we select the energy criterion. In model the change of
a wave spectrum is considered, where the geometrical divergence of a wave and the
irreversible losses in the medium take into account. The investigations confirme the
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functional dependence of fracture area on the explosion energy. Moreover, the obtained
analytical relations enables us to indicate the blast wave characteristics which affect
the fracture process as well as to lay the theoretical foundations for estimating the
blast wave properties by means of the known fracture area.

5.4.1 Model of wave disturbance attenuation

During propagation in the medium with complex internal exchange processes, the wave
attenuates. This attenuation is governed not only by its geometrical divergence, but
also by irreversible losses of energy, in particular, spent for crack formation. Physically,
the functional independence of the first and second processes is possible only in acous-
tical approximation. In general case, as the cracks form, the loading is such that the
waves are nonlinear, hence, these two processes are dependent. Therefore, we restrict
ourselves only to the estimation of the shattering area, and for mathematical descrip-
tion of wave field, we assume that these two processes are functionally independent.

We suppose that for one-dimensional motion in medium without energy losses, the
dependence of the blast wave front pressure pf on the distance r is determined by the
relation [14]

pf = A

(
Q1/ν

r

)μ

, (5.4.1)

where Q is the explosion energy; the parameter ν determines the type of symmetry:
ν = 1, 2, 3 are the plane, cylindrical, and spherical symmetries, respectively; μ is the
constant value; constant A is the dimension factor depending on the medium properties.
It is assumed that after a shock wave arrives at distance r at the moment t = t1, the
pressure in this space point varies with time t according to the exponential law [14].

p (r, t) = θ (t− t1) pf (r) exp

(
t− t1
τ

)
. (5.4.2)

Here θ (t) is Heaviside function. For convenience, we accept t1 = 0 if it does not reduced
uncertainty.

In wave process without energy losses in medium, the characteristic time of the wave
loading action has the following functional dependence on distance r and explosive
energy Q [14]

τ(r,Q) = BQ1/ν

(
r

Q1/ν

)β

, (5.4.3)

where B is the dimension factor. Since the displacement of medium is insignificant as
compared with the distance considered, we can state that relations (5.4.2) and (5.4.3)
are valid for a particular medium microvolume, i.e., in the absence of energy losses the
microvolume of medium has a pressure, which can be described by dependence (5.4.2).
The values of the constants μ and β are interconnected. This fact can be established
from the condition that the energy flow W through the closed surface (for a spherical
case this value is equal to 4πr2) is independent of distance

rν−1W (r) = const . (5.4.4)
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For weak nonlinear shock waves, the flow energy through the surface unite is as follows
[88]

W (r) =

∞∫
t1

p2 (r, t)

ρc
dt, (5.4.5)

where ρ is the medium density; c is the sound velocity. With the value of rν−1W (r)
required to be independent of distance, we obtain the connection between constants μ
and β

β = 1− ν + 2μ. (5.4.6)

Note that functional dependence (5.4.3) is known for water [14, 31]. At the same
time, for geophysical medium, the empirical relationship (the spherical case) is used

τ = aQ1/3 + br. (5.4.7)

The coefficients a and b are defined from the experimental data [14, 91, 98]. The
calculation of time of the shock wave action τ by the two formulas (5.4.3) and (5.4.7)
showed that these values are close for r ≤ 20r0, where r0 is explosive charge radius.
We note once again, that from the physical point of view, the functional dependence
(5.4.3) is more preferable.

Relations (5.4.2) and (5.4.3) are obtained for blast wave without energy absorp-
tion by the medium, i.e., at condition (5.4.4). In general case, under intensive wave
loads which are the blast waves, the irreversible nonequilibrium processes occur in the
medium and lead to the additional wave attenuation. The experimental investigations
indicate that the high-frequency disturbances attenuate faster than the low-frequency
ones. We use one of the most frequently applied dependences describing the change in
the spectrum density of pulse loading [103]

S(r, ω) = S0(ω) exp(−α|ω|r). (5.4.8)

Physically, this relationship implies that the monochromatic wave with the frequency
ω attenuates exponentially. In this case, the energy is absorbed by the medium and
not redistributed between different frequencies in wave. Usually the spectrum density
of the wave disturbance is determined by Fourier transformation; for (5.4.2) it has the
form

S0 (ω) = F [p (t)] (ω) =

∞∫
−∞

θ (t) p (t) exp (iωt) dt =
pf

τ−1 − iω
. (5.4.9)

The inverse Fourier-transformation F−1 [S(ω)] (t) defines the dependence of pres-
sure in the medium p(r, t) on distance and time. The spectral representation of the
wave perturbation allows one to analyze the time evolution of the wave and its dis-
tance dependence, arising from the geometrical divergence of the wave (5.4.9) and the
irreversible losses to the medium (5.4.8).
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5.4.2 Energy criterion of crack formation

For estimation of rock shattering in propagating blast wave, the energy criterion is
selected [176]: the crack formation occurs until the energy absorbed by the medium
exceeds a certain limiting value. In order to determine the energy remained in the
medium after the propagation of blast wave, we calculate first the total energy flow
through the unit surface by formula (5.4.5)

W (r) =
1

ρc

∞∫
0

p2 (r, t) dt =
p2f
πρc

∞∫
0

exp (−2αωr)

ω2 + τ−2
dω. (5.4.10)

This relationship follows from Parseval theorem [74].
The value of the integral

I(r, ω) =

∞∫
0

exp (−2αωr)

ω2 + τ−2
dω (5.4.11)

can be expressed through the special functions. However, such notation is ponderous
and uninformative. The approximation, where integral (5.4.11) is estimated by the
saddle point method, is more effective. This integral (5.4.11) can be reduced to the
following functional dependence on r and τ

I = e−1
√
2πτ arctan (τ/2αr) . (5.4.12)

Indeed, integral (5.4.11) can be rewritten down in a form convenient for applying the
saddle point method

I =

∞∫
0

dω
exp (−2αωr)

ω2 + τ−2
= τ arctan(τω) exp (−2αωr)

∣∣∣∣∞
0

+2αrτ

∞∫
0

dω arctan (τω) exp (−2αωr)

= τ

∞∫
0

dω
arctan (τω)

ω
exp (−2αωr + ln (2αrω)).

At the point ω1 = (2αr)−1, the exponential function has the maximum. In the vicinity
of this point, the required integral receives basic contribution, and according to the
saddle point method, it is following

I ≈ 2αrτ arctan (τω)

∞∫
−∞

dω exp
(−1− 2α2r2 (ω − ω1)

2)
=

√
2π

e
τ arctan

τ

2αr
.

The numerical calculations show that the deviation of the exact value of integral
(5.4.11) from approximate value (5.4.12) does not exceed 8%. It is important, that
as result we have the analytical dependence of the integral I on τ and r (5.4.12).
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Consequently, the whole energy flow passing through the surface σ (ν) rν−1 equals

G (r) ≡ σ (ν) rν−1W (r) = σ (ν)D
Q

ρc
arctan

τ (r,Q)

2αr
, (5.4.13)

σ(ν) = 2π(ν − 1) + (ν − 2)(ν − 3), D = e
√

2/πA2B.

Using (5.4.13), we can estimate the energy remained in the medium layer σ (ν) rν−1dr
after the propagation of the blast wave

G (r)−G (r + dr) = −σ (ν)
drν−1W (r)

dr
dr.

According to the accepted fracture criterion, the crack formation takes place if the
k-share of the energy exceeds a certain admissible value. If the maximum admissible
energy of crack formation per unite volume is denoted as γν , when the crack formation
criterion has a form

−kσ (ν)
drν−1W (r)

dr
≥ σ (ν) rν−1γν . (5.4.14)

Note that in general case, the specific energy γν of fracture depends on symmetry of a
shock wave ν, because the fracture mechanism can vary for these cases. For example,
the tangential stresses, which are considerable in rock fracture under the action of the
cylindrical or spherical waves, are absent in the plane case.

We proceed to the investigation of the coefficient k. As mentioned above, it has
the following sense. The k-share of the blast wave energy absorbed by the medium is
spent for crack formation. It is evident that in fracture area, the value of k can be
dependent on distance. We can regard that with the certain accuracy the energy γν is
to be the same for different Q on the boundary of crack formation region. Therefore,
on these boundaries the values of k are assumed to coincide at different Q.

Substituting (5.4.13) into (5.4.14), we derive the equation connecting Q and the
size of fracture area rb

Q2− 2

ν
μr

2(1+μ−ν)
b

(2αrb)
2 + τ 2 (rb, Q)

=
γν
H

, H = k2e−1
√

2/π (1− β)
αA2B2

ρc
. (5.4.15)

By forward substitution, the solution of this equation takes the form

rb = RQ1/ν , (5.4.16)

where, as follows from (5.4.15), the dimensional constant R satisfies the equation

R2(1+μ−ν)

(2αR)2 + (BRβ)2
=

γν
H

. (5.4.17)

Thus, the obtained relations allow to confirm the following statements. Firstly,
equation (5.4.16) previously established experimentally [38, 98, 103] is theoretically
substantiated. Moreover, the conformity of the theoretical and experimental results
indicates the correct choice of the model proposed for the physical phenomenon of
crack formation in a rock. Secondly, expression (5.4.17) enables us to estimate the
coefficient R through properties of medium and explosive charge. Moreover, using
(5.4.17), we can consider the inverse problem and calculate the blast wave parameters,
as well as the medium properties, if we know the fracture area, i.e. we can determine
α, γν , A, and B through the value of R.



84 Chapter 5. Blast waves in the medium with thermal relaxation

5.4.3 Geometric similarity of the explosive fracture area

As is stated in [103], the areas of crushing and crack formation should satisfy conditions
rb ∼ Q1/3. In other words it means that there is a geometric similarity. However, there
is no strong proof this statement in [103]. Indeed, the relation (5.4.1) can be scaled (i.e.
it can be reduced to the dimensionless form) by the chosen value r0Q

−1/ν , while the
relation (5.4.3) can not be rewritten down in same scale (i.e. it can not be reduced to
the dimensionless form only through value r0Q

−1/ν). We can not neglect the relation
(5.4.3), when we consider the physical phenomena related to the absorption of shock
wave energy by the medium. Therefore arguments pointed out in [103] is insufficient
to state about geometric similarity rb ∼ Q1/ν . Nevertheless, proceeding from the
distribution in shock wave (5.4.1) – (5.4.2), (5.4.8), we came to the result (5.4.16),
which directly specifies geometric similarity on the explosion energy. Thus, Mosints’s
statement about similarity rb ∼ Q1/3 [103] has been received the strong mathematical
substantiation.

5.4.4 Estimation of region of crack formation

Let us examine the dependence of crack formation region on the required energy for
crack formation γν at fixed explosion energy Q. We rewrite the relationship (5.4.17)
in the dimensionless form

l1−ν−β

l2(1−β) + 1
= Ω (5.4.18)

Here, Ω = γνB
1−ν/(1−β)ρc/

(
2e−1

√
2/π (1− β) kA2αν/(1−β)

)
and l = (2α/B)1/(1−μ)R.

are the dimensionless values. Figures 5.11 and 5.12 present the dependence Ω(l) at
different β (or μ, see (5.4.6)) for the cylindrical (ν = 2) and spherical (ν = 3) cases,
respectively.

Rewriting (5.4.18) as Ω−1 = lν
(
l1−β + l−(1−β)

)
, we note that Ω−1 = lν − |β − 1| at

l � 1, and Ω−1 = lν+|β−1| when l � 1. In logarithmic coordinates, they are the straight
lines going through the point l = 1, Ω = 0.5 (dark-colored points in Figs. 5.11, 5.12).
Provided β = 1, both asymptotic forms coincide; if β �= 1, the curves are convex
upwards. Pay attention to the fact that with |β1−1| = |β2−1|, the curves coincide for
any pair of μ1, μ2 satisfying the relationship μ1 + μ2 = ν. It is obvious from Fig. 5.11
that curve 3 corresponds both to μ = 0.5 and μ = 1.5. The same is observed in
Fig. 5.12, namely, curve 3 corresponds simultaneously to the values μ = 1 and μ = 2.

In the different domains Ω > 1 and Ω < 1, the same relative energy change required
for rock fracture leads to the various changes in size of the fracture area. For example,
the decrease of Ω in the domain Ω > 1 by a factor of 2 causes more considerable
increase in the fracture area as compared with the same decrease of Ω in Ω < 1.

It is necessary to note that in real physical process the values l and Ω are close to
l = 1, Ω = 0.5. For example, for explosion in a granite, the values 2αrb and τ (rb, Q)
exactly coincide, i.e. l = 1. This implies that the physics of process is determined
simultaneously both by characteristic time of action of shock wave τ on microvolume
and by characteristic time of wave attenuation 2αr at the distance. When l � 1, the
process of crack formation is determined by τ , while at l � 1 the most important
feature is the degree of the blast wave attenuation on distance.
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Figure 5.11: Dependence Ω(l) for ν = 2: 1 — β = 1; 2 — β = 1 ± 0.44; and 3 —
β = 1± 1.

5.4.5 Comparison with the experiment

Theoretical dependence (5.4.16) of the crack formation region size on the explosive
energy contains only one unknown parameter R. Thus, to find R and the dependence
rb = rb(Q), it is sufficient to carry out only one experiment on explosion in the stud-
ied medium; in the experiment, for assigned Q, the size rb of the fractured region is
obtained. The comparison of the experimental results [97, 103] and (5.4.16) is shown
in Fig. 5.13. To calculate R, we specified a fiducial point whose values for granite and
limestone are presented in Table 5.3.

In logarithmic coordinates, the dependence (5.4.16) represents a straight line pass-
ing through a fiducial point. The fiducial points are darkened in Fig. 5.13.

In Table 5.3 the blast wave parameters are presented for TNT for two media:
granite and limestone. The dimension factor B is established from the condition of
coincidence of the values τ calculated by (5.4.3) and (5.4.7) at a distance equal to
the charge radius. In (5.4.1), the dimensional constant A is connected with A′ from

Table 5.3 by the relation A′ = A
(
Q

1/3
0 /r0

)μ
, where Q0 = 1kg, r0 = 0.054m.

In fact, relation (5.4.16) is not a new result. However, the coincidence of the the-
oretical dependence rbQ

1/3 and the experimental data indicates that the assumptions
in the model are admissible. In this case, value R functionally depends on ρ c α μ,
A, B, γν (but without Q), i.e., on the properties of the medium only. Using (5.4.17),
we can solve both the direct problem, in which the value R is defined through values
mentioned above and the inverse problem, in which the value γν (or another value from
the listed ones) is defined through the known value R.

In inverse problem, the energy density γν/k is estimated. This is energy that is
absorbed by the medium near the boundary of crack formation region. The ratio γν/k
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Figure 5.12: Dependence Ω(l) for ν = 3: 1 — β = 1; 2 — β = 1 ± 0.74; and 3 —
β = 1± 1.

Table 5.3: Parameters for Eqs. (5.4.15)–(5.4.17)

properties blast wave fiducial point calculation

medium ρ c α · 105 μ A′ · 10−8 a · 105 b · 104 Q rb R γν

kg/m3 m/s m/s Pa s/kg1/3 s/m kg m m/kg1/3 J/m3

granite 2600 5720 2 1.13 1.09 3.6 0.18 1 2.4 2.4 0.67

limestone 2580 4650 6 1.13 0.30 4.1 4.69 1 2.0 2.0 0.19

obtained from (5.4.17) is presented in Table 5.3.

At the same time, the direct problem, in which R is calculated through the energy
γν , allow to use additional theoretical and experimental results which are not pertinent
directly to explosion. In this case, apart from the well-known values ρ, c, μ, A, B and
α [38] (Table 5.3), it is required to know γν and k or γν/k. Knowing γν and k, we can
estimate R by (5.4.16) without carrying out an experiment. Currently, the problem
on finding the values of γν and k from the other theoretical and experimental data
remains unsolved.

The model of crack formation under the action of blast wave is developed [176]. In
this model the change in the wave loading, which is governed by both geometric diver-
gence of wave and irreversible losses in the medium, is considered. The energy criterion
was selected for fracture of rock. The geometric similarity of fracture area caused by
the explosion energy is proved. The accordance of the theoretical and experimental
results indicates the correct choice of the basic assumptions for the suggested model
of crack formation in rock. On the basis of the assigned properties of the medium and
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Figure 5.13: Size of crack formation region as explosion energy function (theoretical
results — straight lines; experiment: ◦ — granite, � — limestone).

explosion, the analytical dependences enable one, on the one hand, to estimate the
crack formation area (the direct problem) as well as, on the other hand, to lay the
foundation for determining the blast wave parameters and the medium properties by
the known fracture area (the inverse problem).
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Chapter 6

Diagnostics of medium by long
nonlinear waves

In chapter 2 we proved that the long wave with finite amplitude responds to the
structure of medium. At the same time, a question appears, namely, is there a sufficient
information in the wave field to reconstruct the structure of medium? It turns out that
the knowledge on the evolution of nonlinear waves enables one to define with certain
accuracy the concentrations of medium components.

6.1 The increase of nonlinearity in medium with

structure

In this section we shall prove the statement that the structure of medium always exalts
the nonlinear effects under the propagation of long waves. At first, let us consider
the sound velocity in homogeneous chom and heterogeneous ceff media. Now we will
show that in the general case with pressure increase the velocity of the sound becomes
greater in a structured medium than in a homogeneous one

ceff ≥ chom. (6.1.1)

For the sake of clarity, we consider a medium in which the sound velocities of individual
components are independent of the pressure

c �= f(p), dc/dp = 0. (6.1.2)

The equality sign is fulfilled (a) for an initial pressure, by virtue of the normalization,
and also (b) for a special structured medium in which the relation V (ξ)/c2(ξ) is not a
function on the fast variable ξ. We must prove which case results in an equality and
which gives the inequality.

Let us write the relations (6.1.2) for homogeneous medium consisting only one
component

chom �= f(p), dchom/dp = 0. (6.1.3)
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For multicomponent medium the derivative dceff/dp is defined from relationship

dceff
dp

=
2 〈V 〉

〈V 2/c2〉

(
〈V 〉
〈
V 3

c4

〉
−
〈
V 2

c2

〉2
)

≥ 0. (6.1.4)

This last inequality follows from the well-known Cauchy-Schwarz inequality (see, for in-
stance, [77]). Therefore, with the increase of pressure, the sound velocity ceff increases.
Consequently, we have the inequality (6.1.1) at p ≥ p0.

Moreover, at p > p0 the shock adiabatic curve for the medium with a structure
always lies above that for the homogeneous medium (they touch only at the initial
point p = p0)

d2p

d 〈V 〉2 ≥
(
d2p

dV 2

)
hom

. (6.1.5)

Indeed, a ratio of these derivatives is equal to

d2p

d 〈V 〉2
/(

d2p

dV 2

)
hom

=
〈V 3/c4〉 〈V 2/c2〉−3

c2hom 〈V 〉3

=
〈V 3/c4〉 〈V 〉 c2eff
c2hom 〈V 2/c2〉2 ≥ 〈V 3/c4〉 〈V 〉

〈V 2/c2〉2 ≥ 1.

Hence, a long wave with a finite amplitude responds to the structure of the medium,
and the nonlinear effects increase as compared with those in the homogeneous medium.
The nonlinearity takes place even if individual components are described by the linear
evolution equation (i.e. at condition (6.1.2)).

The exception, as it was noted already, is a medium with the properties of structure
V (ξ)/c2(ξ) �= f(ξ). For this medium only the equality sign is correct in the inequal-
ities (6.1.1) and (6.1.5). Particular elements of the structure respond to the pressure
variations, but the relative structure does not change, i.e. the ratio V (ξ, p)/V (ξ, p0)
does not depend on ξ. In this case, the value ceff =

√〈c2〉 is an averaged characteristic
(see Eq. (2.4.5)). Therefore, the system of equations may be presented using the aver-
aged variables p, u, 〈V 〉, ceff =

√〈c2〉. Heterogeneity does not introduce an additional
nonlinearity for this medium, and the structure of medium does not affect the wave
motion.

In addition to the analysis of the sound velocity in homogeneous and heterogeneous
media, we consider now the evolution equations with nonlinear term and compare the
coefficients of nonlinearity in these media. Let us derive the evolution equation with a
weak nonlinearity. First of all, we have to note that the mass velocity u is related to
the pressure p by means of [172]

u =

p∫
po

√
〈V 2/c2〉dp. (6.1.6)

A functional dependence of an average specific value on the pressure increment p′ =
p− p0 with the accuracy O(p′2) can be presented as a series

〈V 〉 (p) = 〈V 〉0 +
d 〈V 〉
dp

∣∣∣∣
p=p0

p′ +
1

2

d2 〈V 〉
dp2

∣∣∣∣
p=p0

p′
2
.
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In this case the system of equations (2.3.6) for planar symmetry ν = 1 can be written
as

〈V 〉0
∂u

∂x
+

〈
V 2

c2

〉
0

∂p′

∂t
− 1

2

d2 〈V 〉
dp2

∣∣∣∣
p=p0

∂p′2

∂t
= 0,

∂u

∂t
+ 〈V 〉0

∂p′

∂x
= 0.

The relationship u
∂p′

∂x
= p′

∂u

∂x
follows from Eq. (6.1.6) with the assumed accuracy

O(p′2) and was used for derivation of the first equation. The evolution equation for
one variable assumes the form

〈V 〉20
∂2p′

∂x2
−
〈
V 2

c2

〉
0

∂2p′

∂t2
+

1

2

d2 〈V 〉
dp2

∣∣∣∣
p=p0

∂2p′2

∂t2
= 0. (6.1.7)

Now let us consider the waves propagating in one direction, then with the indicated
accuracy we can write (hereinafter index 0 is omitted)

−
√

〈V 2/c2〉
〈V 〉

∂

∂t
+

∂

∂x
→ 2

∂

∂x

(see, for example, Section 93 in Ref. [88]). Thus, after factorization of Eq. (6.1.7) we
get

∂p′

∂t
+ ceff

∂p′

∂x
+

1

2
〈V 〉
〈
V 2

c2

〉−3/2
d2 〈V 〉
dp2

p′
∂p′

∂x
= 0. (6.1.8)

The coefficient of nonlinearity αp for the structured medium, when the sound velocities
in the individual components are independent of the pressure c �= f(p), can be presented
as

αp ≡ 1

2
〈V 〉
〈
V 2

c2

〉−3/2
d2 〈V 〉
dp2

=
d(u+ ceff)

dp
= 〈V 〉

〈
V 3

c4

〉〈
V 2

c2

〉−3/2
.

For all cases we take αp > 0. For a homogeneous medium with dc/dp = 0 we have
αp hom = V/c.

In certain media the value V/c2 does not change within the period. The individual
elements of the structure respond to the pressure variations so that a relative structure
does not change, i.e. the ratio V (ξ, p)/V (ξ, p0) does not depend on ξ. In this case, the
value ceff =

√〈c2〉 derived from Eq. (2.4.5) is the averaged characteristic. Consequently,
the system of equations may be presented in the averaged variables p, u, 〈V 〉, ceff =√〈c2〉. Heterogeneity does not introduce the additional nonlinearity for these media.
Such media behave like the homogeneous media under the action of the nonlinear wave
perturbations.

For media when the sound velocity is independent of the pressure (c �= f(p)) it is
possible to show that a heterogeneity of the medium, in the general case, introduces
the additional nonlinearity. Let us consider the ratio of the nonlinearity coefficients
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for heterogeneous and homogeneous media. In the space of dimensionless normalized
variables this implies that at p = p0 we have 〈V 〉0 = 1 as well as 〈V 2/c2〉0 = 1 for the
compared media.

Using the conditions (2.4.5) we can obtain

αp

αp hom

= 〈V 〉
〈
V 3

c4

〉〈
V 2

c2

〉−2
≥ 1. (6.1.9)

This inequality is the well-known Cauchy-Schwarz inequality (see formula (15.2-3) in
Ref. [77]). Since 〈V 〉 ≥ 0 and 〈V/c2〉 ≥ 0 , we prove

〈V 〉 〈V 3/c4〉 ≡
∞∫

−∞

V dξ ·
∞∫

−∞

V 3

c4
dξ =

∞∫
−∞

V 2

c2

(
V

c2

)−1
dξ ·

∞∫
−∞

V 2

c2
V

c2
dξ

≥
⎛⎝ ∞∫
−∞

√
V 2

c2

(
V

c2

)−1
·
√

V 2

c2
V

c2
dξ

⎞⎠2

=

⎛⎝ ∞∫
−∞

V 2

c2
dξ

⎞⎠2

≡ 〈V 2/c2〉2 .

It only remains to find the condition for equality sign in (6.1.9). For this purpose we
apply the Cauchy-Schwarz inequality in vector form (see formula (15.2-5) in Ref. [77])

|(�a,�b)|2 ≤ (�a,�a)(�b,�b).

Whereas the equality sign is realized if and only if the vectors �a and �b are linearly
dependent, i.e. �a = k�b (k = const). By designating (�a,�a) ≡ V/c2, (�b,�b) ≡ V 2/c2, it is
easy to notice that the equality sign is realized if and only if√

V 2

c2

(
V

c2

)−1/√
V 2

c2
V

c2
= const.

(see sections 14.2-6 in Ref. [77]), i.e. when the value V/c2 = const does not vary within
the period (V (ξ)/ (c(ξ))2 �= f(ξ)). This heterogeneous medium has been considered
above. For all other heterogeneous media for which the value V/c2 changes within
period, the inequality is realized in Eq. (6.1.9). So, in a heterogeneous medium the
value αp is always greater than αp hom in a homogeneous medium. Thus, it is proved
that, in the general case, the heterogeneities in a medium introduce the additional
nonlinearity. This effect provides the basis for a new method of diagnostics to define
the properties of multicomponent media using the propagation of long nonlinear waves
in such media.

6.2 Fundamentals of new diagnostic method

The structure of medium affects the wave field. There are different methods which
allow the detection of gas bubbles and/or cracks in liquid [44], concrete [133] and ice
cover [41] by means of the nonlinear effects.
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In this section we describe our new diagnostic method for the properties of medium.
The features of the motion of finite-amplitude long waves and the effect of the in-
crease of nonlinearity in the heterogeneous medium in comparison with homogeneous
medium form the basis for the development of theoretical fundamentals of the diag-
nostic method. In this method the properties of individual components are defined by
long waves of finite amplitudes; more specifically, the dependence V/c2 = V/c2(ζ) on
the fast Eulerian coordinate ζ (see Eq. (2.3.7)) is defined. Thus, the nonlinear wave
evolution allows one to obtain the structure of the medium with an inherent accuracy.
As a final result, the mass concentrations of the individual components can be found
using this method.

It should be kept in mind that the period of the structure of medium is infinitely
small in the longwave model, so it is not always possible to indicate reliably the loca-
tion of the structure elements inside the period. Hence, the media with the different

V V

� �1 10 0

Figure 6.1: The equivalent distributions of the specific volume in elementary sell for
diagnostic method.

structures plotted in Fig. 6.1, for example, affect identically on wave fields. These
two media are indistinguishable in the framework of the suggested method. Taking
into account this indefiniteness, we consider the function V/c2 = V/c2(ζ) that is to be
the decreasing, integrable, mutually one-valued function on the interval ζ ∈ [0, 1] and
equals to zero outside of this interval.

Now we represent the theoretical fundamentals for new method of diagnostics of
medium by means of the long nonlinear waves. Let us prove the principal relation
which enables us to obtain the inverse function ζ = ζ(V/c2) for the desired function
V/c2 = V/c2(ζ) through the inverse Fourier transformation [156, 167, 169]

ζ(V c−2) = F−1

[
∞∑
n=0

〈V (V c−2)n+1〉
(n+ 1)! 〈V 〉 inqn

]
(V c−2). (6.2.1)

It is known from theory of probability that the distribution function f(x) (any
one-valued, integrable, positive function) can be expressed by its central moments

αn =

∫ ∞

−∞

xnf(x)dx. (6.2.2)

Indeed, by using the characteristic function

χ(q) = F [f(x)](q), (6.2.3)
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any positive integrable function f(x) can be written as follows

f(x) = F−1[χ(q)](x), (6.2.4)

where F [·] is the Fourier transformation, F−1[·] is the inverse Fourier transformation.
We take into account the important fact from the theory of probability: the char-

acteristic function χ(q) is uniquely determined by the central moments αn

χ(q) =
∞∑
n=0

αni
n q

n

n!
. (6.2.5)

Hence, the function f(x) can be found by means of the inverse Fourier transform

f(x) = F−1

[
∞∑
n=0

αni
n q

n

n!

]
(x), (6.2.6)

if series
∑∞

n=0 |αn|(sn/n!) converges absolutely for some value s > 0 (see Section 18.3.7
in Ref. [77]).

These facts from the theory of probability are used to prove such a statement: if
V/c2 = V/c2(ζ) is a decreasing positive integrable function on the interval ζ ∈ [0, 1]
and equals to zero outside of it, then the inverse function ζ = ζ(V/c2) for the required
function V/c2 = V/c2(ζ) can be written as (6.2.1) in the averaged values

〈
V (V/c2)n

〉 ≡ ∞∫
−∞

V (V/c2)ndξ. (6.2.7)

Indeed, for the monotonic one-valued function V/c2 = V/c2(ζ) we find the integral
in (6.2.7) by integrating the inverse function ζ = ζ(V/c2), since the transformation
Jacobian is not equal to zero. We have the chain of identifies

〈V (V/c2)n〉 =

1∫
0

V (ξ)

(
V

c2

)n

dξ = 〈V 〉
1∫

0

V

(
V

c2

)n

ρdζ

= 〈V 〉
∞∫

−∞

(
V

c2

)n
dζ

d(V/c2)
d(V/c2).

(6.2.8)

In the geometric sense this relation signifies that the integral (in our case it is an
area between the curve V/c2 = V/c2(ζ) and axes Oζ and O(V/c2)) can be calculated
either over ζ or over V/c2 (see Fig. 6.1). Whereas, the inequality is realized for the
monotonic decreasing function V/c2 = V/c2(ζ).

For a function defined on a finite interval, if this function is positive and bounded
above, we have

〈V (V/c2)n〉 = 〈V 〉
∞∫

−∞

(
V

c2

)n
dζ

(dV/c2)
d(V/c2)

= −n 〈V 〉
∞∫

−∞

(
V

c2

)n−1

ζd(V/c2).

(6.2.9)
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This relation provides the connection between the central moment αn and the value
〈V (V/c2)n〉〈

V (V/c2)n
〉
= −n 〈V 〉αn−1. (6.2.10)

Then the characteristic function χ(q) for the inverse function ζ = ζ(V/c2) is expressed
through 〈V (V/c2)n〉. By applying the inverse Fourier transformation, finally, we find
the required relationship (6.2.1).

The physical value V c−2 is bounded by some constant M , hence

αn =

∞∫
−∞

(V c−2)n−1ζ d(V/c2) ≤
M∫
0

(V c−2)nd(V/c2) =
Mn+1

n+ 1
.

The series
∑∞

n=0 |αn|(sn/n!) ≤
∑∞

n=0M
n+1sn/(n + 1)! converge at s < M−1. Conse-

quently, the power series (6.2.1) also converges.
The coefficients 〈V (V/c2)n〉 (n = 3, 4, . . .) in Eq. (6.2.1) can be easily calculated,

if we know the functional dependence 〈V 〉(p) or 〈V 2/c2〉(p). Indeed, they can be
successively defined by the recurrence relation

d 〈V (V c−2)n〉
dp

= −(n+ 1)
〈
V (V c−2)n+1

〉
, (6.2.11)

that follows directly from the equation of state. With mentioned accuracy it is possible
to diagnose the structural properties of the medium.

We have proved the principal relation (6.2.1) for method of diagnostics that allows
one to find the properties of the individual components in structured media by means
of the long nonlinear waves.

6.3 The governing wave parameters for diagnostic

method

markright6.3. The wave parameters for diagnostic method First way that is evidently
the simplest one for experimental finding of the dependence 〈V 〉(p) is a procedure
in which a specific volume (or density) of a tested sample is found under different
pressure. Then the recurrence formula (6.2.11) enables one to obtain the required
series 〈V (V c−2)n〉 for n ≥ 2 in order to apply the constitutive relationship (6.2.1).
Nevertheless, the application of this procedure has the restriction, for instance, for a
geophysical medium in the natural conditions. At the same time at these conditions
the required coefficients for the constitutive relation (6.2.1) can be obtained from the
features of wave field evolution. The advantages of medium testing by the waves are
the convincing. This approach is considered to be particularly of the promising for
media with the complex inner structure, specifically for a geophysical medium.

A possible way to obtain the functional dependence of 〈V 〉 on p is to perform an
experiment to define the parameters of shock waves. The shock wave velocity in the
Lagrangian mass coordinates D = ds/dt (dimension [D] is kg/s) and/or mass velocity
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u as well as pressure p in the shock wave front can be experimentally measured. The
value 〈V 〉(p) is calculated from the relationships on the shock front (2.4.12)

D =
√
(p− p0)/(〈V0〉 − 〈V 〉),

u− u0 =
√

(p− p0)(〈V0〉 − 〈V 〉).
After the measurement of the shock wave parameters for various pressures p we can
obtain the dependence 〈V 〉 = 〈V 〉(p). Then the recurrence formula (6.2.11) is applied
to obtain 〈V (V c−2)n〉 at n ≥ 2 for Eq. (6.2.1).

The self-similar rarefaction wave can be considered as a universal instrument to
define the coefficients 〈V (V c−2)n〉. Let us observe the features of rarefaction wave
propagating in two-components periodic medium for the purpose of applying these
features to test the properties of medium. In Fig. 6.2, for example, the profiles of

h

B

t/
��
�p

Figure 6.2: The self-similar rarefaction wave in different media: curve 1 in a homoge-
neous medium; curve 2 — two-component periodic medium with c1/c2 =

√
2/5; curve

3 — two-component periodic medium with c1/c2 = 5/
√
2.

the rarefaction waves are plotted for some two-component periodic media. The ratio
of the pressure p to the initial pressure p0 equals to p/p0 = 10. The elementary cell
consists of two layer with equal sizes in the Lagrangian mass coordinates (κ = 0.5)
and V1/V2 = 2 (V1 = 4/3, V2 = 2/3). For comprising the results in different media, we
need to normalize to the averaged specific volume as wall as to the velocity of small
perturbations. In dimensionless variables it means 〈V 〉 = 〈V 2/c2〉 = 1 at p = p0.
The relation between mass velocity and pressure is described by Eq. (6.1.6). The
profiles of rarefaction waves calculated from Eq. (2.4.8) are shown in Fig. 6.2 in form
of dimensionless dependence of pressure p/p0 on the Lagrangian mass coordinate η =
s/τp(p0/〈V 〉)1/2.

At high pressure the velocities of different points of the wave profile (for fixed level
of the pressure) dsp/dt can be written as

dsp
dt

=
sp
t
=

Δp√〈c2〉 +
〈c4/V0〉
(〈c2〉)3/2 . (6.3.12)
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Then at p � 〈V 2/c2〉−1/2 the profile slope tends to the value tanα =
√〈c2〉/t (see

Fig. 6.2). Hence, the profile slope enables one to obtain the value
√

〈c2〉.
In a special case for medium, in which the value 〈V/c2〉 is independent of ξ (i.e. for a

medium with V1/V2 = 2 at c1/c2 =
√
2), the profile of the self-similar rarefaction wave

is to be a straight line like for the homogeneous medium (curve 1 in Fig. 6.2). Therefore
these media in this sense do not differ by the suggested method of diagnostics. For other
periodic media, the profiles of rarefaction waves (curves 2 and 3 in Fig. 6.2) deviate
from a straight line. The initial properties for these media were selected so as the
averaged characteristics 〈c2〉 be the same at p → ∞. It means that the asymptotics
to curves 2 and 3 have the same slope. However, it is seen that for the moderate
pressures, the profiles of the curves 2 and 3 are different as a result of the action of the
nonhomogeneity.

Consequently, the self-similar rarefaction wave is to be considered as a universal
instrument to define the required variables for diagnostic method. The self-similar
motion of the rarefaction wave, as appears from relationship (2.4.8)

ds

dt
= ±

〈
V 2

c2

〉−1/2
,

allows one to obtain the value 〈V/c2〉 from the propagation velocity ds/dt of the sep-
arate parts of the wave profile under various pressures. The evolution of the profile
of the rarefaction wave makes it possible to define the dependence 〈V/c2〉 = 〈V/c2〉(p)
and then the values 〈V (V c−2)n〉 at n ≥ 2 which can be found from Eq. (6.2.11).

We pointed out a few ways by means of which, from our point of view, it is possible
to find the required dependence 〈V/c2〉(p) from the experimental rarefaction waves.
Certain difficulties for the calculation of the dependence 〈V/c2〉(p) can be connected
with the following fact. Indeed, the experimental data are always defined with some
accuracy, hence, the application of Eq. (6.2.11) will lead to the increase of the relative
error for high-order derivatives. This requires that a limited number of the terms
should be used in series (6.2.1). Consequently, it is necessary to study the accuracy at
the reconstruction of the structure of medium in the case when we know only several
first terms in series (6.2.1).

6.4 Approximation of diagnosed medium by layer

medium

Diagnostics of the structured medium properties by the long nonlinear waves is con-
nected with the definition of values 〈V (V/c2)n〉. As indicated above, there is a problem
related to the accuracy of the description of the structure by finite series (6.2.1).

Now, we shall show that the partial sum of series (6.2.1) is a step-function and
approximates the desired function ζ = ζ(V/c2) with certain accuracy, namely the
diagnosed medium can be approximated by a layer medium. Let us write down the
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chain of the identities for any integrable function

2πf(−x) = F [F [f(x)](q)] (x) = F

[
∞∑
n=0

inqn

n!
αn

]

=
∞∑
n=0

inαn

n!
2π(−i)nδ(n)(x).

Here we used the known relationships for the Fourier transform [77])

F [F [f(x)](q)] (x) = 2πf(−x),

F [qn](x) = 2π(−i)nδ(n)(x).

Hence, any integrable function can be represented by a series

f(−x) =
∞∑
n=0

αn

n!
δ(n)(x). (6.4.1)

We will prove that the finite series (6.2.1) approximates the desired function f(x)
by step-function. Consider the step-function f1(x) consisting of N steps:

f1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ1, 0 < x ≤ b1,
ϕ2, b1 < x ≤ b2,
...

...
ϕN , bN−1 < x ≤ bN

(6.4.2)

in order to approximate the desired function f(x). The relation (6.4.2) can be written
down through the Heavyside functions as follows

f1(x) = ϕ1[Θ(x)−Θ(x− b1)] + ϕ2[Θ(x− b1)−Θ(x− b2)] + . . .

+ϕN [Θ(x− bN−1)−Θ(x− bN)],
(6.4.3)

Evidently, by increasing the number of steps N and choosing the values ϕi, bi, any inte-
grable function f(x) can be approximated by the step-function f1(x). It is convenient
to use a notation

f1(−x) = ϕ1[Θ(x+ b1)−Θ(x)] + ϕ2[Θ(x+ b2)

−Θ(x+ b1)] + . . .+ ϕN [Θ(x+ bN)−Θ(x+ bN−1)],
(6.4.4)

that follows immediately from (6.4.3) after substitution

Θ(x) = 1−Θ(−x).

The Heavyside function Θ(x+ b) can be expanded into a Taylor series in the neighbor-
hood of point x

Θ(x+ b) = Θ(x) +
∞∑
n=1

bn

n!
Θ(n)(x). (6.4.5)
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It is well-known that the derivative of Heavyside function Θ(x) is δ(x)-function, then
Θ(n+1)(x) = δ(n)(x). We equate the functions (6.4.1) and (6.4.4), and consider that the
number of steps for function f1(x) is infinitely larger, and in this case we obtain

ϕ1

∞∑
n=0

bn+1
1

(n+ 1)!
δ(n)(x) + ϕ2

∞∑
n=0

bn+1
2 − bn+1

1

(n+ 1)!
δ(n)(x) + . . .+

+ϕN

∞∑
n=0

bn+1
N − bn+1

N−1

(n+ 1)!
δ(n)(x) + . . . =

∞∑
n=0

αn

n!
δ(n)(x).

(6.4.6)

This relationship shows that when we use the partial sum of series on the right-hand

side of Eq. (6.4.6)
∑2N−1

n=0

αn

n!
δ(n)(x) and also the N leading terms on the left-hand

side, then the desired function f(x) is approximated by the step-function f1(x) with
N steps. In other words, if it is necessary to restore the structure of medium by means
of N periodic repeated layers, then we need to know the 2N − 1 moments αn, i.e. the
values 〈V (V c−2)n〉.

For the sake of convenience, we write down the relation (6.4.6) in the expanded
form. For this purpose, we multiply it by xn and integrate over x. We obtain the
nonlinear system of the equations in the unknowns b1, b2, . . . , bN , ϕ2, ϕ3, . . . , ϕN

(variable ϕ1 = 1 owing to normalization)

ϕ1b1 + ϕ2(b2 − b1) + ϕ3(b3 − b2) + . . .+ ϕN(bN − bN−1) = α0,

ϕ1b
2
1 + ϕ2(b

2
2 − b21) + ϕ3(b

2
3 − b22) + . . .+ ϕN(b

2
N − b2N−1) = 2α1,

· · · · · · · · · · · · · · · · · ·
ϕ1b

2N−1
1 + ϕ2(b

2N−1
2 − b2N−11 ) + ϕ3(b

2N−1
3 − b2N−12 ) + . . .+

+ϕN(b
2N−1
N − b2N−1N−1 ) = (2N − 1)α2N−2.

(6.4.7)

Now, if bi implies the partition of (V/c2)i, and ϕi implies the partition of ζi, we can
obtain the system of equations (6.4.7) to define the structure of medium. Solution of
these equations gives the information about the component properties of the medium,
namely, the value V/c2 on the structure period ζ ∈ [0, 1] is found in the form of the
step-function.

Let us note the special case of a periodic medium for which the value V/c2 is
constant within the period. This medium, as we already know, does not differ from
a homogeneous one for the propagation of the long nonlinear waves. The same result
follows from a system (6.4.7). Indeed, for homogeneous media the moments αn are
equal to

αn =
〈V (V c−2)n+1〉
(n+ 1)〈V 〉 =

bn+1

n+ 1
. (6.4.8)

Here, the conditions of normalization 〈V 2/c2〉0 = (V 2/c2)0 = 1, 〈V 〉0 = V0 = 1 have
been used as before. Therefore, the values in the right-hand side of Eqs. (6.4.7) are
equal to b ≡ V c−2 = const. It is easy to see that the solution of system is b1 = b2 =
. . . = bN = b = 1, ϕ1 = 1 (where ϕi is any value for i ≥ 2). This corresponds to the
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Figure 6.3: Approximation of the diagnosed medium V/c2 = 1 − ζ by N -component
media.

layer medium, for which V/c2 �= f(ζ), in particular, this medium can be a homogeneous
one.

According to the asymptotic averaged model of a structured medium the period
of the structure is infinitely small, and this diagnostic method cannot give the exact
location of the structure elements inside the period. Hence, using this method, only
the mass contents of the particular components can be determined.
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Figure 6.4: Approximation of the diagnosed medium V/c2 = 0.2 + 0.8(1 − ζ)2 by
N -component media.

We present as an example the results of the calculation to define the structure of
layer media which can properly approximate the diagnosed medium. The structure of
the diagnosed media is V/c2 = 1 − ζ as well as V/c2 = 0.2 + 0.8(1 − ζ)2 in Fig. 6.3
and Fig. 6.4, respectively. In order to approximate the diagnosed medium by layer
periodic medium, which has N layers within the period, it is necessary to know 2N −1
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values 〈V (V c−2)n〉 for finite series (6.2.1). If we regard that the 2N − 1 averaged char-
acteristics 〈V (V c−2)n〉 coincide for the diagnosed medium and for the layer medium,
these averaged values at n ≤ 2N − 1 can be calculated from the known distributions
V/c2 = 1 − ζ and V/c2 = 0.2 + 0.8(1 − ζ)2 for Fig. 6.3 and Fig. 6.4, respectively. At
n > 2N − 1 the values 〈V (V c−2)n〉 for diagnosed medium and for approximated layer
medium are different. The distributions of V/c2(ζ) within the period for diagnosed
medium and for approximated media with N components are shown in Figs. 6.3, 6.4.
On the one hand, the calculated distributions for layered media are the best approxi-
mation for the medium we test. On the other hand, we have illustrated the accuracy
of the approximation of the diagnosed medium by the finite series (6.2.1).

Thus, the new method for the diagnostics of the medium characteristics by long
nonlinear waves is suggested on the basis of the asymptotic averaged model of struc-
tured medium. The mass contents of the particular components can be denoted by the
above-mentioned diagnostic method.
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Chapter 7

State equation for Berea sandstone
under slow loading

The typical stress-strain dependences for rocks under quasistatic loading measurements
point out their essentially nonlinear behavior. The results by Adams and Coker [5],
Boitnott [21], Hilbert et al. [62] and Darling et al. [36] on repeatable hysteretic loops in
stress-strain curves are well known and can be regarded as the classical experiments.
By modeling the dependence of strain on stress we generally obtain the state equa-
tion. Dealing only with macroparameters such as stress and strain while the processes
on a microlevel still remain unknown makes it very difficult to create a model that
adequately describes these properties. The recent experiments [36] showed that the
most remarkable stress-strain properties of rocks are determined by a small volume
of material at grain contacts. However, it is unclear how the interior equilibration
processes in rocks under quasistatic loading can be studied in detail. In the literature,
there are a number of models that qualitatively describe the relationships between
macroparameters such stress and strain. First of all, there are two models, the Hertz-
Mindlin model [109] and the Preisach-Mayergoyz model [53, 93]. However, with these
approaches, there is some difficulty in assigning a set of model hysteretic elements to
the real physical processes. While these approaches can duplicate experimental ob-
servations, the incorrectly formulated connection between the distribution of auxiliary
elements and maximum stress levels leads to their limited predictive power.

A set of experimental results [21, 36, 53, 55, 57, 62] can be described within the
model we suggested [161, 193, 198, 199]. We consider three appropriately formalizing
mechanisms that appear to actually occur in rocks under quasistatic loading: (i) ’stan-
dard solid relaxation’ mechanism; (ii) ’sticky-spring’ mechanism; (iii) ’permanent
plastic deformation’ mechanism. A suitable combination of these mechanisms enables
us to derive some general stress-strain relations, although without a detailed description
of interior equilibration processes. As a result, we can obtain a phenomenological model
that allows us to simulate qualitative and quantitative stress-strain characteristics and
to reproduce the distinctive features typical of the basic experimental observations by
Boitnott [21], Hilbert et al. [62] and Darling et al. [36] for Berea sandstone.
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7.1 Analysis of experimental data

In order to facilitate analysis of three groups of fundamental experimental data for
Berea sandstone by Boitnott (Fig. 1 in Ref. [53]), Hilbert et al. (Fig. 2 in Ref. [53]),
and Darling et al. (Fig. 1 in Ref. [36]), we place them in a common format. Because
in different experiments the origins of strain coordinates were introduced in different
ways, it is an advantage to combine all experimental stress-strain curves in a single
picture. We proceed from the assumption that for all three experimental curves, the
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Figure 7.1: Experimental results for Berea sandstone: (a) Boitnott (Ref. [21]), (b)
Hilbert et al. (Ref. [62]), (c) and Darling et al. (Ref. [36]). Stress-strain trajectories
with their original coordinate meshes are placed within common coordinates. The
systematic strain shifts caused by the apparatus adjustments are 0 for the data of
Boitnott, 0.000 42 for the data of Hilbert et al., and 0.000 97 for the data of Darling et
al.

points relating to maximum stress should be placed somewhere on the longest of the
available unconditioned curves, i.e., on the bottom curve of Fig. 7.1(c), while the
origin for the common strain coordinate should be chosen from Fig. 7.1(a), where the
starting point of the unconditioned (bottom) curve is documented. In this terminology,
”unconditioned” refers to an initial curve that starts at zero stress on a sample that
has been undisturbed for a long period (of the order of many hours or a day) as
is the case in Fig. 7.1(a). In contrast, the curves of Fig. 7.1(b) are ”conditioned”,
that is, have undergone multiple stress cycles. In this case, the starting point is not
shown and, except for the final, highest point, the unconditioned curve is absent. The
original experimental figures have different scales, and in Fig. 7.1, we have placed the
experimental curves (omitting the scale numbers for clarity) into common coordinates.
In this procedure Fig. 7.1(a) preserves its coordinates, while Figs. 7.1(b) and 7.1(c)
are shifted to include zero strain positions; the strain shift for Fig. 7.1(a) is 0, for
Fig. 7.1(b) is 0.000 42, and for Fig. 7.1(c) is 0.000 97.

It is pertinent to note that this approach for introducing common coordinates is not
ideal inasmuch as it essentially treats the actual position of the initial (unconditioned)
curve as independent of the rate of increase of the applied stress, which, in general, is
not the case. However, experimentally, such a rate dependence is mainly detectable at
high stresses and, to first (but rather good) approximation, can be neglected without
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practical consequences within the common frame of reference.
The first effect that arises within a detailed analysis of given experimental data

as in Fig. 7.1 is the manifestation of some internal relaxation process that appears
as a characteristic looplike retardation in strain response upon external loading and
unloading stresses. Indeed, the experiment involving transient stress steps [56, 118]
clearly displays this effect. The relaxation component in the strain response can also
be observed in other stress-strain dependences for various sandstones [36], especially
for Meule sandstone. In particular, we see that after the moment when the stress
becomes constant, the strain still changes for some time. Recently, several theoretical
approaches have been developed to model time dependence in sandstone behavior near
the high frequency vibrational resonance [15, 145, 194, 195] (see Chap. 8) as well as
dispersion and absorption of sound in microinhomogeneous materials [59]; neverthe-
less, none of them seems to apply to the present case of comparatively slow loading.
Hence, we will describe the relaxation features of sandstones in alternative terms of a
phenomenological standard solid relaxation mechanism arising from a nonlinear gener-
alization [158] of well-established relaxation modeling in the framework of a standard
linear solid [213].

Second, the stress cycling gives rise to hysteresis loops in stress-strain curves.
The observation of the experimental dependences from Ref. [36] (particularly Fig. 1 in
Ref. [36]) reveals that opposite sides of each loop are not entirely stuck together even
at infinitely slow loading, that is, the loops persist independent of loading time. Hence,
there must be specific irreversible interior changes responsible for loop formation, i.e.,
those cannot be attributed simply to relaxation. We presume that some sort of friction
has to be involved in any mechanism responsible for this effect. Therefore, we are
forced to take into account a second mechanism, referred to here as a sticky-spring
mechanism, for describing this aspect of sandstone stress-strain properties.

Finally, the whole conception would be incomplete without including a third mech-
anism called here a permanent plastic deformation. This third mechanism is needed
to explain the observation that unconditioned and conditioned experimental curves
differ from each other due to a permanent deformation, that is, a strain offset.

The next section provides a comprehensive treatment of these three mechanisms
in order to model the interior processes that arise in rock samples under quasistatic
compression.

7.2 Mechanisms for quasistatic loading

In this chapter we treat uniaxial compression of a rock sample restricted to quasistatic
loading. As a consequence, the equation of motion for the bulk of the sample can be
written using a single spatial coordinate

ρü = ∂σ/∂x (7.2.1)

and can be simplified by putting the left-hand-side (inertial) term to zero. As usual,
this approximation is valid when the wave propagation time τL = L/c (where L is
the sample length and c is sound velocity) is sufficiently less than the loading time
τσ = σ/σ̇, i.e., τL � τσ. Here, stress σ relates to strain ε ≡ ∂u/∂x through both elastic
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and anelastic mechanisms, which are obtained beforehand from analysis of experimental
data. Moreover, in this (slow loading) approximation, the stress turns out to be uniform
along a sample and is determined by the absolute value of external loading, which plays
the role of an external governing parameter. For the latter reason, we assign both σ
and ε to be positive quantities as they are usually regarded in quasistatic compression
experiments.

The fact, that for interpretation of quasistatic experiments it is sufficient to operate
directly with the stress-strain relation, provides a good basis for understanding the
main mechanisms of anelasticity and elasticity, especially nonlinear ones, as well as
to formalize and verify them. As mentioned previously, we consider separately three
mechanisms to account for interior processes in a rock sample under quasistatic loading:
(i) the standard solid relaxation mechanism, (ii) the sticky-spring mechanism, (iii) the
permanent plastic deformation mechanism.

7.2.1 Standard solid relaxation mechanism

The first part εr of the total strain ε to be considered is associated with a relaxation
mechanism caused by an interior equilibration process. We use the superscript index r
to distinguish εr from other contributions to ε. According to the analysis of experimen-
tal curves in Sec. 7.1, εr may depend on time not only implicitly through the governing
stress σ but also explicitly through relaxation εr = εr(σ(t), t). Thus, in general, strain
can have different values at the same stress. However, the main hypothesis, which will
be confirmed a posteriori, consists in assuming that the strain also responds to stress
variation in time or, more precisely, to the time derivative σ̇.

The most general linear theory taking into account all of the above-mentioned effects
(i.e., explicit strain relaxation in time as well as implicit time dependence through both
σ and σ̇) is readily derived from the Zener phenomenological model of a standard linear
solid [213]

τ ε̇r + εr =
σ

Me

+
σ̇τ

Mf

. (7.2.2)

The theory deals with three material parameters: a relaxation time τ and two elastic
moduli, relaxed Me and unrelaxed Mf . Considering the quasistatic loading, we restrict
our description to the condition τL � τ . Its main result is that a steady-state strain
response (i.e., response at t/τ � 1) to a periodically oscillating stress σ = σa cos(ωt+ϕ)
can exhibit two different regimes, namely, a relaxed εr = σ/Me at low frequencies
ωτ � 1 and an unrelaxed εr = σ/Mf at high frequencies ωτ � 1.

Unfortunately, another basic result

εr =
σ0

Me

t

t0
− σ0

Mf −Me

MfMe

τ

t0
(7.2.3)

describing the steady-state strain response (i.e., response at t/τ � 1) to a stress grow-
ing linearly with time σ = (σ0/t0)t is usually misinterpreted due to a neglect of the small
second term. Meanwhile, the similar ”small” terms can play crucial roles in a complete
understanding of quasistatic loading experiments and should be accurately taken into
account. It is remarkable that the steady-state strain response (see Eq. (7.2.3) reveals
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two contributions that are distinct in origin. The first term contains the elastic contri-
bution σ/Me usually measured under infinitesimally slow loading, whereas the second
term yields the regular anelastic shift proportional to the difference Mf −Me, to τ , and
to the loading rate σ0/t0. In contrast, the instantaneous strain response (i.e., response
at t/τ � 1) on the same stress σ = (σ0/t0)t exhibits only the elastic contribution σ/Mf

and is characterized by the unrelaxed elastic modulus Mf :

εr =
σ0

Mf

t

t0
. (7.2.4)

As for a possible physical background to model the standard linear solid, researchers
often appealed to a hidden interior relaxation process [88, 96]. Its main distinguish-
ing feature consists of allowing the equilibrium state to shift linearly subject to an
external influence, in particular, the subject to applied external pressure and its time
derivative [88].

To better visualize the manifestation of interior relaxation in macroparameters
under quasistatic loading, we consider the strain-stress dependences calculated from
Eq. (7.2.2) (see Fig. 7.2). The strain-stress trajectories under loading with a fixed
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Figure 7.2: Strain-stress trajectories for standard linear solid [213]. Curve 1 is equi-
librium line, 2–4 are calculation data for different loading speed, 5 is asymptotics, 6 is
fast loading.

speed σ̇ = const tend asymptotically to the lines that are parallel to the equilibrium
line (dash-dotted line in Fig. 7.2). Note that the shift of asymptotics Δt from the equi-
librium line is proportional to a loading speed σ̇ and relaxation time τ , i.e. Δ ∼ τ σ̇.
The initial condition is of no consequence to the time Δt > τ . Indeed, the strain-stress
trajectory tends to the asymptotics during the time Δt ≈ τ (see Fig. 7.2a). There
are the hysteretic loops (see Fig. 7.2b) at unloading with the time interval ΔtAB � τ ,
whereas they are the closed loop in turning point A. Nevertheless, at unloading time
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ΔtCD < τ , ΔtEF < τ in Fig. 7.2c the loops either are not realized or are closed above
the turning point C (see Fig. 7.2c).

In order to extend the basic ideas of a standard linear solid and its physical justifica-
tion, a more general theory to describe the additional effects of nonlinear elasticity was
developed several years ago [158]. The appropriate dynamic state equation becomes

τ
d

dt

[
εr − εrf (σ)

]
+ εr − εre(σ) = 0. (7.2.5)

The suggested relation between strain εr, stress σ, and their time derivatives ε̇r and σ̇ is
distinguished to include nonlinearities by means of two essentially nonlinear functions
εre(σ), and εrf (σ). These functions are responsible for a true thermodynamic equilibrium
state at infinitely slow loading and for a frozen pseudoequilibrium state at infinitely
fast loading, respectively. Both slow and fast terms are understood in relation to
the typical time of the hidden internal relaxation process τ . Formally speaking, the
curve εre = εre(σ) could be thought as the state equation in the limit of instantaneous
relaxation τ → 0, whereas the curve εrf = εrf (σ) is the state equation in the limit of no
relaxation τ → ∞.

It is necessary to note that, just as for the linear theory, the interior equilibration
processes need not be specified concretely in the derivation of equation (7.2.5), but
the macroscopic characteristics εre(σ), ε

r
f (σ), and τ in this approach are chosen to be a

satisfactory combination for the overall model description. Of course, the macroscopic
parameters involved, as well as the particular forms of functional dependences εre(σ)
and εrf (σ) themselves, should be selected to match known experimental results.

We term the model incorporated in the dynamical state equation (7.2.5) as the
standard solid relaxation mechanism in view of its generic property of interconnection
of two different nonlinear elastic state equations mediated through the hidden interior
relaxation processes similar to the interconnection of two linear state equations in the
theory of standard linear solid. In what follows, the equilibrium state function εre(σ) is
determined by the ordinary formula

εre(σ) = (Ee(σ))
−1σ, (7.2.6)

and the stress-dependent Young modulus Ee(σ) is written according to the empirical
relationship

Ee(σ) = E+
e + (E−e − E+

e ) exp(−Dσ) (7.2.7)

obtained as approximations that fit a number of experiments (see, e.g., Ref. [72] and
references therein). The constants E−e , E

+
e , and D are selected via numerical trials,

and their values are close to those listed in Ref. [72]. For completeness, we define the
frozen state function by the approximation

εrf (σ) = aεre(σ), (7.2.8)

where the factor a is a constant lying within the interval 0 < a < 1. For example,
in the linear theory, a relationship such as Eq. (7.2.8) finds its justification in stating
that the ratio of the equilibrium sound velocity to the frozen one is independent of
stress. When the time dependence of loading σ = σ(t) (i.e., the stress protocol) is
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known, then Eq. (7.2.5) can be solved. As a rule, we use an initial condition in the
form εr(t = 0) = εre(σ(t = 0)).

Figure 7.3 illustrates the relaxation mechanism. The stress protocols for Fig 7.3
qualitatively correspond to the loading in works by Boitnott (see Fig. 1 in Ref. [53]) and
Hilbert et al. (see Fig. 2 in Ref. [53]) accordingly. The constants in the state equations

stress protocol stress protocol

0

0

� �
0

� �

t (s) 0
t (s)

Figure 7.3: Modeling the Boitnott experiment (Ref. [21]) using only the standard
solid relaxation mechanism (a). Modeling the experiment of Hilbert et al. (Ref. [62])
using only the standard solid relaxation mechanism (b). The theoretical curve for
the unconditioned state is not shown here because its experimental counterpart with
Fig. 7.1b is not available.

(7.2.5)–(7.2.8) are taken to be the same for both pictures. The best correspondence
with experiments was obtained for relaxation time τ of 18 s; the other constants are
E−e = 1.5 GPa, E+

e = 32 GPa, D = 0.05 MPa−1, and a = 0.7. Modeling the Boitnott
experiment leads to almost ideal results. In contrast, the experiment of Hilbert et
al. cannot be adequately described by the sole relaxation mechanism, inasmuch as it
does not close the small loops through the stress-strain cusps for any assignment of
constants in the state equations. Thus, the relaxation mechanism by itself does not
explain the end-point memory.

7.2.2 Sticky-spring mechanism

In order to develop the approach to explain the end-point memory of the stress-strain
curves mentioned above, it is necessary to examine the stress-strain curves for Meule
sandstone in the work by Darling et al. [36]. For this purpose, we select only important
parts of the data of Darling et al. and depict them qualitatively in Fig. 7.4. Points
corresponding to each other in the stress protocol picture (Fig. 7.4b) and stress-strain
picture (Fig. 7.4a) are marked by the same capital letters and are unprimed and primed,
respectively. In the time intervals AB, CD, and EF , stress is constant. The fact that
the points A′, C ′, and E ′ do not coincide with the respective points B′, D′, and F ′ can
be explained by relaxation alone. Indeed, relaxation by itself should inevitably lead
the experimentally distinct points D′ and F ′ (and even B′) to coincide. To resolve
this problem and understand the discrepancy, it is necessary to include an additional
mechanism. A principal feature of this mechanism should be its capacity to describe
the histeresis of a strain-stress trajectory, on the one hand, and this mechanism in
contrast to the relaxation mechanism should be independent of speed of loading, on
the other hand. We call this additional process as sticky-spring mechanism and, for
the sake of convenience, formulate it separately from the other mechanisms.
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A prototype system to illustrate this mechanism is given in Fig. 7.5. The system
consists of a closed cylinder containing a cork plug. The quantity of gas in the closed

cork

friction zone

p
i

p

internal

pressure

external

pressure

Test-tube

Figure 7.5: Analog model to illustrate the sticky-spring mechanism.

end is fixed, and its pressure pi supplies the elastic restoring force. In addition, there
is a friction between cork and tube walls. We treat this friction as independent of
cork velocity. Such a friction arises in thermodynamical systems when the interior
equilibration process is slow in comparison with the typical time of loading [158].

In terms of the cork-tube device, the maximum frictional force is taken to be pro-
portional to the threshold pressure pt (a positive value) that must be overcome by
external pressure p against an internal pi (or vice versa) in order for the cork to be
pushed from one position into another. If we assume the cork to be massless, its
displacement χ along the tube as a function of time t obeys the following first-order
differential equation

dχ

dt
= θ(ṗ)θ(χ−(p)− χ)

dχ−(p)

dp
ṗ+ θ(−ṗ)θ(χ+(p)− χ)

dχ+(p)

dp
ṗ, (7.2.9)

in which the functions

χ−(p) ≡ χm(p− pt), χ+(p) ≡ χm(p+ pt) (7.2.10)
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are determined by

χm(p) = l0 − p0l0
p

. (7.2.11)

Here, θ(z) is the Heaviside step function, p0l0 is a constant characterizing the quantity
of gas in a working volume of the cylinder, and l0 is a length that fixes the working
point of the cork-tube nonlinear device. Thus, l0 − χ is simply the running position of
the cork with respect to the back of the tube.

Some aspects of the sticky-spring mechanism are presented in Fig. 7.6, which illus-
trates the dependence of cork displacement χ on external pressure p. For this purpose,
Eq. (7.2.9) has been numerically integrated from the initial condition χ(t = 0) = 0 us-
ing the pressure protocol given in Fig. 7.6b. The essential feature of the sticky-spring
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Figure 7.6: Cork displacement in response to external pressure. The curve of marginal
equilibrium χ = χm(p) is marked by a dash-dotted line.

mechanism consists in producing a stripe-like continuum of stationary states between
the curves χ = χ−(p) and χ = χ+(p) as in Fig. 7.6. Only in the limit of very small
threshold pressure pt → +0 do these curves come together and give rise to a single
curve χ = χm(p). This medial curve turns out to bisect the stripe and can be thought
as the equilibrium curve of the process in the limiting case of pt → +0. Another essen-
tial part of this mechanism is its elastic component manifested through the inclination
of stripe χ−(p) < χ < χ+(p) with respect to the p axis.

Summarizing the principal features of the sticky-spring mechanism (Eqs. (7.2.9)
and (7.2.9)) as applied to sandstones, we postulate the stress-strain relation to be

dεs

dt
= θ(σ̇)θ(ε−(σ)− εs)

dε−
dσ

σ̇ + θ(−σ̇)θ(εs − ε+(σ))
dε+
dσ

σ̇. (7.2.12)

Here, the partial strain εs is associated with the sticky-spring contribution to the total
strain ε, while the functions ε−(σ) and ε+(σ) are determined via the medial equilibrium
state function εm(σ) and two positive threshold stresses σ+ and σ− as follows:

ε−(σ) ≡ εsm(σ − σ−), ε+(σ) ≡ εsm(σ + σ+). (7.2.13)
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We note that no restrictions are imposed on the threshold values σ− and σ+ that are
responsible for the friction. In principle, they can be functions of stress σ.

For the function εsm(σ) we assume

εsm(σ) = εre(σ). (7.2.14)

In accord with thermodynamic principles, Eq. (7.2.14) thus requires that the final po-
sition of a truly equilibrium state be independent of the origin of the internal processes
that led to this equilibrium.

Within the Preisach-Mayergoyz approach [93], the qualitative distribution ρs(Pc, P0)
for the sticky-spring mechanism can be written as

ρs(Pc, P0) = A′(Pc, P0)[θ(Pc − σ+)θ(σ+ + σ− − Pc)δ(P0)

+θ(Pc − (σ+ + σ−))θ(σ+ + σ− − Pc)

×δ(Pc − P0 − (σ+ + σ−))],

(7.2.15)

where notations are taken from Ref. [93].
Because the sticky-spring mechanism employs fewer adjustable parameters (con-

stants) than do the Preisach-Mayergoyz models, we use this mechanism to describe
quasistatic loading in rocks. Furthermore, if we consider the possible physical inter-
pretations of the sticky-spring effects, it seems plausible that they capture the most
essential features in opening-closing of sticky microcracks.

In Sec. 7.3 we show that, in the proper combination, the standard solid relaxation
mechanism and the sticky-spring mechanism enable us to model relaxation steps on the
conditioned curves under a fixed load (Fig. 7.4) and the effect of end-point memory,
respectively. However, to include the unconditioned portion of the curves we must
invoke a mechanism that takes the plastic deformation into account.

7.2.3 Permanent plastic deformation mechanism

We note that the permanent plastic deformation mechanism can, in principle, be
treated within the relaxation mechanism, provided we include an additional set of re-
laxation parameters. However, because the permanent plastic deformation mechanism
is responsible for the difference between the unconditioned and conditioned states,
we prefer to separately extract it as an appropriately adjusted relaxation mechanism.

Taking into account the intuitively understandable features of permanent plastic
deformation, we postulate that under compression, i.e., during increasing initial loading
σ̇ > 0, the sample, on one hand, must contract with a permanent plastic contribution
εp to total strain to obey a linear Hooke-like law εp = σ/Ep (where the appropri-
ate Young modulus Ep is presumed to be stress independent). On the other hand,
it must simultaneously experience the interior irreversible deformations. Conversely,
when external loading decreases, σ̇ < 0, the plastic component εp must remain fixed.
To formalize the above-mentioned statements, the state equation for the permanent
plastic deformation mechanism can be described as

dεp

dt
= θ(σ̇)θ(σ/Ep − εp)σ̇/Ep. (7.2.16)
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According to this mechanism, once a peak loading is achieved, the possible store of
plastic deformation in the rock sample becomes saturated. Thereafter, when loading
is less than the peak stress, the permanent plastic deformation mechanism does not
appear as subsequent cycles. Through the Heaviside function, only an unconditioned
curve manifests the permanent plastic deformation, while, on conditioned curves, it
does not contribute.

Similar to the sticky-spring mechanism, the distribution in the Preisach-Mayergoyz
space (see Fig. 2(a) in Ref. [93]) for permanent plastic deformation mechanism can be
obtained from

ρp(Pc, P0) = Ap(Pc, P0)δ(P0). (7.2.17)

It is necessary to note that the sticky-spring mechanism and the permanent plastic de-
formation mechanism can be considered as independent of each other, as are individual
elements in Preisach-Mayergoyz space.

The separation of the sticky-spring mechanism and the permanent plastic defor-
mation mechanism can have a physical interpretation. In the experimental results
[21, 36, 53, 62], each increment of stress (starting at zero stress) beyond the previous
highest stress produces irreversible changes in the rock fabric as crack surfaces slide
and asperities are crushed. The permanent plastic mechanism is a means to incorpo-
rate these irreversible changes. In a regime where stress cycles at stresses less than
the maximum previously achieved, the sticky-spring mechanism is applied. It may be
that the Preisach-Mayergoyz approach can cover the whole stress range, yet there is
a utility in the present approach where the damaging stresses are separated from a
regime in which stress cycles are associated with reversible changes in the rock.

It is interesting to observe that Belinskiy has experimentally revealed the pure
permanent plastic deformation under collision of steel balls in chain with plumbum
layers [34].

7.3 Simulation of stress-strain relations

In the previous section, we have suggested three mechanisms by which interior interac-
tion processes in sandstones are assumed to be described. Because the physical origins
of these processes have not been well established, we use a phenomenological approach
in which they are not concretely defined. In computing the counterparts of the avail-
able experimental data, the processes modeled by both the standard solid relaxation
and the sticky-spring mechanisms can be treated using only a minimal number of phe-
nomenological parameters, i.e., the number adopted in Secs. 7.2.1 and 7.2.2. However,
when describing the more precise experiments, the suggested models have the potential
to be modified by extending the number of relaxation and sticky-spring processes.

Taking into account all three developed mechanisms (standard solid relaxation,
sticky-spring and permanent plastic deformation), we rely upon the minimum number
of processes, i.e., only a single process for each mechanism. For loading by a given stress
protocol, we can solve Eqs. (7.2.5), (7.2.12) and (7.2.16) with the initial conditions
εr(t = 0) = εs(t = 0) = εp(t = 0) = 0 and find the total strain ε as a linear combination
of partial strains:

ε = b(εr + εp) + (1− b)(εs + εp). (7.3.1)
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Here, the constant b is bounded inside the interval 0 ≤ b ≤ 1. Clearly, at b = 1,
we have the relaxation mechanism with permanent plastic deformation only, while at
b = 0, we retain only the sticky-spring mechanism plus the permanent plastic defor-
mation. Choosing relation (7.3.1) as a linear combination and keeping in mind the
definition (7.2.14), we are able to tune the single parameter b to obtain a physical
condition such that the true equilibrium state is independent of any type of interior
relaxation process. Since in Ref. [28] it is experimentally proved that there are the
different slopes between the minor loop and the major stress-strain loop, while these
slopes have a large jump, the value b can be estimated through suitable angles of the
loop slopes as it has been suggested in Ref. [161].

If the stress is fixed at one moment, then the relaxation mechanism moves the whole
system to some new equilibrium during a characteristic relaxation time. Owing to the
sticky-spring mechanism plus the permanent plastic deformation mechanism, there can
be several equilibrium states at the same stress. The ambiguity of equilibrium state
dependence on stress has been written in Ref. [59].

The best fits of the calculated results as applied to all three groups of experiments on
Berea sandstone [21, 36, 53, 62] (see also Fig. 7.1) were obtained with the parameters
listed in Table 7.1. Note that these parameters are applied when we consider the
combination of all three mechanisms in contrast to the parameters applied in Sec. 7.2.1
for Figs. 7.2 and 7.3, when only the relaxation mechanism was analyzed.

Table 7.1: Fitting parameters

τ E−e E+
e D σ− σ+ Ep a b

s GPa GPa MPa−1 MPa MPa GPa
3 5 23 0.03 4 4 70 0.2 0.8

Results of the numerical simulation are presented in Fig. 7.7. Comparing the cal-
culated curves (Fig. 7.7) with experimental data (Fig. 7.1), we observe an acceptable
coincidence of these results both qualitatively and quantitatively. First, we find the
small loops in curve b of Fig. 7.7 that simulates the experiment of Hilbert et al. [62].
These loops are closed at the cusps. Unfortunately, in experimental curves for Berea
sandstone, it is difficult to reveal the features that are present in Meule sandstone
(Fig. 1 in Ref. [36]), i.e., to precisely observe the steps caused by sample relaxation
under fixed load, e.g., in Fig. 7.4. This difficulty could be explained by the exceptional
smallness of typical relaxation times for Berea sandstone as compared with typical
times in the experimental stress protocol. For this reason, Berea sandstone features
related to relaxation under fixed load are simply not seen in our theoretical curve c
of Fig. 7.7 that models the experiment of Darling et al. [36]. However, the relaxation
mechanism cannot be completely removed because it plays an important role in de-
scribing the end-point memory as manifested by the small loops on the theoretical
curve b in Fig. 7.7, which reproduces the experiment of Hilbert et al. [62]. On the one
hand, it is precisely the effect of small but finite relaxation time that enables one to
close a small loop through a cusp (see curve b in Fig. 7.7 once again). On the other
hand, the relaxation provides the means to produce the small loops in the modeling.
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Figure 7.7: Computer simulation of stress-strain trajectories for Berea sandstone.
Curve a relates to the experiment of Boitnott (Ref. [21], curve b models the exper-
iment of Hilbert et al. (Refs. [53, 62]), and curve c reproduces the experiment of
Darling et al. (Ref. [36]).

7.4 Dissipation of energy in rock under cyclic load-

ing

Much is known about the qualitative and quantitative nonlinear response of rock [56].
The experimental measurements of repeatable hysteretic loops in stress-strain trajec-
tory at slow loading have been studied in Refs. [21, 36, 53, 62] (see, also, sections
7.1–7.3). The investigation of the behavior of sandstones under mechanical loading is
aimed at construction of the state equation for these media. Experiments [36] have
shown that the most remarkable stress-strain properties of rocks are determined by a
small volume of material at grain contacts. Understanding of the internal processes
on a mesoscopic level under mechanical loading provides a mean for both physical and
mathematical simulations.

The study in details of all complicated internal processes is impossible at this time
that in its turn hampers the development of models. However, it is important to know
not internal processes in itself, but their effect on the connection between macropa-
rameters of medium. For mechanical loading, it is the dependence of strain on stress,
in other words, the equation of state.

In sections 7.1–7.3 (see, also, Refs. [193, 198, 199]) we have suggested the model of
the dynamic behavior of rocks under quasistatic mechanical loading. The response of
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the internal exchanged processes appeared as a result of the intensive external loading,
is simulated on macrolevel by three appropriately formalizing mechanisms: (i) a stan-
dard solid relaxation mechanism, (ii) a sticky-spring mechanism, and (iii) a permanent
plastic deformation mechanism. A suitable combination of these mechanisms has en-
abled us to derive some general stress-strain relations and to reproduce the distinctive
features typical of the basic experimental observations for Berea sandstone [21, 36, 62].

Figure 7.8: Experimental stress-strain trajectories for Berea sandstone. Figure is taken
from [28].

Additional experimental data on the mechanical deformation of the Berea sand-
stone are represented in [28]. They were obtained after the development of model we
suggested. First of all, in this paper [28] authors have observed (a) a discontinuity
between slops of the main loop and the inner small loops in endpoint A (see Fig. 7.8
and also Fig. 2 and Fig. 3 in [28]); (b) the main loop area as a function of the sweep
rate (see Fig. 7.9 and also Fig. 1 in this paper [28]); (c) the congruence of the inner
loops (see Fig. 4 in the paper [28]). Owing only to the precise measurements, some
insight into the details of the stress-strain trajectory has been gained in [28].

7.4.1 The slops of main and inner hysteretic loops

Let us consider the slops of the inner small hysteretic loops with respect to the major
hysteretic loop (see Fig. 7.8). In endpoint A there is no smooth passage between inner
and external hysteretic loops, but there is the jump of the slops between these loops.
The discontinuity at the endpoint A can be explained [161] by means of the sticky-
spring mechanism together with relaxation mechanism within the model [198]. For
convenience of explanation only, we regard that the equilibrium curve is a straight
line, and the relaxation mechanism is reduced to the elastic deformation (it is true
at passing in Eq. (7.2.5) to the limit τ → 0 or τ → ∞). It is noted that at cyclic
loading after the first attainment of a maximum stress, the third mechanism, namely,
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Figure 7.9: Main loop area as a function of experimental measurement sweep rate.
Figure is taken from [28].

the permanent plastic deformation mechanism does not produce the contribution into
dependence of strain on stress.

Now let us consider the combination of the sticky-spring mechanism and the re-
laxation mechanism. The stress-strain curve for the sticky-spring mechanism is shown
qualitatively in Fig. 7.6. This mechanism with the elastic mechanism at series proto-
type elements (as in left upper corner in Fig. 7.10) has such qualitative stress-strain
trajectory as in Fig. 7.10. It is easily to understand that an angle α is associated
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Figure 7.10: Qualitative stress-strain trajectory for sticky-spring mechanism with elas-
tic mechanism.

with the angle measured in the experiments [28] between the slops of main and inner
hysteretic loops. Thus, the jump of the slops between these loops observed in the
experiments [28] finds its explanation within the model [198]. Moreover, the angle α
enables us to determine the constant b for the relationship (7.3.1), i.e. the balance
between the sticky-spring mechanism and the relaxation mechanism

b =
tan β

tan γ
,
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where the angles β and γ are defined as in Fig. 7.10 and α = γ − β.

It should be noted that the value b is independent on the friction in prototype
element of the sticky-spring mechanism (see Fig. 7.5). Hence, the constant b that
in section 7.3 was choused by means of best coincidence of computer modeling with
experimental data, now receives other sense and can be estimated from the jump of
slopes for major and inner hysteretic loops. Since in model approach for determining
the angle α the relaxation is not considered here that contributes some mistake, we
can only estimate the value b. However, the effect of relaxation on the mutual slop of
the major and inner loops is not considered in details here.

The congruence of the inner loops observed in the experiment [28] can be explained
[161] within the suggested model (see sections 7.1–7.3 and, also, Ref. [198]) in the
following way. It is obvious that in Fig. 7.10 the intervals of stress-strain trajectory
between the points (1,2), the points (3,4), the points (5,6), the points (7,8), the points
(8,9), the points (10,11), the points (12,13), the points (13,14) are parallel each other.
The inner loops appear around the intervals (7,8) and (12,13) as a result of relaxation.
Consequently, the inner loops should be congruent each other.

7.4.2 Energy dissipation

The dissipation of energy caused by internal processes in sandstone is estimated through
the area bounded by hysteretic stress-strain curve. Thus, the dependence of the area
on the form of loading is important characteristics which illuminates the sandstone
properties under quasistatic loading.

At first, let us study qualitatively the possibility for appearing the dependence of
hysteretic loop area on sweep rate in a form observed in experiments (see Fig. 7.9).
The experimental values of loop area in this figure attain maximum value, i.e. the area
becomes constant. This fact can be explained in frames of the suggested model (see
sections 7.1–7.3 and, also, Refs. [193, 198, 199])

Consider the relaxation mechanism in details (see Fig. 7.2). From Fig. 7.2 a we see
how the curves approach to the asymptotics at different sweep rates σ̇. If σ̇ is constant,
the curve tents to the asymptotics that is parallel line to the equilibrium line. The
sweep rate σ̇ is larger, the departure of the asymtotics from the equilibrium line is
larger.

As a function of sweep rate, the area of hysteretic loop, at first, increases (see
Fig. 7.11 a,b), later leads to a maximum (see Fig. 7.11 b,c), and finally if σmax = const,
the area should decrease (see Fig. 7.11 c,d). For each next picture in Fig. 7.11, the
sweep rate is redoubled, i.e. σ = σ0 in Fig. 7.11 a, σ = 2σ0 in Fig. 7.11 b, σ = 4σ0 in
Fig. 7.11 c, and σ = 8σ0 in Fig. 7.11 d. The increase of the loop area is associated with
the effect of the relaxing exchanged processes, while the attainment of maximum as
well as the decrease later of the loop area is the result of the limitation for maximum
level of loading σmax. As in experiments, here we regard that the maximum level of
loading is constant σmax = const for all pictures in Fig. 7.11. Thus, in contrast to a
conclusion from [28], namely, that for Berea sandstone at sweep rate above 3 MPa/min,
the relaxation can not be taken into account, we become to a result that the relaxation
exists always and gives a contribution into the area of hysteretic loops. While the
decrease of the loop area is connected with another factor, namely, with the limitation
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Figure 7.11: Hysteretic stress-strain curves under cyclic loading at different |σ̇| and
σmax = const. The dash lines determine the equilibrium states.

of the maximum level of loading σmax = const exerted to a sandstone sample.

We confirm this qualitative exploration by computer calculations (see Fig. 7.12),
using the suggested model for describing the dynamic behavior of sandstone under
quasistatic loading (see sections 7.1–7.3 and, also, Refs. [193, 198, 199]). The model
parameters for Berea sandstone are borrowed from Table 7.1. The stress protocols
have the form of the repeated triangulars. The modulus of the sweep rate |σ̇| for
each picture in Fig. 7.12 are different. It is seen that as in qualitative analysis of the
physical phenomena (see Fig. 7.11), the area of the hysteretic loop, at first, increases
(Fig. 7.12 a,b), later at high rate of loading the loop area decreases (Fig. 7.12 b,c).

In Fig. 7.13 we plot the calculated dependence of the hysteretic loop area on the
sweep rate |σ̇|. The curve 2 in Fig. 7.13 simulates the experimental data (see Fig. 7.9)
represented in [28]. Note that the theoretical and experimental results coincide not
only qualitatively, but also quantitatively with appropriate accuracy. We predict that
at high sweep rate the dissipation of energy determined as area of the main loop should
decrease [161]. The confirmation of this fact by experimental observation could be the
additional argument for further application of the suggested model [193, 198, 199], on
the one hand, and, on the other hand, such experimental dependences could stimulate
to the improvement and development of new models.

We call attention that all parameters for Berea sandstone have been taken from
Table 7.1 and in no way have been picked up for this experiments [28]. So, model
we suggested in sections 7.1–7.3 (see, also, Refs. [193, 198, 199]). additionally to the
results represented in the papers [193, 198, 199], can describe new experiments [28]. For
trustworthiness of model it is significant that the experiments [28] simulated here were
carried out after we had suggested the model of the dynamical behavior of sandstone
with the determined recent parameters in the state equation i.e. in the stress-strain
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Figure 7.12: The calculated stress-strain trajectory at different sweep rates and σmax =
24 MPa for Berea sandstone.

relation [198].

7.5 Conclusions

In this chapter we have suggested a phenomenological model to describe the stress-
strain properties of Berea sandstone under quasistatic loading. Analysis of experi-
mental observations has demonstrated the need to invoke several mechanisms that are
responsible for interior equilibration processes in sandstone: the standard solid relax-
ation mechanism, the sticky-spring mechanism, and the permanent plastic deformation
mechanism. To justify these mechanisms we have used an approach in which the inte-
rior processes in a sample are not explicitly defined. This approach drastically simplifies
the mathematical description. Only by properly combining all three mechanisms we
have been able to obtain the acceptable simulation. Moreover, it was shown that each
of first two mechanisms (the relaxation and sticky-spring ones) can be restricted to
one process. The resulting treatment reproduces extremely complex stress-strain tra-
jectories with only nine adjustable parameters. However, if it is required to describe
other, more precise experiments, then the model can be properly modified because it is
possible to invoke a number of relaxation times for the standard solid relaxation mech-
anism and friction parameters for the sticky-spring mechanism. As for the permanent
plastic deformation mechanism, we presently do not know how it could be generalized
to include more than one phenomenological parameter.

Owing to the proposed treatment of quasistatic stress-strain relations, it becomes
possible to produce an adequate and self-consistent simulation that both qualita-
tively and quantitatively describes the principal features of experimental data by Boit-
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nott [21], Hilbert et al. [62] and Darling et al. [36] for Berea sandstone. The model
correctly reproduces both the large loops and, equally important, the small loops in
stress-strain trajectories (the end-point memory effect). We have predicted effect of
decrease of the energy dissipation at high sweep rate.
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Chapter 8

Dynamics of a sandstone bar under
resonance loading

Apart from their distinctive quasistatic characteristics (see Chap. 7) as one of earth
materials, sandstones have been shown to demonstrate a number of unexpected and
even surprising dynamical properties. In this chapter we consider the numerous exper-
imental results on nonlinear resonant response exhibited by sandstone rods in forced
longitudinal oscillations that appear even at extremely small forcing levels and conse-
quently at small dynamic strain.

Sedimentary rocks, particularly sandstones, are distinguished by their grain struc-
ture [32, 39, 148] in which the core of each grain is much harder than the intergrain
cementation material [55, 57]. The imperfect intergrain cementation partially appears
as porosity [32, 39, 148], a property governing rock permeability that is essential, e.g.,
for petroleum production [32, 39]. In addition, porosity facilitates a penetration of
water into areas of intergrain contacts [55, 57] causing a dramatic impact on elastic
moduli [2, 29, 214] and seismic dissipation factors [2, 29, 214, 149]. The peculiarities
of grain and pore structures give rise to a variety of remarkable nonlinear mechanical
properties demonstrated by rocks, both at quasistatic and alternating dynamic load-
ing. Thus, the hysteresis, earlier established for the stress-strain relation in samples
subjected to quasistatic loading-unloading cycles [33, 52], has also been discovered
for the relation between acceleration amplitude and driving frequency in bar-shaped
samples subjected to an alternating external drive that is frequency swept through
resonance [68, 71, 143, 146]. At strong drive levels there is an unusual, almost lin-
ear decrease of resonant frequency with strain amplitude [58, 71, 145], and there
are the long-term relaxation phenomena [143, 146, 147] such as nearly logarithmic re-
covery (increased of resonant frequency) after the large conditioning drive has been
removed [143, 145].

The fragmentary understanding of these observations [54, 145] has stimulated us to
look into the whole problem, usually characterized as ”slow dynamics”, more system-
atically and to propose a closed-form theory. This is based upon an explicit, physically
motivated formalization of a sandstone bar system as two coupled nonlinear subsys-
tems, one of which breaks the symmetry of system response to an alternating external
drive and acts as a sort of soft ratchet or leaky diode [194, 195]. We specify these
subsystems as a fast subsystem of longitudinal displacements and a slow subsystem of
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ruptured intergrain and/or interlamina cohesive bonds.
In this chapter we present a detailed development of a model [194, 195, 196, 201]

as well as inspect its ability to explain the numerous experimental observations seen in
forced longitudinal oscillations of sandstone bars. We demonstrate that a broad set of
experimental data can be understood as various facets of the same internally consistent
approach. Furthermore, the suggested theory will be shown to predict the dynamical
realization of hysteresis with end-point memory, figuratively resembling its well-known
quasistatic prototype [33, 52] (see also more recent publications [55, 57, 68]). Our
theoretical predictions have been confirmed by experimental measurements performed
at the Los Alamos National Laboratory (LANL) by Ten Cate and Shankland.

8.1 Analysis of experimental data

Over the past several years, rocks have been shown to be elastically nonlinear. The
majority of quantitative measurements for rocks have been performed with resonant
bar experiments [55, 57, 69, 71, 116, 143, 146, 147, 145]. Due to the amplification
that resonance provides, it is perhaps the most sensitive manner by which to observe
nonlinear behavior, even at extremely small dynamic strains, as low as 10−7.

The nonlinear resonance measurements have been performed to understand the
mechanisms that produce the observed nonlinearity. The typical experimental appa-
ratus used to obtain the resonance curves is shown in Fig. 8.1. The experimental

Figure 8.1: Experimental configuration for resonance bar experiments. In a typical
resonant bar experiment, the bar is driven at one end and the strain field or its func-
tional equivalent is detected at the other end. It is usual to fix the drive amplitude F
and sweep the frequency ω over a resonance. The measured acceleration is denoted as
A(ω). Figure is taken from [55].

method is to drive a cylindrical sample of rock in the fundamental longitudinal elastic
mode (Young mode), with a piezoelectric force transducer cemented between one end
of the sample and a massive backload. Acceleration of the opposite end of the sample
is measured with a lightweight accelerometer and processed with a lock-in amplifier
referenced to the driving signal. The driving force is a harmonic acoustic wave, in-
cremented through the fundamental resonance frequency of the bar, to produce the
frequency-dependent lumped-parameter response function of the resonant bar.
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The sample, 50mm in diameter and 0.3m long, had a low-amplitude resonance at
fr ≈ 3920Hz (the strain at resonance of order 10−8). Fig. 8.2 shows the experimental
resonance curves as the dependence of an acceleration on the driving frequency from
Ref. [146]. In Fig. 8.2a the first curve made when the rock was in its recovered state
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Figure 8.2: Resonance bar data [146]. (a) Unconditioned resonance curves measured at
successively higher amplitudes. (b) Resonance curves at successively higher amplitudes
only after a few up and down sweeps were made first (conditioning). Arrows on highest
pair of curves indicate the sweep direction. Figures are taken from [146].

differed from the subsequent curves. Figure 8.2b shows a set of conditioned resonance
curves obtained after two frequency sweeps were performed at each drive level to achieve
repeatable curves. As the resonance was swept over ((up followed by down) 3800 to
4000Hz to 3800Hz in 2-Hz steps (200 frequency points) at 300ms per step) with
increasing drive amplitude, the resonance frequency was seen to shift to lower values,
for example, fr = 3850 Hz when the strain at resonance was of order 10−5. A frequency
sweep of 3800 to 4000Hz was different from a frequency sweep of 4000 to 3800Hz.

The first resonance curve made on a ’recovered’ sample differed from the following
curves. Figures 8.3a, 8.3b show these initial curves (indicated on each figure) and
several successive up/down or down/up sweeps. Figure 8.3a represents a set of curves
beginning at 3800Hz and sweeping up, Fig. 8.3b represents a set starting at 4000Hz
and going down. If the first sweep reaches the resonance frequency fr (independently
on sweep direction), it alters the response of the rock so that at the repeated cycling
conditions, the sample has the same resonance curves. Amplitudes of the repeatable
curves all lie above the initial curve at frequencies below the resonance frequency
(Fig. 8.3a); they lie below the initial curve for downward sweeps at frequencies above the
resonance frequency (Fig. 8.3b). Hence, the sample has a ’memory’ on the maximum
strain amplitude already reached. Most importantly, the same maximum value of the
strain amplitude is reached at the same resonance frequency fr irrespective of whether
the sweep direction was down/up or up/down for both unconditioned and conditioned
curves.

Fig. 8.4 (see also Fig. 6 in [146]) shows the relaxation changes of acceleration am-
plitude at fixed frequency. Here, it is illustrated how a rock gradually loses memory of
the highest strain. At repeatable up or down sweep, the sweep was stopped (drive still
on) and time-dependence of acceleration was recorded for nearly 10 minutes. As shown
in Fig. 8.4, the measured acceleration gradually decreased for the experiments where
the stopping frequency was lower than the resonance frequency fr, while increased
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Figure 8.3: First sweep at constant drive level (a) up from 3800Hz or (b) down from
4000Hz and repeating; repetitions show the approach to a conditioned response. Fig-
ures are taken from [146].

when the stopping frequency was higher than fr. After several minutes, both levels
approached the same long term level.

In order to examine another relaxation features of rocks in the next experiments in
addition to the previous experiment, in which the sweep had been stopped, the drive
has been shut off for 30 s. Figure 8.5 shows the faster response for both sides of the
resonance curve. In both cases the sample was conditioned by driving at the resonance
frequency for this strain level (3850Hz) for 2 min. At constant drive amplitude, starting
at resonance frequency fr, the frequency is swept over the resonance down to 3825Hz
for Fig. 8.5a, and up to 3900Hz for Fig. 8.5b, where the drive is turned to zero for 30 s.
The original drive voltage had been reestablished, and the frequency sweep has been
completed. Results are clearly seen as discontinuities on the curves. At frequencies
lower than resonance fr, the resonance curve jumps down, while at frequencies higher
than resonance fr, the resonance curve jumps up. Comparison of figures 8.4 and 8.5
reveals that memory of the highest strain is lost more quickly, if the drive is turned
off. In Ref. [146] it is noted that a qualitative explanation of jumps can be received
from the nonlinear change of bar modulus E with amplitude. After a period of high
intensity, the rock resonance curve shifts downward in frequency (i.e., the modulus
decreases). If the drive is then turned off, the resonance curve moves back (i.e., the
modulus increases) as memory of the high strain is lost.

The experimental results shown in Figs. 8.4 and 8.5 point out that rocks reveal
the relaxation properties under dynamic loading, i.e. at fixed frequency, the resonance
curves depend on a time not only indirectly throughout drive amplitude, but also
explicitly.

Much of the interesting nonlinear behavior observed in the medium strain region
can be attributed to slow dynamics. At high enough strains, the excitation (reversibly)
changes the rock’s modulus. It doesn’t recover immediately from the high strain;
often it takes hours, even days to return to its pre-excitation state. In experiments a
sample was driven at a high intensity for a fairly long period of time. One manner in
which to observe the nonlinear behavior is to monitor the resonance frequency before
and after large excitation [143, 145, 147]. The low-amplitude resonant peak is then
monitored until the resonant peak has returned to its original frequency. Figure 8.6b
shows fractional resonant frequency shift per unit conditioning strain, as a function
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Figure 8.4: Measurement of acceleration decay at fixed frequency. Frequencies are
3825Hz, upward going (a) or downward going (b), and 3900Hz downward going (c)
or upward going (d). Note that (a) and (b) end up at nearly the same acceleration; a
similar observation holds for (c) and (d). Figures are taken from [146].

of time t after the conditioning drive is turned off, for the six samples studied. The
slow dynamical scaling of the resonance frequency recovery in time is logarithmic [145].
The log(t) time dependence is usually associated with the operation of phenomena that
involve a broad range of time scales. As is noted in Ref. [55], it seems unavoidable that
this attention must be a part of any serious experimental exploration. Now we point
out only that developing model for dynamics of rocks, suggested below in Sec. 8.2.2,
we have taken into account a broad spectrum of time scales.

Conclusively, we have to emphasize that in the vicinity of bar resonant frequency
the longitudinal alternating drive produces strong essentially nontrivial nonlinear re-
sponses:

• At high drive levels the effective width of resonance curves depends on the di-
rection of frequency sweep; it is narrower for upward sweeps (i.e., from lower to
higher frequencies) than at downward sweeps (i.e., from higher to lower frequen-
cies) [146]. This effect proves to be a typical manifestation of slow dynamics and
can be treated as hysteresis both on low- and high-frequency slopes of a resonance
curve.

• The resonance peak is shifted toward the lower frequency almost linearly with
an increase of driving amplitude [55, 57, 71, 146].

• At constant level of drive amplitude the peak of resonance curves is the same for
different direction of sweep frequency and it is independent of either uncondi-
tioned or conditioned state of a sample [146].
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Figure 8.5: Stopping resonance curve sweep, turning off the drive for 30 s and then
continuing the sweep. Stopping frequencies are 3825 Hz and 3900 Hz. The arrows
indicate the direction the measured amplitude jumps that take place during the time
the drive is off. Figure is taken from [146].

• The resonance curves depend on a time not only indirectly through stress σ(t)
but also explicitly. This dependence is a manifestation of relaxation behavior of
sample in dynamic process.

• Other evidence of slow dynamics comprises gradual recovery (increase) of reso-
nant frequency to its original value as defined at extremely low drive level after
the sample has been conditioned at a high drive level. The time-dependence of the
shift of resonance frequency is almost logarithmic δf ∼ log(t/t0) [143, 145, 147].

8.2 Model of sandstone dynamics at resonance

The above-mentioned facts cannot be understood in the framework of standard theo-
ries of resonant nonlinear response [20] and imply memory of peak strain history [146].
Some aspects of the problem have been explained by the interpretation of Guyer et
al. [54] in the framework of a McCall-Guyer quasistatic model [93]. This approach
uses the concept of auxiliary hysteretic elements that allows the introduction of an
additional nontrivial nonlinear term in the dynamical equation for the field of longitu-
dinal displacements. However, this theoretical treatment lacks completeness in that it
initially neglects the dynamics of hysteretic elements and postulates temporal evolu-
tion of the amplitude-frequency characteristic (the key point of claimed results) to be
developed afterwards. Although Capogrosso-Sansone and Guyer recently suggested dy-
namical realization of the McCall-Guyer quasistatic model [27], evaluating its adequacy
to explain experimental data turns out to be difficult.

In approach we suggested, we omit the idea of auxiliary hysteretic elements as
the sole approach for treating all peculiar hysteretic phenomena. We will carry out
the analysis of experimental data in details and give reasons for physical motivated
approach to describe the resonance behavior of rocks.
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Figure 8.6: Slow dynamical response. (a) Successive resonance sweeps made after a
long conditioning sweep. Initial resonance frequency before experiment is at 3010Hz,
resonance frequency immediately after conditioning strain is at 3007Hz [147]. (b)
The time-dependent shift δf of the recovering resonant frequency, normalized to the
asymptotic value f0, per unit conditioning strain |ε|, in several rock types and in
concrete [145].

8.2.1 Physical notions on resonance bar dynamics

We have suggested the model of the dynamic behavior of rocks on experimental grounds
[194, 195, 196, 201]. The resonance peak shift toward lower frequencies with an increase
of driving amplitude is pointed out to be a result of decrease of the Young modulus
E. For the sake of convenience the resonance curve for a constant elastic modulus E
is presented in Fig. 8.7a. Fig. 8.7b illustrates two resonance curves for two different
constants E1 > E2, whereas the curve L2 related to a modulus E2 has a shift down the
abscissa axis (frequency).

Henceforth, we explain the resonance curves for dynamic process, when there are
some internal exchanged processes in rock’s sample under external action, resulting in
change of elastic properties of a sample, namely, in change of Young modulus. It is
assumed that the value E decreases with the increase of a strain. At first let us consider
a case, when the internal processes are in equilibrium with external stress. It is clear
that resonance curve at low stress, i.e. away from resonance frequency fr, is close to
the curve L1 with E1. Whereas in the vicinity of a resonance frequency, where stress
and strain have maximum values, the resonance curve is to be traced along curve L2

with E2. Hence, when the internal processes are in equilibrium with external loading,
then the resonance curve has qualitative form as curve L3 in Fig. 8.7c.

We need now to take into account the relaxation essence of the internal exchanged
processes. Under natural conditions the internal processes have insufficiently time to
be in equilibrium with external action. As a result of nonequilibrium between exter-
nal and internal processes, the strain change has not kept pace with stress change.
This effect is known as a relaxation. The connection between macroparameters (in
this case between stress and strain) depends additionally on internal processes. Conse-
quently, there is ambiguous connection between macroparameters. From mathematical
viewpoint this feature can be described by an explicit time-dependence of a relation
between macroparameters. At fixed drive loading (independent macroparameter) the
strain (dependent macroparameter) can, nevertheless, have the different values if a
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nonequilibrium takes place, i.e. if the internal exchanged processes occur in the sand-
stone bar under resonance loading.

Developing the model of dynamic behavior of rocks, now we take into account the
experimental fact noted in the page 127, namely, that at constant drive amplitude all
resonance curves have the same resonance peak, i.e. maximal resonance strain am-
plitude and resonance frequency. Whereas, the resonance peak does not depend on a
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Figure 8.7: Resonance curves: (a) classic case E1 = const, (b) for case E2 < E1, (c)
equilibrium case for E depended on stress, (d) unconditioned sample with relaxation
under frequency sweep from down to up and back to fr, (e) unconditioned sample
with relaxation under frequency sweep from up to down and back to fr, (f) qualitative
resonance curves for modeling experiments.

direction of frequency sweep and on a sample state (unconditioned state or conditioned
one). To satisfy this feature and retain the relaxation effects we should make the fol-
lowing assumption. When the driving frequency tends to the resonance frequency fr
(a process in which the strain increases), we assume full equilibrium between stress
and strain, while at frequency sweep from resonance frequency fr (a process in which
the strain decreases), we assume that a strain has not kept pace with a stress. It is
necessary to draw special attention to the mentioned assumption, because it is suffi-
ciently different from ordinary description, for example, of chemical reactions (low of
mass action), where the rate of approach to the equilibrium does not depend on the
direction of this approach, i.e. either from high concentration to a equilibrium or from
slow concentration to a equilibrium concentration.

With regard for all mentioned above features, we plot the qualitative resonance
curves for unconditioned bar under frequency sweep from down to up (see Fig. 8.7d).
For a left side of resonance curve, the resonance curve falls on curve L3 (see Fig. 8.7d).
Passing the resonance frequency fr, on descendant branch, where the sample is in the
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conditioned state, the resonance curve L4 passes between curves L2 and L3, since the
relaxation process realizes the gradual approach of curve L4 to the curve L3. If next
the frequency sweep comes back, i.e. from up to down, the resonance curve L5 passes
above branch L4, however, underlies the curve L3 (see Fig. 8.7d).

Similarly to the case shown in Fig. 8.7d, we plot resonance curves for process where
the initial sweep (unconditioned bar state) begins from up to down (see Fig. 8.7e).
The qualitative resonance curve for this case has the form illustrated in Fig. 8.7e. For
driving frequencies higher than the resonance frequency (f > fr), the resonance curve
passes over curve L3, while for frequencies f below fr, the resonance curve should
lie between curves L2 and L3 as a result of relaxation. Sweeping the frequency back
from lower frequencies to the resonance frequency fr, we have the resonance curve L6

between L3 and L5 (Fig. 8.7e).

We have proved that the resonance curves shown in Fig. 8.7g can be realized.
These resonance curves are qualitatively similar to the curves appeared in experiments
(see Fig. 8.2). Finally, we have substantiated the physical model for describing the
resonance behavior of sandstone bar.

8.2.2 Kinetics of ruptured cohesive bonds

The experimental resonance curves show that the increase of a strain causes the change
of elastic properties of a sandstone bar, so that the Young modulus E decreases. We
regard that a direct influence of strain ∂u∂x on Young modulus E is absent. Meanwhile,
the indirect effect of strain on Young modulus, namely the impact mediated by the
concentration c of ruptured intergrain cohesive bonds, will be incorporated in our
theory as the main source of all nontrivial phenomena mentioned in Sec. 8.1. Here the
significant issue is apparently not in excessive (presumably unclaimed) details of all
plausible mechanisms that might modify the Young modulus in a qualitatively similar
way, but in their reasonable concise formalization by means of a minimal number of
slow fields.

Any dynamical model dealing exclusively with a single subsystem of longitudinal
displacements is incapable of reproducing the entire suite of phenomena exhibited
by sandstones in resonant bar experiments without invoking speculative assumptions
(e.g., temporal evolution of the amplitude-frequency characteristic [54]) that does not
follow from the original equation or without incorporating auxiliary quantities (e.g.,
maximum strain excursion [54]) that can be justified only for the quasistatic theory.
When holding this position one is unable to depart from an incomplete, fragmentary
description. At best, one may have to appeal to a hypothetical slow subsystem only
in a rather artificial way [54, 145], i.e., without explicit specification of all relevant
(dynamic or kinetic) independent variables and their governing evolution equations,
not to mention the mutual feedback between the slow subsystem and the fast elastic
one.

We overcome the difficulties of single-subsystem modeling by introducing along with
the fast elastic subsystem a slow subsystem of ruptured intergrain cohesive bonds via
their concentration c. At any given stress σ (tensile or compressive) the quantity c
must evolve to its stress-dependent equilibrium value cσ. In order to achieve reliable
consistency between theory and experiment such an evolution has to be treated as being
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nearly logarithmic rather than exponential, on the one hand, and as being sensitive
to the sign of the applied stress on the other. Both of these aspects can be readily
included in the concept of blended kinetics which is believed to find more or less
natural physical justification in consolidated materials. The idea consists in presenting
the actual concentration of defects c as some reasonable superposition of constituent
concentrations g, where each particular g is proved to obey rather simple kinetics.

We start with considering a set of constituent concentrations. Every particular
concentration g in this set is assumed to evolve to its stress-dependent equilibrium
value gσ with the velocity ∂g/∂t that in the lowest order approximation should be
proportional to the difference gσ−g. Thus, at g > gσ the ruptured bonds are becoming
restored (∂g/∂t < 0) while at g < gσ the unruptured bonds are becoming broken
(∂g/∂t > 0). Denoting the restoring rate as μ = μ0 exp(−U/kT ) and the rupturing
rate as ν = ν0 exp(−W/kT ) we can formalize the earlier statements in terms of the
following kinetic equation

∂g/∂t = − [μθ(g − gσ) + νθ(gσ − g)] (g − gσ), (8.2.1)

where U and W are the activation barriers for the processes of bond restoration and
bond rupturation, respectively, k is the Boltzmann constant, and θ(z) designates the
Heaviside step function.

There is a question whether the rates μ and ν should be the same or different and
why. We argue that the parameters μ and ν have to differ substantially inasmuch as
the volume attributed to generate a single crack turns out to be essentially mesoscopic
although confined to an intergrain space.

Indeed, under a tensile loading there are an immense number of spatial ways for
a mesoscopic intergrain cementation contact to be broken with the same basic result:
creation of an intergrain crack. Here we understand that any relevant macroscopic
characteristic of rock is bound to be insensitive to the particular position of a crack
between given neighboring grains but should essentially depend on the cumulative
area of cracks per unit volume which can serve as an appropriate measure for the
concentration of defects. Similarly, there are various ways for an already existing
crack in equilibrium to be further expanded when surplus tensile loading is applied.
However, under compressive loading a crack, once formed, has only one spatial way
to be annihilated or contracted. These are the key observations that imply a large
disparity ν0 � μ0 between the rates ν0 and μ0 regardless of the cohesive properties
of the cementation material. Moreover, because of possible water intercalation and/or
fine fragmentation of cementation material between opposite faces of a crack, we can
expect the typical value of U to exceed that of W . In combination all these factors
might sustain an even greater disparity ν � μ between the actual rates ν and μ of defect
creation and defect annihilation that may amount to many orders. This conclusion,
which relies on the mesoscopic scale of the structural elements involved, finds a natural
analogy on the macroscopic level when samples once having been broken remain broken
practically forever.

Up to now we specified only a particular constituent concentration of defects g that
can be labeled by the pair of fixed activation parameters U andW . In reality, any small
but still macroscopic volume of sandstone contains a huge variety of structural elements
distinguished by size, composition, natural cleavage, etc. As a result, activation barriers
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for the process of cohesion restoration U and the process of cohesion rupture W have
to be distributed over some ranges, which we denote as U0 ≤ U ≤ U0 + U+ and
W0 ≤ W ≤ W0 + W+, respectively. Although the types of these distributions are
unknown, their characteristics U0, U+ and W0, W+ must be insensitive to a particular
choice of bar’s cross-section in accordance with specimen homogeneity (similarity) on
the macroscopic scale. Of course, the very number of these characteristics is insufficient
to specify the set of constituent concentrations constructively, i.e., we still lack a definite
recipe for how (with what weight) any constituent concentration of defects g should
contribute to the actual (averaged) concentration of defects c. Thus, to proceed further
some additional assumptions about the distributions of activation barriers must be
added. For the sake of definiteness we approximate the barriers U andW as distributed
independently and uniformly within the intervals given earlier. Thus, the relative
number of restoration barriers in the interval dU surrounding U at W being fixed is
taken to be θ(U −U0)θ(U0 +U+ −U)dU/U+, while the relative number of rupturation
barriers in the interval dW surrounding W at U being fixed is taken to be θ(W −
W0)θ(W0 +W+ −W )dW/W+. As a consequence the actual concentration of ruptured
cohesive bonds c is determined by the constituent concentration g via the formula

c =
1

U+W+

U0+U+∫
U0

dU

W0+W+∫
W0

g dW. (8.2.2)

This expression does not contradict the next assumption

gσ = cσ, (8.2.3)

relating the equilibrium value of actual concentration of ruptured bonds cσ to the
equilibrium value of constituent concentration of ruptured bonds gσ, where both cσ
and gσ are prescribed by the stress σ. As a matter of fact, only the quantity cσ
might find a legitimate place in standard thermodynamical estimations [79, 80, 113],
whereas in dealing with gσ we must lean upon more or less plausible conjecture, e.g.
as established by formula (8.2.3).

According to Kosevich [79, 80] the equilibrium concentration of defects associated
with a stress σ is given by the expression

cσ = c0 exp (vσ/kT ) , (8.2.4)

where the parameter v > 0 stands for a typical volume accounting for a single defect
and characterizes the intensity of dilatation. Although the formula (8.2.4) should
supposedly be applicable to the ensemble of microscopic defects in crystals, it was
derived in the framework of continuum thermodynamic theory that does not actually
need any specification of either the typical size of elementary defect or the particular
structure of the crystalline matrix. For this reason we believe it should also work
for an ensemble of mesoscopic defects in consolidated materials, provided that for a
single defect we shall understand some elementary rupture of intergrain cohesion. The
equilibrium concentration of defects in an unstrained, completely recovered bar c0 has
to be some function of temperature T and water saturation s. The particular character
of these dependences does not follow from first principles and needs to be extracted
from experiments.
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At this point we introduce a phenomenological relationship between defect concen-
tration c and Young modulus E. Intuition suggests that E must be some monotonically
decreasing function of c, which can be expanded in a power series with respect to a
small deviation of c from its unstrained equilibrium value c0. In the lowest approxima-
tion we can drop all powers except the zeroth and first and as a result safely rearrange
the required relation into the form

E = (1− c/ccr)E+. (8.2.5)

Here ccr and E+ are the critical concentration of defects and the maximum possible
value of Young modulus, respectively. Both of these parameters we take to be inde-
pendent of temperature and water saturation.

According to the relationship (8.2.5) the actual concentration of defects c is incor-
porated as normalized by its critical value ccr. For this reason there is no need to supply
the quantities c, cσ, and ccr by any particular units, though the units must be the same
for all three quantities. As for the units of the running and equilibrium constituent
concentrations g and gσ it is sufficient to know only their relationship to the units of
actual concentration given by the expression (8.2.3).

At constant loading, the kinetic equation (8.2.1) ensures that the concentration c
tends to its equilibrium value cσ given by formula (8.2.4), and as a consequence the
Young modulus (8.2.5) attains the magnitude

Eσ = [1− (c0/ccr) exp(vσ/kT )]E+. (8.2.6)

It is worth noticing that the resulting functional dependence of Eσ on σ almost exactly
matches the experimentally established fitting formula for elastic moduli as a function
of an applied loading P ∼ −σ > 0 (see, e.g., Ref. [72], and references therein). Fur-
thermore, the relation (8.2.6) taken at zero stress s =0 allows us to reconstruct the
temperature and saturation dependences of the unstrained equilibrium concentration
of defects c0 using available experimental data for the Young modulus E0 in unstrained,
recovered samples. Thus, if we take into account the Sutherland temperature extrapo-
lation [140, 213] and analyze temperature-dependent data at zero saturation [144] plus
saturation-dependent data at room temperature [2] (selected for Berea sandstone), we
are able to suggest the following fitting formula:

c0 = ccr

(
T

Tcr

)2 [
cosh2 α− exp

(
− βs

1− s

)
sinh2 α

]
, (8.2.7)

where saturation s varies within the interval 0 ≤ s ≤ 1. The fitting parameters relevant
for Berea sandstone are as follows Tcr = 14750K, cosh2 α = 16, β = 10. At s �= 0
our approximation is expected to work at least within the temperature range between
irreversible damage thresholds of sedimentary rocks, namely between the freezing-point
of pore water (≈ 2730K) and the baking point of interstitial clays (≈ 3450K).

The significant issue of our approach is contained in the kinetic equation (8.2.1) that
can be applied to both static and dynamic regimes of external loading. In the latter
case, however, for cσ and gσ we must consider the would-be equilibrium quantities,
i.e., quantities given by formulas (8.2.4) and (8.2.3) where the stress σ is taken to be
dynamical one.
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At small dynamical stresses |σ| � kT/v the exponent exp(vσ/kT ) dominating the
expression (8.2.4) for cσ can be readily approximated by the two first terms in its expan-
sion. Because of relation (8.2.3) a similar approximation applies for gσ. Nevertheless,
this fact does not indicate a zero-valued, long-term correction to g0 in the solution g
of the kinetic equation (8.2.1) as might be roughly expected. On the contrary, the
great disparity ν � μ between the rate of defect creation ν and the rate of defect
annihilation μ turns out to provide the physical mechanism that breaks the symmetry
of system response to an alternating external drive and acts as a sort of soft ratchet or
leaky diode. It is the core of this modeling.

In contrast, earlier theories of inelastic relaxation developed for crystalline solids
[113] rely upon a symmetric form of the kinetic equations (corresponding to ν ≡ μ
in our notations) and do not assume the equilibrium value of the internal relaxation
parameter (corresponding to gσ in our notations) to be driven dynamically. Also,
earlier theories of crack formation [123] differ from our approach in that they neglect
the possibility of crack recuperation (i.e., they assume μ = 0 in our notations) and
do not incorporate a variable concentration of defects into the right-hand side of the
appropriate kinetic equation.

8.2.3 Motion equations. Problem on bar resonance

For describing the experiments on bar resonance [54, 55, 57, 71, 143, 145, 146, 147], we
assume that the alternating strain configuration inside the bar is principally longitu-
dinal, and has to be treated as kinematically excited [202]. For the evolution equation
for the field of longitudinal displacements (referred to also as the elastic subsystem)
we write the most general form

ρ
∂2u

∂t2
=

∂σ

∂x
+

∂

∂x

[
∂F

∂(∂2u/∂x∂t)

]
, (8.2.8)

evaluating its content step-by-step. Thus, the dissipative function F must be some
even function of strain velocity ∂2u/∂x∂t in order to ensure both the positiveness and
the internal character of dissipation. Here we restrict ourselves to the Stokes internal
friction [137] associated with the dissipative function

F = (γ/2)
[
∂2u/∂x ∂t

]2
. (8.2.9)

The quantities ρ and γ are, respectively, the mean density of sandstone and the coef-
ficient of internal friction in an elastic subsystem. In what follows, the dependences of
ρ and γ in Eqs. (8.2.8) and (8.2.9) on temperature T , water saturation s, and strain
∂u/∂x will be ignored. The stress-strain relation (σ − ∂u/∂x) we adopt in the form

σ=
E sech η

(r − a)[cosh η ∂u/∂x+ 1]a+1

− E sech η

(r − a)[cosh η ∂u/∂x+ 1]r+1

(8.2.10)

which at r > a > 0 allows one to block the bar compressibility at strain ∂u/∂x tending
toward +0 − sech η. Thus, the parameter cosh η is assigned for a typical distance
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between the centers of neighboring grains divided by the typical thickness of intergrain
cementation contact, while the exponents r and a characterize the repulsive and the
attractive parts of intergrain interaction, respectively. In other words, we approximate
the potential of grain-grain interaction by the empirical Mie potential. At small strains
|∂u/∂x| � sech η we obtain

σ

E∂u/∂x
≈ 1− 1

2
(r + a+ 3) sech η ∂u/∂x

+1
6
(r2 + ar + a2 + 6r + 6a+ 1)(sech η ∂u/∂x)2,

(8.2.11)

and, hence, the parameters r, a, cosh η are seen to completely specify the nonlinear
corrections to Hooke law, provided that a direct influence of strain ∂u/∂x on Young
modulus E is absent. The indirect effect of strain on Young modulus is considered to
associate with the concentration c of ruptured intergrain cohesive bonds (see Sec. 8.2.2)

The relevant boundary conditions for the field of longitudinal displacements u that
conform to the resonant loading in experiments are as follows [202]:

u(x = 0|t) = D(t) cos

⎛⎝ϕ+

t∫
0

dτω(τ)

⎞⎠ , (8.2.12)

σ(x = L|t) + γ
∂2u

∂x∂t
(x = L|t) = 0, (8.2.13)

where t is time and x denotes the running longitudinal Lagrange coordinate of the bar
with x = 0 and x = L marking its driven and free ends, respectively. As a rule, the
driving amplitude D(t) is set to be basically constant except for the moments when
the driving device is switched on, is switched into another constant driving level, or is
switched off, whereas the time dependence of cyclic driving frequency ω(t) is prescribed
by the type of frequency sweep. Another kind of experiment where the parts played
by the driving amplitude D(t) and the driving frequency ω(t) are reversed would also
be informative.

The only thing remaining to be specified is the initial conditions. They must depend
on the sample’s prehistory. Thus, for the unstrained, completely recovered bar the
initial conditions are written as follows:

u(x|t = 0) = 0,
∂u

∂t
(x|t = 0) = 0, g(x|t = 0) = c0, (8.2.14)

where 0 < x < L.
Summarizing the content of Sec. 8.2, we have formulated the principal theoretical

propositions of our model and have formalized them in terms of two coupled, essen-
tially nonlinear subsystems. First, we have suggested a dynamical equation for the
field of longitudinal displacements (8.2.8) with the appropriate specification of the dis-
sipative function (8.2.9), the stress-strain relation (8.2.10), and the impact of defect
concentration on Young modulus (8.2.5). Second, we have developed a soft-ratchet-
type kinetic equation for the constituent concentration of defects (ruptured intergrain
cohesive bonds) (8.2.1) with the appropriate specifications of stress-guided, would-be
equilibrium constituent concentration of defects (8.2.3) and would-be equilibrium ac-
tual concentration of defects (8.2.4) and have adopted a reasonable relation between
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the constituent concentration and the actual concentration of ruptured intergrain co-
hesive bonds (8.2.2). We also have presented boundary and initial conditions for the
field of longitudinal displacements (8.2.12) and (8.2.13) allowing us to formalize the
effect of the transducer on the whole bar system.

8.3 Soft-ratchet kinetics under harmonic drive

In this section we illustrate two different kinetic regimes of defect creation and anni-
hilation under an alternating drive that can be the basic to qualitative understanding
of experimental results as well as their computerized replicas. For this purpose we
introduce a quantity (the surplus constituent concentration)

G ≡ g − g0, (8.3.1)

that measures the excess G > 0 or shortage G < 0 of defects relative to the unstrained
background g0, and we approximate the impact of the dynamic subsystem onto the
kinetic subsystem by a single harmonic

Gσ ≡ gσ − g0 = A sin(ωt+ δ), (8.3.2)

where A and δ are some functions of the longitudinal coordinate x. Their particular
forms do not need to be specified because at each fixed x the quantity G obeys the
ordinary differential equation

dG/dt = −[μθ(G−Gσ) + νθ(Gσ −G)](G−Gσ). (8.3.3)

Note, however, that to the lowest order the amplitude A is proportional to the ampli-
tude ε of strain

∂u

∂x
= ε sin(ωt+ δ), (8.3.4)

taken in the same single mode approximation. The proportionality coefficient vc0E/kT
can be readily extracted from expressions (8.3.2) and (8.3.4) with the approximate
stress-strain relation σ = E∂u/∂x and formulas (8.2.3), (8.2.4) for gσ and cσ. Here for
the sake of simplicity we ignore the time dependence of Young modulus through the
total concentration of defects.

Starting from the zeroth value G(t = 0) = 0 the kinetic equation (8.3.3) and the
sinusoidal drive (8.3.2) cause surplus constituent concentration G to grow in each cycle
2π/ω in a nearly steplike fashion for μ � ν ≤ ω/2π (Fig. 8.8). Time intervals of fast
increase controlled by rate ν are determined from the inequality

A sin(ωt+ δ)−G(t) > 0, (8.3.5)

whereas time intervals of slow decrease controlled by rate μ are determined from the
opposite inequality

A sin(ωt+ δ)−G(t) < 0. (8.3.6)
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G
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Figure 8.8: Normalized solution G/A of the soft-ratchet kinetic equation (8.3.3) with
sinusoidal stimulation (8.3.2) at μ = 1 s−1, ν = 4000 s−1, f = ω/2π = 4000Hz, δ = 0,
and the initial condition G(t = 0) = 0 (solid steplike line). The dashed line indicates
the normalized sinusoidal stimulation Gσ/A = sinωt). Time along the abscissa is
normalized to the oscillation period 1/f .

A time interval of increase is followed by a time interval of decrease and vice versa,
yielding a net full step in each cycle 2π/ω.

Although the kinetic equation (8.3.3) could be integrated analytically at every time
interval where either inequality (8.3.5) or (8.3.6) holds, it is impractical to match such
piecewise solutions into a concise expression suitable for qualitative analysis. Instead,
even a quick look at the computer solutions (Fig. 8.9) is sufficient to evaluate the mean
(time-averaged) magnitude H of the steady-state solution for G in comparison with
the amplitude A as well as to estimate the effective rate λ of cyclic buildup of surplus
constituent concentration G under an oscillating loading in comparison with the rate
ν of monotonic growth of G under a constant tensile loading. In preparing Fig. 8.9 we

n t

G
/A

Figure 8.9: Normalized solution G/A of the soft-ratchet kinetic equation (8.3.3) under
sinusoidal stimulation (8.3.2). Curves j = 1, 2, 3, 4 correspond to successively higher
rates of defect creation νj = 4 · 10j s−1 with all other parameters from Fig. 8.8 being
preserved. Time on the abscissa is normalized to the inverse rate of defect creation 1/ν
separately for each curve.

took the rate μ to coincide with its maximum value μ0 exp(−U0/kT ) = 1 s−1, which
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in Sec. 8.4 will be adopted for interpreting experimental results on slow dynamics.
The frequency f ≡ ω/2π was chosen to be 4000Hz, and the rate ν was tested at four
essentially different values 40, 400, 4000, and 40 000 s−1 (Fig. 8.9, curves 1, 2, 3, and 4,
respectively). All four curves strongly indicate that for ν ≥ 0.01f the effective rate λ
of cyclic buildup does not drop more than five or six times below the rate ν. Moreover,
at ν ≥ 0.01f the ratio H/A always exceeds value of 0.8 and rapidly approaches unity
as the ratio ν/f increases. Another significant observation consists in the almost total
suppression of periodical fluctuations of steady-state solution G around its mean value
H (Fig. 8.10).

f t

G
/A

Figure 8.10: Normalized solution G/A of the soft-ratchet kinetic equation (8.3.3) at an
essentially steady stage of its evolution (solid line). The dashed line represents the mean
value H/A of the normalized steady-state solution. Conditions used for calculations
of curve 2 from Fig. 8.9 are preserved. Time along the abscissa is normalized to the
oscillation period 1/f .

The results presented in the subsection 8.2.2 can be readily applied to the case
when the amplitude A is not constant but grows with time sufficiently slowly such
that 0 < ε̇/ε � λ ∼ 0.2ν; the overdot denotes the derivative with respect to time t.
Then at ν ≥ 0.01f we can safely treat the surplus defect concentration G as a time
dependent quantity that effectively tracks amplitude A. There is a reason to believe
that both the above requirements are fulfilled in resonant bar experiments as frequency
sweeps toward a resonance. Thus, the inequality 0 < ε̇/ε � 0.2ν is maintained by the
fact that typical sweeps around resonance [146] are unable to sustain the rate |ε̇|/ε by
more than 0.5 s−1. As for the inequality 0.01f ≤ ν , it seems to be in line with our
hypothesis of strong inequality μ � ν secured by many orders as given in Sec. 8.2.

We now inspect the regime of slow relaxation in the subsystem of intergrain ruptured
bonds. This regime occurs after the surplus constituent concentration G has been
pumped to some steady-state magnitude B and then the conditioning oscillating drive
is drastically reduced at time t = tc. In this case (at t > tc) the strong inequality B � A
holds, and the elastic subsystem serves only for probing the resonant frequency, while
its impact on the subsystem of ruptured bonds can be totally neglected. Thus, we omit
the term Gσ through the kinetic equation (8.3.3) and obtain

dG/dt = −μG, (8.3.7)
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bearing in mind that the regime of interest starts at t = tc with G(t = tc) = B. Here
the quantity B is estimated to be

B = c0

[
exp
(vσ+

kT

)
− 1
]
, (8.3.8)

where σ+ > 0 stands for the maximum stress determined by the amplitude of stress
oscillations under dynamical conditioning.

The approach just formulated is undoubtedly valid to describe the process of re-
laxation after tensile static conditioning when σ+ should be understood as the positive
end-point stress. We expect it could be also applied to treat relaxation phenomena
after an abrupt thermal disturbance provided σ+ is identified with some effective rup-
turating stress predetermined by the absolute value of thermal shock.

The kinetic equation (8.3.7) for surplus constituent concentration G yields an ex-
ponential decay

G = B exp[−μ(t− tc)]. (8.3.9)

at t ≥ tc. However, this by no means causes the actual surplus of defect concentration
c − c0 to diminish exponentially. On the contrary, inserting the solution (8.3.9) into
the formula (8.2.2) with the use of definition (8.3.1) we easily obtain

c = c0 +
B

χ
{E1[τ exp(−χ)]− E1(τ)}. (8.3.10)

Here

τ ≡ μ0 exp(−U0/kT )(t− tc) (8.3.11)

denotes a unitless time, whereas

χ ≡ U+/kT (8.3.12)

determines a unitless width of energy interval occupied by the distribution of activation
barriers for the process of cohesion restoration. Finally

E1(z) =

∞∫
1

dy

y
exp(−zy) (8.3.13)

designates the integral exponential function [77].
Despite its name, E1(z) initially behaves logarithmically as clearly seen in its ana-

lytic expansion for z < 1 [77]

E1(z) = −C − ln z −
∞∑
n=1

(−1)n
zn

n · n! , (8.3.14)

where C � 0.577 215 7 stands for the Euler-Mascheroni constant. In its final stages
z > 1, however, use of the asymptotic series [77]

E1(z) =
exp(−z)

z

[
1 +

∞∑
n=1

(−1)n
n!

zn

]
(8.3.15)
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turns out to be appropriate.
We apply expansions (8.3.14) and (8.3.15) to the most plausible case of exp(χ) � 1

and approximate the difference E1(τ exp(−χ))−E1(τ) controlling the temporal restora-
tion of defect concentration (8.3.10) by the following piecewise formula:

E1(τ exp(−χ))− E1(τ)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χ− τ + τ 2/4 + τ exp(−χ), τ < ξ−

χ− C − ln τ + τ exp(−χ), ξ− ≤ τ ≤ ξ+e
χ

exp(−τ exp(−χ))

exp(−χ)
, ξ+e

χ < τ.

(8.3.16)

Here the constants ξ− � 1.391 099 0 and ξ+ � 0.928 630 6 are determined as the solu-
tions of transcendental equations

−ξ− + ξ2−/4 = −C − ln ξ− (8.3.17)

and

−C − ln ξ+ + ξ+ =
exp(−ξ+)

ξ+
, (8.3.18)

respectively. Equations (8.3.17) and (8.3.18) supply matching conditions to ensure that
the piecewise representation (8.3.16) will be a continuous function at points τ = ξ−
and τ = ξ+ exp(χ), respectively. The larger is the inequality exp(χ) � 1, the longer
becomes the interval of almost logarithmic time-dependence in formula (8.3.16).

Formulas (8.3.8), (8.3.10), and (8.3.16) substituted into the linear relationship (8.2.5)
between Young modulus E and the concentration of defects c allow us to analytically
reproduce the slow, nearly logarithmic recovery (increase) of Young modulus

E =

(
1− c0

ccr

)
E+ − E+

c0
ccr

[
exp
(vσ+

kT

)
− 1
]

×
{
1− C

kT

U+

− kT

U+

ln

[
μ0 exp

(
−U0

kT

)
(t− tc)

]
+
kT

U+

μ0 exp

(
−U0 + U+

kT

)
(t− tc)

} (8.3.19)

over the very wide time interval

ξ−
μ0

exp

(
U0

kT

)
< t− tc <

ξ+
μ0

exp

(
U0 + U+

kT

)
. (8.3.20)

This type of recovery is experimentally observed by monitoring temporal variation of
resonant frequency after the conditioning drive has been removed [145].

The idea supporting the logarithmic recovery of Young modulus had earlier been
advocated by Ten Cate, Smith and Guyer [145], although without identifying the proper
time interval (8.3.20) where the logarithmic dependence holds and omitting the small
linear correction (the last term in parentheses of expression (8.3.19)) to the leading
logarithmic pattern. It is interesting to note that logarithmic kinetics have been also
attributed to the process of moisture-induced aging in granular media [19].
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8.4 Modeling of resonant nonlinear effects

The vast majority of experimental results on forced longitudinal oscillations of sand-
stone bars use the slow, stepwise frequency sweeps over one of the bar resonant fre-
quencies [54, 55, 57, 71, 145, 146, 147]. A rough estimation based on the linear theory
of kinematic excitation yields the fundamental frequencies

f0(l) =
2l − 1

4L

√
E0/ρ (l = 1, 2, 3, . . .), (8.4.1)

where E0 is the Young modulus in an unstrained, recovered sample given by for-
mula (8.2.6) at σ = 0, and attenuation γ is taken to be negligible. The relative

0 2000 4000 6000 8000
0

10

20

Driving frequency (Hz)

1
0

R
/L

6

Figure 8.11: Calculated resonance curve illustrating the relative positions of the first
three resonance peaks under longitudinal kinematic excitation for a rock bar.

positions of fundamental frequencies at finite attenuation as calculated for slow up-
ward frequency sweep are displayed in Fig. 8.11. Here the resonance curve shows the
dependence of response amplitude R (taken on free end of the bar x = L) on drive
frequency f = ω/2π at very small drive amplitude D = 7.6 · 10−9L and with the model
parameters as assumed for the next figure.

Figure 8.12 shows typical hysteretic resonance curves calculated in the vicinity
of the second resonant frequency at successively higher drive amplitudes D. In order
to achieve repeatable hysteresis each successive pair of curves was calculated follow-
ing two preliminary sweep calculations. Such curves are usually referred to as being
conditioned [146]. Arrows on the two highest curves indicate sweep directions. The
cycle time for an up plus down sweep over the frequency interval 3700–4100Hz was
chosen to be 120 s. Model parameters were adopted to fit the experimental conditions
and the experimental data as observed by Ten Cate and Shankland in experiments
on Berea sandstone [146]. In particular, the ratio E+/ρ = 7.439 · 106m2/s2 was esti-
mated from relationships (8.4.1), (8.2.6), and (8.2.7) with the second order frequency,
bar length, temperature, and saturation as follows f0(l = 2) = 3920Hz, L = 0.3m,
T = 2970K, and s = 0.25. The ratio γ/ρ = 1.851m2/s characterizing internal fric-
tion was chosen from the best fit of low amplitude theoretical curve (Fig. 8.12) to
its experimental prototype [146] via comparison of quality factors. The parameters
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μ0 exp(−U0/kT ) = 1 s−1 and U+/k = 25250K determining the character of slow re-
laxation were estimated in accordance with experimental measurements of temporal
relaxation of response acceleration amplitude at fixed frequency [146] and observations
of recovering resonant frequency as a function of time [145]. Due to the rather slow
typical regimes of frequency sweep corresponding to actual experiments there is nei-
ther the experimental possibility nor the theoretical need to designate particular values
for parameters ν0 exp(−W0/kT ) and W+/k that are responsible for defect creation ki-
netics. This is because above some critical value depending on driving frequency the
combination ν0 exp(−(W0+W+)/kT ) gives rise to results indistinguishable from those
obtained assuming the combination to be infinite. According to the estimations of
previous section the condition that the kinetics of defect creation could be treated
as practically instantaneous (i.e., formally characterized by infinite rate ν) is fulfilled
already provided the inequality 0.01f0 ≤ ν0 exp(−(W0 + W+)/kT ) holds. The com-
bination of parameters vE+/k cosh η = 2750K was chosen to quantitatively reproduce
hysteretic phenomena in the sweep regimes typical of actual experiments [146]. Finally,
the nonlinearity parameters cosh η = 2300, r = 4, a = 2 were estimated to map the
true asymmetry of experimental resonance curves [146]. It is significant that the chosen
model parameters from Figs. 8.12 are suitable to describe all other known experimental
results. This fact counts in favour of the suggested theory.

Driving frequency (Hz)

1
0

R
/L

6

Figure 8.12: Resonance curves j = 0, 1, 2, 3, 4, 5 at successively higher driving ampli-
tudes D/L = 3.8(j+0.5δj0) · 10−8. The dashed line represents an unconditioned state,
and the solid line represents the conditioned states. Arrows on the two highest curves
indicate sweep directions. The absolute value of sweep rate is |duf/dt| = 400Hz/min.
Water saturation is taken to be s = 0.25.

From Fig. 8.12 we clearly see that at each level of external drive the effective width of
resonance peak depends on the direction of frequency sweep being narrower for upward
sweep (i.e., from lower to higher frequencies) than for downward sweep (i.e., from the
higher to lower frequencies). As a result we observe the hysteretic loops formed by
upward and downward curves both on their low and high-frequency slopes. Historically
this effect proved to be the first manifestation of slow dynamics [146] caused according
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to our theory by the net creation of intergrain defects when the driving frequency closely
approaches to resonance (i.e., when the amplitude of alternating stress increases) and
rather slow their annihilation when the driving frequency departs from resonance (i.e.,
when the amplitude of alternating stress decreases). It is worth noticing that in the case
of conditioned curves considered above annihilation of intergrain defects persists even
when the driving frequency approaches resonance from far away until the amplitude of
alternating stress overcomes some threshold above which defect creation prevails.

The resonance curves in Figs. 8.13a and 8.13b were calculated without any prelim-
inary conditioning but with all model parameters for Fig. 8.12 preserved. The drive
amplitude was chosen to be the same as for two highest curves on Fig. 8.12. Thus

38503800 3900 3950 4000 3800 3850 3900 3950 4000

Керувальна частота, Гц Керувальна частота, Гц

( )б

Driving frequency (Hz) Driving frequency (Hz)

a b

Figure 8.13: Resonance curves at driving amplitude D = 1.9 · 10−7L. Arrows indicate
sweep directions. The absolute value of sweep rate is |df/dt| = 400Hz/min. The dashed
line in Fig. 8.13a represents the unconditioned initial curve made on the upward sweep.
The dashed line in Fig. 8.13b represents the unconditioned initial curve made on the
downward sweep.

Fig. 8.13a demonstrates three resonance curves obtained during the three successive
(upward-downward-upward) frequency sweeps beginning with an upward sweep. The
initial, unconditioned, curve marked by the dashed line lies below the two subsequent
curves. Figure 8.13b demonstrates three resonance curves obtained during the three
successive (downward-upward-downward) frequency sweeps beginning with a down-
ward sweep. The initial curve marked by the dashed line lies above two subsequent
curves. The curves marked by the solid lines in Figs. 8.13a and 8.13b are practically
repeatable and coincide with the respective two highest curves on Fig. 8.12. All these
results are in complete agreement with experimental observations [146]. The reason
why the conditioned curve does not coincide with its unconditioned (initial) counter-
part in the sweep interval between the starting frequency and the resonant frequency
lies in the softer value of conditioned Young modulus caused by an unrelaxed excess of
defects created during the initial sweep.

As sweep rate decreases, the mentioned differences become less pronounced thanks
to the additional time for relaxation at each spanning frequency. This point is illus-
trated in Figs. 8.14a and 8.14b where the sweep rate was a hundred times slower than
for Figs. 8.13a and 8.13b. Nevertheless, even in this supposedly nonhysteretic case the
memory of the highest strain amplitude still persists. The latter result characterized af-
ter its experimental detection [146] as ”perhaps surprising” can be readily explained by
the long-term recovery of Young modulus dictated by the slow, almost logarithmic ki-
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Figure 8.14: Resonance curves at driving amplitude D = 1.9 · 10−7L. The absolute
value of sweep rate is slowed to |df/dt| = 4Hz/min. Arrows indicate sweep directions.
The dashed line in Fig. 8.14a resolvable only in the magnified inset represents the
unconditioned initial curve made on the upward sweep. The dashed line on Fig. 8.14b
resolvable in the magnified inset represents the unconditioned initial curve made on
the downward sweep.

netics of defect annihilation (see formulas (8.3.19), (8.3.20), (8.3.10) and (8.3.16) from
Sec. 8.3). With still slower sweep times exceeding one day all three curves become
indistinguishable regardless of direction of the initial sweep. This theoretical result
corroborates an indirect experimental indication in fixed-frequency measurements of
acceleration that a sweep time of a few days in carefully controlled conditions would
produce the same up and down resonance curves [146].

Figure 8.15 compares the shifts of resonant frequency as functions of driving ampli-
tude at two different values of dilatation parameter v while other parameters were kept
the same as in Fig. 8.12. Thus curve 1 calculated at vE+/k cosh η = 2750K, for which
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Figure 8.15: Negative value of the shift fr−f0 of peak frequency fr from its asymptotic
value f0 as a function of normalized driving amplitude D/L for a hysteretic nonlinear
material (curve 1) and for a classical nonlinear material with v = 0 (curve 2).

strain-induced feedback between the slow and fast subsystems is substantial, demon-
strates the almost linear dependence typical of materials with nonclassical nonlinear
response, i.e., materials that possess the basic features of slow dynamics. In contrast,
curve 2 calculated at v = 0, when strain-induced excitation of the slow subsystem
is absent and, hence, the mutual feedback between the slow and the fast subsystems
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is totally broken, demonstrates the almost quadratic dependence typical of materials
with classical nonlinear response [20]. Closer inspection indicates that curve 1 can
be approximated by the linear and the quadratic terms, which are in line with the
second-order polynomial fit of Young modulus extracted by Smith and Ten Cate from
the experiments [136].

Apart from the reason mentioned earlier, measurements of temporal relaxation of
acceleration amplitude at fixed frequency provide experimental documentation of how
a rock gradually loses memory of the highest strain [146], and they thus elucidate the
most interesting aspects of bond restoration kinetics. Figures 8.16 shows theoretical
relaxation curves that correctly reproduce the main features of the experiments [146].
While making a repeatable up or down resonance curve (with all model parameters
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Figure 8.16: Decay of response amplitude R at driving amplitude D = 1.9 · 10−7L.
(a), (b) a fixed frequency fs=3825Hz, lower than the peak frequency at fr=3846Hz.
In Fig. 8.16a the sweep was stopped while making a repeatable upward sweep. In
Fig. 8.16b the sweep was stopped while making a repeatable downward sweep. (c),
(d) a fixed frequency fs=3900Hz, higher than the peak frequency at fr=3846Hz. In
Fig. 8.16c the sweep was stopped while making a repeatable downward sweep. In
Fig. 8.16d the sweep was stopped while making a repeatable upward sweep.

the same as for the two highest curves of Fig. 8.12) we stopped the sweep at time ts
(drive still on) and calculated the amplitude of response R as a function of time t− ts.
As in the experiments the simulated response amplitude gradually decreased when the
stopping frequency was lower than the resonant frequency (see Figs. 8.15a and 8.15b)
and increased when the stopping frequency was higher (see Figs. 8.15c and 8.15d).
Moreover, after approximately 10min of relaxation the relaxation curves at a particular
stopping frequency approached a long term level corresponding to the unconditioned
part of the initial resonance curve whether or not the upward or downward preceding
sweep was selected.

To reproduce another experimental facet of recovery time [146] we varied the pre-
vious simulations by stopping the sweep and simultaneously turning off the drive for
30 s with the sweep moving downward (see Fig. 8.17a) or upward (Fig. 8.17b) from an



8.4. Modeling of resonant nonlinear effects 147

already conditioned resonance. In a relatively short time (tens of seconds) the memory
of the high strain amplitude rock had experienced at resonance diminished far more
quickly than when the drive was left on. According to the kinetic equation (8.2.1) this
distinction finds its rational explanation in a more favorable regime for defect annihila-
tion under zero stress σ = 0 in comparison with the regime governed by the oscillating
stress of a considerable amplitude (though lesser than that at resonance). Figures 8.17a
and 8.17b were prepared using the same model parameters as for Fig. 8.12. Also, drive
amplitude and sweep rate (except the short time interval of drive and sweep stopping)
were set to the same values as for the two highest curves in Fig. 8.12. Figure 8.17a dis-
plays the resonance curves obtained by the continuous sweep in upward followed by a
sectionally continuous sweep downward. Figure 8.17b shows the complementary curves
obtained by a continuous sweep downward followed by a sectionally continuous sweep
upward. Effects of quick recovery (increase) of bar modulus E while sweep and drive
were stopped are clearly seen as discontinuities in the curves. At stopping frequencies
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Figure 8.17: (a) Resonance curves obtained by a continuous upward sweep and subse-
quent sectionally continuous downward sweep. During the downward sweep both drive
and sweep were turned off simultaneously for 30 s at fixed frequency fs=3825Hz, lower
than the peak frequency at fs=3846Hz. (b) Resonance curves obtained by continuous
downward sweep and subsequent sectionally continuous upward sweep. During the up-
ward sweep drive and sweep were turned off simultaneously for 30 s at fixed frequency
fs=3900Hz, higher than the peak frequency at fs=3846Hz. For both pictures the
driving amplitude and the absolute value of sweep rate when being turned on were
D = 1.9 · 10−7L and |df/dt| = 400Hz/min, respectively.

below resonance one fr, the response amplitude drops closer to the first (recovered)
upward-swept curve marked by the dashed line in Fig. 8.17a. At stopping frequencies
above resonance one fr, the response amplitude jumps closer to the first (recovered)
downward-swept curve marked by the dashed line in Fig. 8.17b. A qualitative view
of these jumps comes from the indirect impact of strain on bar modulus through the
concentration of defects. During the period of time when the sweep is approaching and
passing resonance frequency fr, the strain intensity becomes substantial one, causing
a corresponding generation of defects, and the modulus decreases. This effect is mani-
fested as a shift of resonance curve downward in frequency when the sweep has already
passed resonance. If the drive and sweep are then turned off, the strain vanishes caus-
ing progressive annihilation of defects so that modulus increases. As a consequence the
part of resonance curve, tracked after drive and sweep have been resumed, moves back
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(i.e., upward in frequency) as memory of the high strain is lost.

8.4.1 Water saturation

Another interesting experimental observation is the dramatic suppression of hystere-
sis with decreasing water saturation [2]. According to our theory this effect can be
understood by noting that equilibrium defect concentration in a recovered sample
c0 (8.2.7) drops more than three times in magnitude when water saturation decreases
from s = 0.25 to s = 0.05. Indeed, it is precisely the equilibrium defect concentra-
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Figure 8.18: Conditioned resonance curves j = 0, 1, 2, 3, 4, at successively higher
driving amplitudes Dj = 3.8(j + 0.2δj0) · 10−8L. Arrows on the two highest curves
indicate sweep directions. The absolute value of sweep rate is |df/dt| = 400Hz/min,
and water saturation is s = 0.05.

tion (8.2.7) that controls variation of elastic modulus (8.2.5) through strain-induced
variation of nonequilibrium defect concentration c as follows from the kinetic equa-
tion (8.2.1) and formulas (8.2.2)-(8.2.4). This conclusion has been confirmed by direct
computation with saturation s = 0.05 being the only model parameter changed from
the parameters adopted for Fig. 8.12. The results shown in Fig. 8.18 contrast in hys-
teresis with those of Fig. 8.12. Figure 8.18 also demonstrates a substantial increase of
resonant frequency fr in comparison with Fig. 8.12 as a result of the monotonic growth
of Young modulus with decreasing saturation (seen already at s = 0 from expres-
sion (8.2.6) combined with formula (8.2.7)). Due to this fact the interval of frequency
sweep for producing Fig. 8.18 was shifted to 5200–5600Hz.

In addition, we have observed a monotonic decrease in quality factor Q (defined
here as resonant frequency fr divided by the resonance curve width at

√
2/2 of peak

height at low-amplitude drive) with increase of water saturation s. This trend is well-
documented in numerous experiments [2, 29, 149, 214]. In the present theory it derives
from the drop of resonant frequency fr with water saturation s as seen from the low
amplitude analytical estimation at σ = 0 and γ = 0 when the expressions (8.4.1),
(8.2.6), and (8.2.7) are combined. Figure 8.19 illustrates the theoretical dependence
of quality factor Q on saturation s with all model parameters except the variable s as
given in Fig. 8.12.
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Figure 8.19: Quality factor Q as a function of water saturation s. The fixed model
parameters were assumed to be the same as for Fig. 8.12.

8.5 Simulation of slow dynamics

In this section we will carry out the simulation of slow dynamics effect revealed in
experiments [143, 145, 147] (see Fig. 8.6 in Sec. 8.1). Figure 8.20 shows the gradual
recovery of resonant frequency fr to its maximum limiting value f0 after the bar was
subjected to high amplitude conditioning and then conditioning was stopped. Condi-
tioning was performed by multiple short-range sweeps over the resonance at the drive
level used to obtain the third pair (j = 3) of curves in Fig. 8.12. We have plotted
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Figure 8.20: Time-dependent recovery of peak frequency fr to its asymptotic value
f0. Curves j=1, 2, 3 correspond to successively higher saturations sj = 0.05(2j − 1).
The frequency shift fr − f0 is normalized by both the asymptotic frequency f0 and
the effective conditioning strain εeff . Here εeff is defined as the value of dimensionless
response amplitude R/L which had been attained during high-amplitude conditioning
tuned to the frequency of resonance.

three different curves corresponding to three different saturations with all other model
parameters used for Fig. 8.12 being retained. The net frequency shift fr − f0 consists
of two different parts, namely (i) the expected dynamic shift caused by strain nonlin-
earity at high levels of excitation [20] and (ii) the shift caused by the slow subsystem.
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However, only the second part can actually be observed during the recovery process
because the first part vanishes almost instantaneously on switching off the high am-
plitude drive. Hence, the visible recovery should be governed by the slow kinetics of
restoring intergrain cohesive bonds. From Fig. 8.20 we clearly see the very wide time
interval 10t0 ≤ t − tc ≤ 1000t0 of logarithmic recovery of resonant frequency fr in
complete agreement with experimental results [145] and analytical calculations sum-
marized by formulas (8.3.19) and (8.3.20) from Sec. 8.2.2. Here tc is the moment when
the conditioning was switched off and t0 = 1 s is the time scaling constant.

The process of low amplitude probing of recovering resonant frequency to determine
fr as a function of time follows the same procedure either experimentally or theoret-
ically. After the high-amplitude conditioning drive is stopped, a low-amplitude drive
remains on to repeatedly sweep the resonance curve and monitor the moving position
of resonant frequency fr. Figure 8.21 illustrates the set of successive resonance curves
corresponding to the time-dependent recovery of resonant frequency given by curve 3 of
Fig. 8.20. At each successive sweep the curves shift upward in frequency and gradually
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Figure 8.21: The set of successive resonance curves obtained by means of back and
forth sweeps around the recovering resonance after the high-amplitude conditioning
drive was stopped. The arrow indicates the asymptotic resonant frequency. Water
saturation, amplitude of probing drive, and absolute value of sweep rate are s = 0.25,
D = 1.14 · 10−9L, and |df/dt| = 400Hz/min.

approach an asymptotic curve with the asymptotic resonant frequency f0 indicated by
an arrow. Only a fraction of the successive resonance curves calculated over the time
interval t− tc > 1 s are clearly distinguishable because separation between neighboring
curves progressively diminishes with successive sweeps. The amplitude of the probing
drive was taken to be as small as D = 1.14 · 10−9L.

8.6 Dynamical realization of end-point memory

The suggested model enables us to describe correctly a wide class of experimental facts
concerning the unusual dynamical behavior of such mesoscopically inhomogeneous me-
dia as sandstones [146, 145, 147]. Moreover, as it is shown below, we have predicted
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the phenomenon of hysteresis with end-point memory in its essentially dynamical hy-
postasis [195]. These theoretical findings were confirmed experimentally in Los Alamos
National Laboratory by Ten Cate and Shankland [197, 200].

Figures 8.12-8.14 and Fig. 8.18 demonstrate a dynamical realization of hysteretic
phenomena in the case of only two reversing points in the driving frequency protocol.
The question arises whether an effect similar to the end-point (discrete) memory that
is observed in quasistatic experiments with a multiply-reversed loading-unloading pro-
tocol [21, 33, 52, 53, 55, 57, 71] could also be manifested in resonating bar experiments
with a multiply-reversed frequency protocol.

We studied this problem theoretically and show the results in Fig. 8.22, where the
model parameters including the absolute value of sweep rate coincide with those of the
two highest resonance curves in Fig. 8.12, while the sweep range is taken within the
low-frequency slopes of these curves. End-point memory, defined here as the memory
of the previous maximum amplitude of alternating stress, is seen to be pronounced
in the form of small loops inside the big loop. The starting and final points of each
small loop in Fig. 8.22 coincide, what is the typical manifestation of end-point memory.
A small closed loop can be produced anywhere on the unconditioned (dashed) curve,
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Figure 8.22: Manifestation of end-point memory in dynamic response with a multiply-
reversed frequency protocol. Model parameters, including the absolute value of sweep
rate, coincide with those for the two highest resonance curves in Fig. 8.12. The range
of frequency sweep is on the low-frequency slopes of the two highest resonance curves
from Fig. 8.12. R is the response amplitude taken at the free end of the bar.

but the situation on the conditioned up-going curve looks more complicated. Thus,
the closeness of an extremely small loop can be achieved only on the upper part of
the conditioned up-going curve. The reason for such behavior is the existence of a
threshold stress amplitude (depending on previous history) that must be surmounted
in order for the kinetics of the slow subsystem to be switched from defect annihilation
at lower amplitudes to defect creation at higher amplitudes. This restriction can be
substantially relaxed provided the linear size of the inner loop becomes comparable
with that of the big outer loop. Direct calculations (not shown) confirm the earlier
statement, and the chance to find the inner loop being closed increases progressively
with the growth of its size irrespective of whether the inner loop was produced on an
up-going or on a down-going curve of the big outer loop.

Following the theoretical prediction, shown in Fig. 8.22, our colleagues Ten Cate and
Shankland have performed experimental measurements to verify this prediction [197,
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Figure 8.23: The low frequency sides of experimental resonance curves for
Fontainebleau sandstone. Exclusive experimental results by Ten Cate and Shankland
(LANL).

200]. The sample bar was a Fontainebleau sandstone and the drive level produced a

3800 3810 3820 3830 3840 3850
1

2

3

4

5

3775

3800

3825

3850

0 15 30

Frequency protocol

F
re

q
u

e
n

c
y

(H
z
)

Time (s)

1
0

6

R
/L

Frequency (Hz)

Figure 8.24: The low frequency sides of the resonance curves calculated for Berea
sandstone.

calculated strain of about 2 · 10−6 at the peak. Figure 8.23 shows the low frequency
sides of resonance curves that correspond to the frequency protocol given on inset of
Fig. 8.23. We clearly see that the beginning and end of each inner loop coincide, i.e.,
a major feature of end-point memory.

Exclusive experimental results obtained at Los Alamos National Laboratory stim-
ulate us to carry out additional modeling calculations. The experimental results for
the Fontainebleau sandstone shown in Fig. 8.23 [197, 200] were reproduced by using
our model equations though with constants (including a state equation) developed for
Berea sandstone [194, 195, 196, 200, 201]. We note the good qualitative agreement
between the experimental (see Fig. 8.23) and the theoretical (see Fig. 8.24) curves
suggesting that our physical model is appropriate for both sandstones.

Let us make some important remarks to note the physical adequacy of the suggested
model. First, the model parameters, chosen once for describing only one experiment,
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namely, the resonance curves (see Fig. 8.12), are suitable to describe all known exper-
iments both qualitatively and quantitatively. Second, after the development of model
was completed and new experimental results have appeared later, this model enables us
to successfully describe these new results. Consequently, the model we developed can
adequately reproduce the experimental results and can be applied for future researches.
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