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A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the
Vakhnenko equation (VE) as an example.The VE, which arises in modelling the propagation of high-frequency waves in a relaxing
medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an
alternative form, known as the Vakhnenko-Parkes equation (VPE), by a change of independent variables.TheVPE has an𝑁-soliton
solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE
comprises𝑁 loop-like solitons. Aspects of the inverse scattering transform (IST)method, as applied originally to the KdV equation,
are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-
order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order
spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum.
This leads to 𝑁-soliton solutions and 𝑀-mode periodic solutions, respectively. Interactions between these types of solutions are
investigated.

1. Introduction

The physical phenomena and processes that take place
in nature generally have complicated nonlinear features.
This leads to nonlinear mathematical models for the real
processes. There is much interest in the practical issues
involved, as well as the development ofmethods to investigate
the associated nonlinear mathematical problems including
nonlinear wave propagation. An early example of the latter
was the development of the inverse scattering method for the
Korteweg-de Vries (KdV) equation [1] and the subsequent
interest in soliton theory. Now soliton theory is applied in
many branches of science.

The modern physicist should be aware of aspects of
nonlinear wave theory developed over the past few years.This
paper focuses on the connection between a variety of different
approaches and methods. The application of the theory of

nonlinear evolution equations to study a new equation is
always an important step. Based on our experience of the
study of the Vakhnenko equation (VE), we acquaint the
reader with a series of methods and approaches which may
be applied to certain nonlinear equations. Thus we outline a
way in which an uninitiated reader could investigate a new
nonlinear equation.

2. A Model for High-Frequency Waves in
a Relaxing Medium

Starting from a general idea of relaxing phenomena in real
media via a hydrodynamic approach, we will derive a nonlin-
ear evolution equation for describing high-frequency waves.
To develop physical models for wave propagation through
media with complicated inner kinetics, notions based on
the relaxational nature of a phenomenon are regarded to
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be promising. From the nonequilibrium thermodynamics
standpoint, models of a relaxing medium are more general
than equilibrium models. Thermodynamic equilibrium is
disturbed owing to the propagation of fast perturbations.
There are processes of the interaction that tend to return the
equilibrium. The parameters characterizing this interaction
are referred to as the inner variables unlike the macropa-
rameters such as the pressure 𝑝, mass velocity 𝑢, and density
𝜌. In essence, the change of macroparameters caused by the
changes of inner parameters is a relaxation process.

We restrict our attention to barotropic media. An equi-
librium state equation of a barotropic medium is a one-
parameter equation. As a result of relaxation, an additional
variable 𝜉 (the inner parameter) appears in the state equation

𝑝 = 𝑝 (𝜌, 𝜉) (1)

and defines the completeness of the relaxation process.There
are two limiting cases with corresponding sound velocities:

(i) Lack of relaxation (inner interaction processes are
frozen) for which 𝜉 = 1:

𝑝 = 𝑝 (𝜌, 1) ≡ 𝑝𝑓 (𝜌) ,

𝑐
2
𝑓 =

𝑑𝑝𝑓

𝑑𝜌
.

(2)

(ii) Relaxation which is complete (there is local thermo-
dynamic equilibrium) for which 𝜉 = 0:

𝑝 = 𝑝 (𝜌, 0) ≡ 𝑝𝑒 (𝜌) ,

𝑐
2
𝑒 =

𝑑𝑝𝑒

𝑑𝜌
.

(3)

Slow and fast processes are compared by means of the
relaxation time 𝜏𝑝.

To analyze the wave motion, we use the following hydro-
dynamic equations in Lagrangian coordinates:

𝜕𝑉

𝜕𝑡
−

1

𝜌0

𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑢

𝜕𝑡
+

1

𝜌0

𝜕𝑝

𝜕𝑥
= 0.

(4)

The following dynamic state equation is applied to account
for the relaxation effects:

𝜏𝑝 (
𝑑𝑝

𝑑𝑡
− 𝑐

2
𝑓

𝑑𝜌

𝑑𝑡
) + (𝑝 − 𝑝𝑒) = 0. (5)

Here 𝑉 ≡ 𝜌
−1 is the specific volume, and 𝑥 is the Lagrangian

space coordinate. Clearly, for the fast processes (𝜔𝜏𝑝 ≫ 1),
we have relation (2), and for the slow ones (𝜔𝜏𝑝 ≪ 1)we have
(3).

The closed system of equations consists of two motion
equations (4) and the dynamic state equation (5).Themotion
equations (4) are written in Lagrangian coordinates since the

state equation (5) is related to the element of mass of the
medium.

The substantiation of (5) within the framework of the
thermodynamics of irreversible processes has been given in
[2, 3].We note that themechanisms of the exchange processes
are not defined concretely when deriving the dynamic state
equation (5). In this equation the thermodynamic and kinetic
parameters appear only as sound velocities 𝑐𝑒, 𝑐𝑓 and relax-
ation time 𝜏𝑝. These are very common characteristics and
they can be found experimentally. Hence it is not necessary
to know the inner exchange mechanism in detail.

Let us consider a small nonlinear perturbation 𝑝
󸀠

<

𝑝0. Combining the relationships (4) and (5) we obtain the
following nonlinear evolution equation in one unknown 𝑝

(the dash in 𝑝
󸀠 is omitted) [4–6]:

𝜏𝑝

𝜕

𝜕𝑡
(

𝜕
2
𝑝

𝜕𝑥2
− 𝑐

−2
𝑓

𝜕
2
𝑝

𝜕𝑡2
+ 𝛼𝑓

𝜕
2
𝑝
2

𝜕𝑡2
)

+ (
𝜕
2
𝑝

𝜕𝑥2
− 𝑐

−2
𝑒

𝜕
2
𝑝

𝜕𝑡2
+ 𝛼𝑒

𝜕
2
𝑝
2

𝜕𝑡2
) = 0,

𝛼𝑒 =
1

2𝑉
2
0

𝑑
2
𝑉𝑒

𝑑𝑝2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=𝑝0

, 𝛼𝑓 =
1

2𝑉
2
0

𝑑
2
𝑉𝑓

𝑑𝑝2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=𝑝0

.

(6)

A similar equation has been obtained by Clarke [2], but
without nonlinear terms. In [4] it is shown by the multiscale
method [7] that for low-frequency perturbations (𝜏𝑝𝜔 ≪

1) (6) is reduced to the Korteweg-de Vries-Burgers (KdVB)
equation:

𝜕𝑝

𝜕𝑡
+ 𝑐𝑒

𝜕𝑝

𝜕𝑥
+ 𝛼𝑒𝑐

3
𝑒 𝑝

𝜕𝑝

𝜕𝑥
− 𝛽𝑒

𝜕
2
𝑝

𝜕𝑥2
+ 𝛾𝑒

𝜕
3
𝑝

𝜕𝑥3
= 0,

𝛽𝑒 =

𝑐
2
𝑒 𝜏𝑝

2𝑐
2
𝑓

(𝑐
2
𝑓 − 𝑐

2
𝑒 ) , 𝛾𝑒 =

𝑐
3
𝑒 𝜏

2
𝑝

8𝑐
4
𝑓

(𝑐
2
𝑓 − 𝑐

2
𝑒 ) (𝑐

2
𝑓 − 5𝑐

2
𝑒 ) ,

(7)

while for high-frequency waves (𝜏𝑝𝜔 ≫ 1) we have obtained
the following equation:

𝜕
2
𝑝

𝜕𝑥2
− 𝑐

−2
𝑓

𝜕
2
𝑝

𝜕𝑡2
+ 𝛼𝑓𝑐

2
𝑓

𝜕
2
𝑝
2

𝜕𝑥2
+ 𝛽𝑓

𝜕𝑝

𝜕𝑥
+ 𝛾𝑓𝑝 = 0,

𝛽𝑓 =

𝑐
2
𝑓 − 𝑐

2
𝑒

𝜏𝑝𝑐2𝑒 𝑐𝑓

, 𝛾𝑓 =

𝑐
4
𝑓 − 𝑐

4
𝑒

2𝜏2𝑝𝑐4𝑒 𝑐
2
𝑓

.

(8)

Equation (7) is the well-known KdVB equation. It is encoun-
tered inmany areas of physics to describe nonlinearwave pro-
cesses [8]. In [9] it was shown how hydrodynamic equations
reduce to either theKdVor Burgers equation according to the
choices for the state equation and the generalized force when
analyzing gasdynamical waves, waves in shallow water [9],
hydrodynamic waves in cold plasma [10], and ion-acoustic
waves in cold plasma [11].

As is known, the investigation of the KdV equation (𝛽𝑒 =

0) in conjunction with the nonlinear Schrödinger (NLS) and
sine-Gordon equations gives rise to the theory of solitons [1,
8, 9, 12–18].
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We focus our main attention on (8). It has a dissipative
term 𝛽𝑓𝜕𝑝/𝜕𝑥 and a dispersive term 𝛾𝑓𝑝. Without the non-
linear and dissipative terms, we have a linear Klein-Gordon
equation. At the time we were carrying out our research, it
turned out that (8) had not been investigatedmuch. It is likely
that this is connected with the fact, noted by Whitham [19],
that high-frequency perturbations attenuate very quickly.
However in Whitham’s monograph, the evolution equation
without nonlinear and dispersive terms was considered.

Note the fact that the dispersion relations 𝜔 = 𝜔(𝑘) for
the linearized versions of (7) and (8) are restricted to finite
power series in 𝑘 and in 𝑘

−1, respectively:

𝜔 = 𝑐𝑒𝑘 + 𝑖𝛽𝑒𝑘
2

− 𝛾𝑒𝑘
3
, 𝜏𝑝𝜔 ≪ 1,

𝜔
2

= 𝑐
2
𝑓𝑘

2
(1 + 𝑖𝛽𝑓𝑘

−1
− 𝛾𝑓𝑘

−2
) , 𝜏𝑝𝜔 ≫ 1.

(9)

Let us write down (8) in dimensionless form. In the mov-
ing coordinates systemwith velocity 𝑐𝑓, after factorization the
equation has the form in the dimensionless variables 𝑥̃ =

√𝛾𝑓/2(𝑥−𝑐𝑓𝑡), 𝑡̃ = √𝛾𝑓/2𝑐𝑓𝑡, 𝑢̃ = 𝛼𝑓𝑐
2
𝑓𝑝 (tilde over variables

𝑥̃, 𝑡̃, 𝑢̃ is omitted):

𝜕

𝜕𝑥
(

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
) 𝑢 + 𝛼

𝜕𝑢

𝜕𝑥
+ 𝑢 = 0. (10)

The constant 𝛼 = 𝛽𝑓/√2𝛾𝑓 is always positive. Equation (10)
without the dissipative term has the form of the nonlinear
equation [20, 21]:

𝜕

𝜕𝑥
(

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
) 𝑢 + 𝑢 = 0. (11)

Historically, (11) has been called the Vakhnenko equation
(VE) and we will follow this name.

It is interesting to note that (11) follows as a particular limit
of the following generalized Korteweg-de Vries equation:

𝜕

𝜕𝑥
(

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝛽

𝜕
3
𝑢

𝜕𝑥3
) = 𝛾𝑢 (12)

derived by Ostrovsky [22] to model small-amplitude long
waves in a rotating fluid (𝛾𝑢 is induced by the Coriolis
force) of finite depth. Subsequently, (11) was known by dif-
ferent names in the literature, such as the Ostrovsky-Hunter
equation, the short-wave equation, the reduced Ostrovsky
equation, and the Ostrovsky-Vakhnenko equation depending
on the physical context in which it is studied.

The consideration here of (11) has interest not only from
the viewpoint of the investigation of the propagation of high-
frequency perturbations, but also more specifically from the
viewpoint of the study of methods and approaches that may
be applied in the theory of nonlinear evolution equations.

3. Loop-Like Stationary Solutions and
Their Stability

By investigating (11), we will trace a way in which an unini-
tiated reader could investigate a new nonlinear equation. As

a first step for a new equation, it is necessary to consider the
linear analogue and its dispersion relation (these steps for (7)
and (8) are described already in Section 2). The next step is,
where possible, to link the equation with a known nonlinear
equation.

3.1. The Connection of the VE with the Whitham Equation.
Nowwe show how an evolution equation with hydrodynamic
nonlinearity can be rewritten in the form of the Whitham
equation. The general form of the Whitham equation is as
follows [19]:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ ∫

∞

−∞
𝐾 (𝑥 − 𝑠)

𝜕𝑢

𝜕𝑠
𝑑𝑠 = 0. (13)

On one hand, (13) has the nonlinearity of hydrodynamic type;
on the other hand, it is known (see Section 13.14 in [19])
that the kernel 𝐾(𝑥) can be selected to give the dispersion
required. Indeed, the dispersion relation 𝑐(𝑘) = 𝜔(𝑘)/𝑘

and the kernel 𝐾(𝑥) are connected by means of the Fourier
transformation:

𝑐 (𝑘) = 𝐹 [𝐾 (𝑥)] ,

𝐾 (𝑥) = 𝐹
−1

[𝑐 (𝑘)] .

(14)

Consequently, for the dispersion relation 𝜔 = −1/𝑘 corre-
sponding to the linearized version of (11), the kernel is as
follows:

𝐾 (𝑥) = 𝐹
−1

[−
1

𝑘2
] =

1

2
|𝑥| . (15)

Thus, the VE (11) is related to the particular Whitham
equation [19]:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+

1

2
∫

∞

−∞
|𝑥 − 𝑠|

𝜕𝑢

𝜕𝑠
𝑑𝑠 = 0. (16)

Since we can reduce the VE to the Whitham equation, we
can assert that the VE shares interesting properties with
the Whitham equation; in particular, it describes solitary
wave-type formations, has periodic solutions, and explains
the existence of the limiting amplitude [19]. An important
property is the presence of conservation laws for waves
decreasing rapidly at infinity; namely,

𝑑

𝑑𝑡
∫

∞

−∞
𝑢 𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫

∞

−∞
𝑢
2
𝑑𝑥 = 0,

𝑑

𝑑𝑡
∫

∞

−∞
(

1

3
𝑢
3

+ 𝐾̂𝑢) 𝑑𝑥 = 0,

(17)

where by definition 𝐾̂𝑢 = ∫
∞

−∞
𝐾(𝑥 − 𝑠)𝑢(𝑠, 𝑡)𝑑𝑠.

For (10) the kernel is 𝐾(𝑥) = (1/2)[𝛼(2Θ(𝑥) − 1) + |𝑥|],
where Θ(𝑥) is the Heaviside function. Hence, (10) can be
written down as

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝛼𝑢 +

1

2
∫

∞

−∞
|𝑥 − 𝑠|

𝜕𝑢

𝜕𝑠
𝑑𝑠 = 0. (18)

There is no derivative in the dissipative term 𝛼𝑢 of (18).
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3.2. The Traveling Wave Solutions. An important step in
the investigation of nonlinear evolution equations is to
find traveling wave solutions. These are solutions which are
stationary with respect to amoving frame of reference. In this
case, the evolution equation (a partial differential equation)
becomes an ordinary differential equation (ODE) which is
considerably easier to solve.

For the VE (11) it is convenient to introduce a new
dependent variable 𝑧 and new independent variables 𝜂 and
𝜏 defined by

𝑧 =
(𝑢 − V)

|V|
,

𝜂 =
(𝑥 − V𝑡)
|V|1/2

,

𝜏 = 𝑡 |V|1/2 ,

(19)

where V is a nonzero constant [21]. Then the VE becomes

𝑧𝜂𝜏 + (𝑧𝑧𝜂)𝜂
+ 𝑧 + 𝑐 = 0, (20)

where 𝑐 = ±1 corresponding to V ≷ 0.We now seek stationary
solutions of (20) for which 𝑧 is a function of 𝜂 only so that
𝑧𝜏 = 0 and 𝑧 satisfies the ODE

(𝑧𝑧𝜂)𝜂
+ 𝑧 + 𝑐 = 0. (21)

After one integration (21) gives

1

2
(𝑧𝑧𝜂)

2
= 𝑓 (𝑧) ,

𝑓 (𝑧) = −
1

3
𝑧
3

−
1

2
𝑐𝑧

2
+

1

6
𝐴 = −

1

3
(𝑧 − 𝑧1) (𝑧 − 𝑧2) (𝑧 − 𝑧3) .

(22)

𝐴 is a constant and for periodic solutions 𝑧1, 𝑧2, and 𝑧3 are
real constants such that 𝑧1 ≤ 𝑧2 ≤ 𝑧3. On using results 236.00
and 236.01 of [23], we may integrate (22) to obtain

𝜂 =
√6𝑧1

√𝑧3 − 𝑧1

𝐹 (𝜑, 𝑚) + √6 (𝑧3 − 𝑧1)𝐸 (𝜑, 𝑚) , (23)

sin𝜑 =
𝑧3 − 𝑧

𝑧3 − 𝑧2

,

𝑚 =
𝑧3 − 𝑧2

𝑧3 − 𝑧1

.

(24)

𝐹(𝜑, 𝑚) and 𝐸(𝜑, 𝑚) are incomplete elliptic integrals of the
first and second kind, respectively. We have chosen the
constant of integration in (23) to be zero so that 𝑧 = 𝑧3

at 𝜂 = 0. The relations (23) give the required solution in
parametric form, with 𝑧 and 𝜂 as functions of the parameter
𝜑.

An alternative route to the solution is to follow the pro-
cedure described in [24]. We introduce a new independent
variable 𝜁 defined by

𝑑𝜂

𝑑𝜁
= 𝑧 (25)

so that (22) becomes

1

2
𝑧
2
𝜁 = 𝑓 (𝑧) . (26)

By means of result 236.00 of [23], (26) may be integrated
to give 𝑝𝜁 = 𝐹(𝜑, 𝑚), where 𝑝

2
= (𝑧3 − 𝑧1)/6. Thus, on

noting that sin𝜑 = sn(𝑝𝜁 | 𝑤), where sn is a Jacobian elliptic
function, we have

𝑧 = 𝑧3 − (𝑧3 − 𝑧2) sn
2

(𝑝𝜁 | 𝑤) . (27)

With result 310.02 of [23], (25) and (27) give

𝜂 = 𝑧1𝜁 + √6 (𝑧3 − 𝑧1)𝐸 (𝑝𝜁) , (28)

where 𝐸(𝑝𝜁) fl 𝐸(am𝑝𝜁, 𝑚). Relations (27) and (28) are
equivalent to (24) and (23), respectively, and give the solution
in parametric form with 𝑧 and 𝜂 in terms of the parameter 𝜁.

We define the wavelength 𝜆 of the solution as the amount
by which 𝜂 increases when 𝜑 increases by 2𝜋; from (23) we
obtain

𝜆 =
2√6

√𝑧3 − 𝑧1

[𝑧1𝐾 (𝑚) + (𝑧3 − 𝑧1) 𝐸 (𝑚)] , (29)

where 𝐾(𝑚) and 𝐸(𝑚) are complete elliptic integrals of the
first and second kind, respectively.

For 𝑐 = 1 (i.e., V > 0), there are periodic solutions for
0 < 𝐴 < 1 with 𝜆 < 0, 𝑧2 ∈ (−1, 0), and 𝑧3 ∈ (0, 0.5); an
example of such a periodic wave is illustrated by curve 2 in
Figure 1. 𝐴 = 1 gives the solitary wave limit

𝑢 =
3

2
V sech2 (

𝜁

2
) ,

𝜂 = −𝜁 + 3 tanh(
𝜁

2
)

(30)

as illustrated by curve 1 in Figure 1. The periodic waves and
the solitary wave have a loop-like structure as illustrated in
Figure 1. For 𝑐 = −1 (i.e., V < 0), there are periodic waves for
−1 < 𝐴 < 0 with 𝜆 > 0, 𝑧2 ∈ (0, 1), and 𝑧3 ∈ (1, 1.5); an
example of such a periodic wave is illustrated by curve 2 in
Figure 2. When 𝐴 = 0 and 𝜆 = 6 the periodic wave solution
simplifies to

𝑢 (𝜂)

|V|
= −

1

6
𝜂
2

+
1

2
, − 3 ≤ 𝜂 ≤ 3, 𝑢 (𝜂 + 6) = 𝑢 (𝜂) . (31)

This is shown by curve 1 in Figure 2. For 𝐴 ≃ −1 the solution
has a sinusoidal form (curve 3 in Figure 2). Note that there
are no solitary wave solutions.

A remarkable feature of (11) is that it has a solitary wave
(30) which has loop-like form; that is, it is a multivalued
function (see Figure 1). Whilst loop solitary waves (30)
are rather intriguing, it is the solution to the initial value
problem that is of more interest in a physical context. An
important question is the stability of the loop-like solutions.
Although the analysis of stability does not link with the
theory of solitons directly, however, the method applied in
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Figure 1: Traveling wave solutions with V > 0.
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Figure 2: Traveling wave solutions with V < 0.

Section 3.3 is instructive, since it is successful in a nonlinear
approximation.

We note that the notion of a “soliton” will be defined later.
Wewill prove (see Section 5.4) that the solitarywave (30) is, in
fact, a soliton. Nowwe point only out that the soliton is a local
traveling wave pulse with remarkable stability and particle-
like properties.

3.3. Stability and Interpretation of the Loop-Like Solutions.
From a physical viewpoint, the stability or otherwise of
solutions is essential for their interpretation. Some methods
for the investigation of the stability of nonlinear waves were
discussed by Infeld and Rowlands in Chapter 8 of [25] and
references therein. One such method is the so-called 𝑘-
expansion method. It is restricted to long wavelength pertur-
bations of small amplitude. It has been applied successfully
to a variety of generic nonlinear evolution equations (see
[26], e.g.) and specific physical systems (see [27], e.g.). A
particularly informative description of the method is given
in [28] in the context of the Zakharov-Kuznetsov equation.
Some criticism was levelled at the work in [28] by Das et al.

[29]; however, after a detailed reinvestigation of the problem,
Das et al. [29] vindicated the method used in [28].

The 𝑘-expansionmethodwas applied to theVE (11) in [21]
and is outlined as follows. We assume a perturbed solution of
(21) in the form

𝑧 = 𝑧0 (𝜂) + {𝛿𝑧 (𝜂) exp [𝑖 (𝑘𝜂 − 𝜔𝜏)] + cc} , (32)

where 𝑧0 is the periodic solution given by (27) and (28),
𝛿𝑧(𝜂) is a complex function with period 𝜆 given by (29), 𝑘

is a real constant, 𝜔 is a constant (possibly complex), and cc
denotes complex conjugate. Substitution of (32) into (20) and
linearization with respect to 𝛿𝑧 yield

L𝛿𝑧 = 𝑓, (33)

where the linear operatorL and 𝑓 are given by

L𝛿𝑧 fl (𝑧0𝛿𝑧)𝜂𝜂 + 𝛿𝑧,

𝑓 fl (−𝜔𝑘 + 𝑘
2
𝑧0) 𝛿𝑧 + 𝑖 [𝜔𝛿𝑧𝜂 − 2𝑘 (𝑧0𝛿𝑧)𝜂] ,

(34)

respectively. As (21) implies that L𝑧0𝜂 = 0, we may deduce
that, for (33) to have periodic solutions, the condition

⟨𝑧0𝑧0𝜂𝑓⟩ = 0 (35)

must be satisfied, where ⟨⋅⟩ denotes an integration over the
wavelength 𝜆.

Formally, the solution of (33) is

𝛿𝑧 = 𝑧0𝜂𝜗, (36)

where

𝜗𝜂 =

(𝐷 + ∫ 𝑧0𝑧0𝜂𝑓 𝑑𝜂)

(𝑧0𝑧0𝜂)
2 (37)

and 𝐷 is a constant determined from

⟨

(𝐷 + ∫ 𝑧0𝑧0𝜂𝑓 𝑑𝜂)

(𝑧0𝑧0𝜂)
2

⟩ = 0. (38)

As 𝛿𝑧 appears on the right-hand side of (36) via 𝑓, we solve
(36) iteratively by assuming that 𝑘 is small in comparisonwith
2𝜋/𝜆 (so that the perturbations in (32) have long wavelength)
and introduce the expansions

𝛿𝑧 = 𝛿𝑧0 + 𝑘𝛿𝑧1 + ⋅ ⋅ ⋅ ,

𝜔 = 𝑘𝜔1 + 𝑘
2
𝜔2 + ⋅ ⋅ ⋅ ,

(39)

so that

𝑓 = 𝑘𝑓1 + 𝑘
2
𝑓2 + ⋅ ⋅ ⋅ ,

𝜗 = 𝜗0 + 𝑘𝜗1 + ⋅ ⋅ ⋅ ,

𝐷 = 𝐷0 + 𝑘𝐷1 + ⋅ ⋅ ⋅ .

(40)
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At zero order in 𝑘, condition (35) is satisfied identically, (38)
gives 𝐷0 = 0, and then, from (37), 𝜗 is constant. Hence,
from (36), we may take 𝛿𝑧0 = 𝑧0𝜂. At first order, condition
(35) is again satisfied identically. It is straightforward (see
[21]) to find 𝐷1 from (38) and 𝜗1𝜂 from (37); use of these
expressions in (35) at second order leads to the desired
nonlinear dispersion relation for the perturbations in the
form

𝑟0 + 𝑟1𝜔1 + 𝑟2𝜔
2
1 = 0. (41)

The coefficients 𝑟0, 𝑟1, and 𝑟2 depend on 𝑧1, 𝑧2, and 𝑧3

as defined in (22). It turns out that the dispersion relation
(41) has real roots for 𝜔1 for both the families of solutions
(corresponding to 𝑐 = 1 and 𝑐 = −1, resp.) derived in
Section 3.2. Consequently, it is predicted that both families
of solutions are stable to long wavelength perturbations. For
the loop-like solutions, the existence of singular points at
which the derivatives tend to infinity casts somedoubts on the
validity of themethod. However, in [21] it is argued that as the
method depends on the average behaviour over a wavelength,
the method is indeed valid.

The ambiguous structure of the loop-like solutions is
similar to the loop soliton solution to an equation thatmodels
a stretched rope [30]. Loop-like solitons on a vortex filament
were investigated by Hasimoto [31] and Lamb [32]. From
the mathematical point of view, an ambiguous solution does
not present difficulties whereas the physical interpretation
of ambiguity always presents some difficulties. In this con-
nection the problem of ambiguous solutions is regarded as
important. The problem consists in whether the ambiguity
has a physical nature or is related to the incompleteness of the
mathematical model, in particular to the lack of dissipation.

We will consider the problem related to the singular
points when dissipation takes place. At these points the
dissipative term 𝛼(𝜕𝑢/𝜕𝑥) tends to infinity. The question
arises: are there solutions of (18) in a loop-like form?The fact
that the dissipation is likely to destroy the loop-like solutions
can be associated with the following well-known fact [8].
For the simplest nonlinear equation without dispersion and
without dissipation, namely,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0, (42)

any initial smooth solution with boundary conditions

𝑢|𝑥→+∞ = 0,

𝑢|𝑥→−∞ = 𝑢0 = const. > 0

(43)

becomes ambiguous in the final analysis. When dissipation is
considered, we have the Burgers equation [33]:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝜇

𝜕
2
𝑢

𝜕𝑥2
= 0. (44)

The dissipative terms in this equation and in (7) for low fre-
quency are coincident. The inclusion of the dissipative term
transforms the solutions so that they cannot be ambiguous
as a result of evolution. The wave parameters are always

unambiguous. What happens in our case for high frequency
when the dissipative term has the form 𝛼𝑢 (see (18))?Will the
inclusion of dissipation give rise to unambiguous solutions?

By direct integration of (10) (written in terms of variables
(19)) within the neighborhood of singular points 𝑧 = 0, where
𝑧𝜂 → ±∞ and 𝑧𝜏 ≪ 𝑧𝜂, it can be derived (see [4]) that the
dissipative term, with dissipation parameter less than some
limit value 𝛼

∗, does not destroy the loop-like solutions. Now
we give a physical interpretation to ambiguous solutions.

Since the solution to the VE has a parametric form
(23), (24) or (27), (28), there is a space of variables in
which the solution is a single-valued function. Hence, we
can solve the problem of the ambiguous solution. A number
of states with their thermodynamic parameters can occupy
one microvolume. It is assumed that the interaction between
the separated states occupying one microvolume can be
neglected in comparison with the interaction between the
particles of one thermodynamic state. Even if we take into
account the interaction between the separated states in
accordance with the dynamic state equation (5) then, for
high frequencies, a dissipative term arises which is similar to
the corresponding term in (8), but with the other relaxation
time. In this sense the separated terms are distributed in
space, but describing the wave process we consider them as
interpenetrable. A similar situation, when several compo-
nents with different hydrodynamic parameters occupy one
microvolume, has been assumed in mixture theory (see, e.g.,
[34, 35]). Such a fundamental assumption in the theory of
mixtures is physically impossible (see [34, page 7]), but it
is appropriate in the sense that separated components are
multivelocity interpenetrable continua.

Consequently, the following three observations show
that, in the framework of the approach considered here, there
are multivalued solutions when we model high-frequency
wave processes: (1) All parts of loop-like solution are stable to
perturbations. (2) Dissipation does not destroy the loop-like
solutions. (3) The investigation regarding the interaction of
the solitons has shown that it is necessary to take into account
the whole ambiguous solution, not just the separate parts.

4. The Vakhnenko-Parkes Equation

The multivalued solutions obtained in Section 3.3 obviously
mean that the study of the VE (11) in the original coordi-
nates (𝑥, 𝑡) leads to certain difficulties. These difficulties can
be avoided by writing down the VE in new independent
coordinates. We have succeeded in finding these coordinates.
Historically, working separately, we (Vyacheslav Vakhnenko
in Ukraine and John Parkes in UK) independently suggested
such independent coordinates in which the solutions become
one-valued functions. It is instructive to present the two
derivations here. In one derivation a physical approach,
namely, a transformation between Euler and Lagrange coor-
dinates, was used whereas in the other derivation a pure
mathematical approach was used.

Let us define new independent variables (𝑋, 𝑇) by the
transformation

𝜑𝑑𝑇 = 𝑑𝑥 − 𝑢𝑑𝑡, 𝑋 = 𝑡. (45)
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The function 𝜑 is to be obtained. It is important that the
functions 𝑥 = 𝜃(𝑋, 𝑇) and 𝑢 = 𝑈(𝑋, 𝑇) turn out to be
single-valued. In terms of the coordinates (𝑋, 𝑇) the solution
of the VE (11) is given by single-valued parametric relations.
The transformation into these coordinates is the key point in
solving the problem of the interaction of solitons as well as
explaining the multiple-valued solutions [4]. Transformation
(45) is similar to the transformation between Eulerian coor-
dinates (𝑥, 𝑡) and Lagrangian coordinates (𝑋, 𝑇). We require
that 𝑇 = 𝑥 if there is no perturbation, that is, if 𝑢(𝑥, 𝑡) = 0.
Hence 𝜑 = 1 when 𝑢(𝑥, 𝑡) = 0.

The function 𝜑 is the additional dependent variable in the
equation system (47) and (48) towhichwe reduce the original
equation (11). We note that the transformation inverse to (45)
is

𝑑𝑥 = 𝜑𝑑𝑇 + 𝑈𝑑𝑋, 𝑡 = 𝑋, 𝑈 (𝑋, 𝑇) ≡ 𝑢 (𝑥, 𝑡) . (46)

Then, by taking into account the condition that 𝑑𝑥 is an exact
differential, we obtain

𝜕𝜑

𝜕𝑋
=

𝜕𝑈

𝜕𝑇
. (47)

This equation, together with (11) rewritten in terms of𝜑(𝑋, 𝑇)

and 𝑈(𝑋, 𝑇), namely,

𝜕
2
𝜑

𝜕𝑋2
+ 𝑈𝜑 = 0, (48)

is themain systemof equations.The equation system (47) and
(48) can be reduced to a nonlinear equation in one unknown
𝑊 defined by

𝑊𝑋 = 𝑈. (49)

We study solutions 𝑈 that vanish as |𝑋| → ∞ or,
equivalently, solutions for which 𝑊 tends to a constant as
|𝑋| → ∞. From (47) and (49) and the requirement that
𝜑 → 1 as |𝑋| → ∞wehave𝜑 = 1+𝑊𝑇; then, by eliminating
𝜑 from (48) we arrive at the transformed form of the VE (11)

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0 (50)

or, in equivalent form,

𝑈𝑈𝑋𝑋𝑇 − 𝑈𝑋𝑈𝑋𝑇 + 𝑈
2
𝑈𝑇 = 0. (51)

Furthermore it follows from (46) that the original inde-
pendent space coordinate 𝑥 is given by

𝑥 = 𝜃 (𝑋, 𝑇) = 𝑥0 + 𝑇 + 𝑊, (52)

where 𝑥0 is an arbitrary constant. Since the functions 𝜃(𝑋, 𝑇)

and 𝑈(𝑋, 𝑇) are single-valued, the problem of multivalued
solutions has been resolved from the mathematical point of
view.

Alternatively, in a pure mathematical approach, we intro-
duce new independent variables 𝑋, 𝑇 defined by

𝑥 = 𝜃 (𝑋, 𝑇) = 𝑇 + ∫

𝑋

−∞
𝑈 (𝑋

󸀠
, 𝑇) 𝑑𝑋

󸀠
+ 𝑥0, 𝑡 = 𝑋, (53)

where 𝑢(𝑥, 𝑡) = 𝑈(𝑋, 𝑇) and 𝑥0 is a constant. From (53) it
follows that

𝜕

𝜕𝑋
=

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
,

𝜕

𝜕𝑇
= 𝜙

𝜕

𝜕𝑥
,

with 𝜙 (𝑋, 𝑇) = 1 + ∫

𝑋

−∞
𝑈𝑇𝑑𝑋

󸀠
,

(54)

so that

𝜙𝑋 = 𝑈𝑇. (55)

From (11) and (54) we obtain

𝑈𝑋𝑇 + 𝜙𝑈 = 0. (56)

By eliminating 𝜙 between (55) and (56) we obtain (51) or, on
introducing 𝑊, (50).

The transformation, as has already been pointed out, was
obtained by us independently of each other; nevertheless,
we published the result together [36–38]. Following [39–42],
hereafter (50) (or in alternative form (51)) is referred to as the
Vakhnenko-Parkes equation (VPE).

For example, we will rewrite the solutions (23) and (24)
for (11) in the transformed coordinates (𝑋,𝑇), that is, find
the traveling wave solutions for (11) in new coordinates.
Differentiating the relationship (23)with respect to𝑋, we take

±√
2

3

𝜕𝜂

𝜕𝑋
= ±√

2

3
(−V +

𝜕𝑥

𝜕𝑋
)

= ±√
2

3
(−V + 𝑊𝑋 (𝑋, 𝑇)) = ±√

2

3
𝑧

=
𝑧

√(𝑧 − 𝑎1) (𝑧 − 𝑎2) (𝑎3 − 𝑧)

𝜕𝑧

𝜕𝑋
,

(57)

or

±√
2

3
=

1

√(𝑧 − 𝑎1) (𝑧 − 𝑎2) (𝑎3 − 𝑧)

𝜕𝑧

𝜕𝑋
. (58)

Then after integration, we obtain

±√
2

3
𝑋 = ∫

𝑎3

𝑧

𝑑𝑧

√(𝑧 − 𝑎1) (𝑧 − 𝑎2) (𝑎3 − 𝑧)

=
2

√𝑎3 − 𝑎1

𝐹 (𝜑, 𝑘) .

(59)

Together with 𝑧 = 𝑈(𝑋, 𝑇) + V this relationship (59)
determines the desired dependence 𝑈(𝑋, 𝑇) in parametrical
form. Thus, we have the solution for (11) in new coordinates
(𝑋, 𝑇).



8 Advances in Mathematical Physics

1

2

1.5

1.0

0.5

0.0
0 3 6 9 12

X

U
/|
v|

Figure 3: Traveling wave solutions with V > 0 in coordinates (𝑋, 𝑇).
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Figure 4: Traveling wave solutions with V < 0 in coordinates (𝑋, 𝑇).

The solutions for V > 0 in coordinates (𝑋, 𝑇) are
illustrated in Figure 3. Curves 1 and 2 in this figure relate to
curves 1 and 2 in Figure 1.The solutions in coordinates (𝑋, 𝑇)

for V < 0 are plotted in Figure 4. Curves 1, 2, and 3 in this
figure relate to curves 1, 2, and 3 in Figure 2.

On one hand, we have attained the goal; namely, we
have found the solutions in new coordinates in which the
solutions become one-valued functions. On the other hand,
it is important that periodical solution shown by curve 1
in Figure 3, that is, the solution consisting of parabolas,
becomes not periodical in new coordinates. Hence, we reveal
some accordance between curve 1 in Figure 1 and curve 1 in
Figure 2.This feature is important for finding the solutions by
inverse scattering method [38, 43–47].

5. Hirota Method

Now let us define the notion “soliton” more precisely. Apart
from the fact that a soliton is a stable solitary wave with

particle-like properties, a soliton must possess additional
properties. One property is that two such solitary waves may
pass through each other without any loss of identity. Consider
two solitons with different speeds, the faster one chasing the
slower one. The faster soliton will eventually overtake the
slower one. After the nonlinear interaction, two solitons again
will emerge, with the faster one in front, and each will regain
its former identity precisely. The only interaction memory
will be a phase shift; each soliton will be centered at a location
different from where it would have been had it traveled
unimpeded. However, this property is still not sufficient in
order that the solitary wave be a soliton. There are equations
which possess solutions which are a nonlinear superposition
of two solitary waves but which do not have all the properties
enjoyed by soliton equations. A soliton equation, when it
admits solitary wave solutions, must possess a solution which
satisfies the “𝑁-soliton condition” (see Section 5.3). The
solitary wave with these properties defines a soliton.The term
“soliton” was originally coined by Zabusky and Kruskal in
1965 [48].

One of the key properties of a soliton equation is that it
has an infinite number of conservation laws. These soliton
equations satisfy the Hirota condition (“𝑁-soliton condi-
tion”) and are exactly integrable.

TheHirota method not only gives the 𝑁-soliton solution,
but also enables one to find a way from the Bäcklund
transformation through the conservation laws and associated
eigenvalue problem to the inverse scattering method. Thus
the Hirota method, which can be applied only for finding
solitary wave solutions or traveling wave solutions, allows us
to formulate the inverse scattering method which is the most
appropriate way of tackling the initial value problem (Cauchy
problem). Consequently, in this case, the integrability of an
equation can be regarded as proved.

5.1.The𝐷-Operator and𝑁-Soliton Solution. Various effective
approaches have been developed to construct exact wave
solutions of completely integrable equations. One of the fun-
damental direct methods is undoubtedly the Hirota bilinear
method [14, 15, 49, 50], which possesses significant features
that make it practical for the determination of multiple
soliton solutions.

In the Hirota method the equation under investigation
should first be transformed into the Hirota bilinear form [14]

𝐹 (𝐷𝑋, 𝐷𝑇) 𝑓 ⋅ 𝑓 = 0, (60)

where 𝐹 is a polynomial in 𝐷𝑇 and 𝐷𝑋. Each equation has its
own polynomial.TheHirota bilinear𝐷-operator is defined as
(see Section 5.2 in [14])

𝐷
𝑛
𝑇𝐷

𝑚
𝑋𝑎 ⋅ 𝑏 = (

𝜕

𝜕𝑇
−

𝜕

𝜕𝑇󸀠
)

𝑛

(
𝜕

𝜕𝑋
−

𝜕

𝜕𝑋󸀠
)

𝑚

𝑎 (𝑇, 𝑋)

⋅ 𝑏 (𝑇
󸀠
, 𝑋

󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇=𝑇󸀠 ,𝑋=𝑋󸀠
.

(61)
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If the polynomial 𝐹 satisfies conditions (see (5.41) and (5.42)

in [14])

𝐹 (𝐷𝑋, 𝐷𝑇) = 𝐹 (−𝐷𝑋, − 𝐷𝑇) , 𝐹 (0, 0) = 0, (62)

then the Hirota method can be applied successfully.
According to [14], the𝑁-soliton solution reads as follows:

𝑓 = ∑

𝜇=0,1

exp[

[

2 (

𝑁

∑

𝑖=1

𝜇𝑖𝜂𝑖 +

(𝑁)

∑

𝑖<𝑗

𝜇𝑖𝜇𝑗 ln 𝑏𝑖𝑗)
]

]

, (63)

where

𝑏
2
𝑖𝑗 = −

𝐹 [2 (𝑘𝑖 − 𝑘𝑗) , −2 (𝜔𝑖 − 𝜔𝑗)]

𝐹 [2 (𝑘𝑖 + 𝑘𝑗) , −2 (𝜔𝑖 + 𝜔𝑗)]

,

𝜂𝑖 = 𝑘𝑖𝑋 − 𝜔𝑖𝑇 + 𝛼𝑖.

(64)

The connection between 𝑘𝑖 and 𝜔𝑖 is found by the dispersion
relations

𝐹 (2𝑘𝑖, −2𝜔𝑖) = 0, 𝑖 = 1, . . . , 𝑁. (65)

In (63), ∑𝜇=0,1 means the summation over all possible
combinations of 𝜇1 = 0 or 1, 𝜇2 = 0 or 1, . . . , 𝜇𝑁 = 0 or 1, and
∑
(𝑁)
𝑖<𝑗 means the summation over all possible combinations of

𝑁 elements under the condition 𝑖 < 𝑗.
Moreover, for there to be an 𝑁-soliton solution (NSS) to

(60) with 𝑁(≥ 1) arbitrary, 𝐹(𝐷𝑋, 𝐷𝑇) must satisfy the “𝑁-
soliton condition” (NSC) [14]; namely,

𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛) = 0, 𝑛 = 1, 2, . . . , 𝑁, (66)

where

𝐺
(1)

(𝑝1) fl 0 (67)

and, for 𝑛 ≥ 2,

𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛) fl 𝐶 ∑

𝜎=±1

{

{

{

𝐹 (

𝑛

∑

𝑖=1

𝜎𝑖𝑝𝑖,

𝑛

∑

𝑖=1

𝜎𝑖Ω𝑖)

⋅

(𝑛)

∏

𝑖>𝑗

𝐹 (𝜎𝑖𝑝𝑖 − 𝜎𝑗𝑝𝑗, 𝜎𝑖Ω𝑖 − 𝜎𝑗Ω𝑗) 𝜎𝑖𝜎𝑗

}

}

}

.

(68)

In (68) Ω𝑖 are given in terms of 𝑝𝑖 by the dispersion relations
𝐹(𝑝𝑖, Ω𝑖) = 0 (𝑖 = 1, . . . , 𝑁), ∑𝜎=±1 means the summation
over all possible combinations of 𝜎1 = ±1, 𝜎2 = ±1, . . . , 𝜎𝑛 =

±1, and 𝐶 is a function of 𝑝𝑖 that is independent of the
summation indices 𝜎1, . . . , 𝜎𝑛.

From (67) it follows that (66) is satisfied for 𝑛 = 1.
If 𝐹(𝑝, Ω) = 𝐹(−𝑝, −Ω), then (66) is satisfied for 𝑛 = 2.
However, whether or not (66) is satisfied for 𝑛 ≥ 3 depends
on the particular form of 𝐹(𝑝, Ω), that is, on the original
equation being studied.

5.2. Bilinear Form of the Vakhnenko-Parkes Equation. In
order to find soliton solutions to VPE (50)

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0 (69)

by using Hirota’s method [14] we need to express (50) in
Hirota form [36]. Transformation (53) of the independent
variables in the original equation (11) is a key step in
finding an exact explicit 𝑁-soliton solution to (50) by use
of the Hirota method and hence an exact implicit 𝑁-soliton
solution to (11). By taking

𝑊 = 6 (ln𝑓)𝑋 , (70)

we find that

𝑊𝑋 =
3𝐷

2
𝑋𝑓 ⋅ 𝑓

𝑓2
,

𝑊𝑋𝑋𝑇 + 𝑊𝑋𝑊𝑇 =
3𝐷𝑇𝐷

3
𝑋𝑓 ⋅ 𝑓

𝑓2

(71)

and the bilinear form of the VPE is as follows:

𝐹 (𝐷𝑋, 𝐷𝑇) 𝑓 ⋅ 𝑓 = 0,

𝐹 (𝐷𝑋, 𝐷𝑇) fl 𝐷𝑇𝐷
3
𝑋 + 𝐷

2
𝑋.

(72)

In passing we note that the Hirota-Satsuma equation
(HSE) for shallow water waves [51]

−𝑢𝑡 + 𝑢𝑥𝑥𝑡 + 𝑢𝑢𝑡 + 𝑢𝑥 ∫

𝑥

−∞
𝑢𝑡𝑑𝑥

󸀠
+ 𝑢𝑥 = 0 (73)

may be written as

𝑊𝑥𝑥𝑦 + (1 + 𝑊𝑡) 𝑊𝑥 − 𝑊𝑡 = 0, 𝑢 = 𝑊𝑥 = 6 (ln𝑓)𝑥𝑥 (74)

or in bilinear form

(𝐷𝑡𝐷
3
𝑥 + 𝐷

2
𝑥 + 𝐷𝑡𝐷𝑥) 𝑓 ⋅ 𝑓 = 0. (75)

Clearly (74) and (75) are similar to, but cannot be transformed
into, (50) and (72), respectively. Hence solutions to the
HSE cannot be transformed into solutions of the VPE. The
solution to the HSE by Hirota method is given in [51].

The Hirota method can be applied successfully if we can
prove “𝑁-soliton condition” (NSC) (66)–(68) for (72). Let us
present this proof [37].

5.3. The “𝑁-Soliton Condition” for the VPE. Since, for (72),
we have 𝐹(𝑝, Ω) = 𝐹(−𝑝, −Ω), then (66) is satisfied for 𝑛 = 2.
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With 𝐹 given by (72), the dispersion relations give Ω𝑖 =

−1/𝑝𝑖 and (66) may be written:

𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛) fl (

𝑛

∏

𝑖=1

𝑝𝑖) ∑

𝜎=±1

{

{

{

(

𝑛

∑

𝑖=1

𝜎𝑖𝑝𝑖)

2

⋅ [1 − (

𝑛

∑

𝑖=1

𝜎𝑖

𝑝𝑖

) (

𝑛

∑

𝑖=1

𝜎𝑖𝑝𝑖)]

(𝑛)

∏

𝑖>𝑗

(𝜎𝑖𝑝𝑖 − 𝜎𝑗𝑝𝑗)
2

⋅ (𝑝
2
𝑖 + 𝑝

2
𝑗 − 𝜎𝑖𝜎𝑗𝑝𝑖𝑝𝑗)

}

}

}

.

(76)

Thepresence of the first product term in (76) ensures that𝐺
(𝑛)

is a homogeneous polynomial in 𝑝𝑖.
In passing we remark that previous work suggests, but

does not prove, that (72) does have an NSS for all 𝑁 ≥ 1. The
expression for𝐹 given by (72) is a special case of one proposed
by Ito (see Equation (B.10) in [52]). Ito claimed that this 𝐹

satisfies 3SC. Hietarinta [53] performed a search for bilinear
equations of the form (72) that have 𝐹 that satisfies 3SC. One
such 𝐹 was found to be the one given by (72). Hietarinta
[54] later claimed that this 𝐹 also passed 4SC. The bilinear
equation (72) is a special case of one given in Grammaticos et
al. (see Equation (4.4) in [55]); they showed that this equation
has the Painlevé property. According to Hietarinta [54] a
bilinear equation that has 4SS and the Painlevé property is
almost certainly integrable. All this evidence suggests that it is
highly likely that (72) does have anNSS for all𝑁 ≥ 1. Here we
remove any doubt by using induction to prove that condition
(66) is satisfied with 𝐺

(𝑛) given by (76).
We need the following properties of𝐺(𝑛) (as given by (76))

for 𝑛 ≥ 3:

(i) 𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛)|𝑝1=0
≡ 0.

(ii) 𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛)|𝑝1=±𝑝2
= ±24𝑝

6
1[∏

𝑛
𝑖=3(𝑝

2
𝑖 − 𝑝

2
1)
2
(𝑝

4
𝑖 +

𝑝
4
1 + 𝑝

2
𝑖 𝑝

2
1)]𝐺

(𝑛−2)
(𝑝3, . . . , 𝑝𝑛).

(iii) 𝐺
(𝑛)

(𝑝1, . . . , 𝑝𝑛)|𝑝2
1
+𝑝2
2
±𝑝1𝑝2=0

= ±(𝑝1 ∓ 𝑝2)(𝑝
2
1 −

𝑝
2
2)(𝑝

2
1 + 𝑝

2
2 ∓ 𝑝1𝑝2)[∏

𝑛
𝑖=3[{(𝑝1 ± 𝑝2)

2
+ 𝑝

2
𝑖 }
2

− (𝑝1 ±

𝑝2)
2
𝑝
2
𝑖 ]]𝐺

(𝑛−1)
(𝑝1 ± 𝑝2, 𝑝3, . . . , 𝑝𝑛).

(We established property (iii) by adapting the argument used
to obtain equation (28) in [56] in the context of a shallow
water wave equation.) Furthermore, because of 𝜎 summation
in (76), 𝐺

(𝑛) is an odd, symmetric function of 𝑝𝑖. As already
noted, the condition (66) is satisfied for 𝑛 = 1 and 𝑛 = 2. We

now assume that the condition is satisfied for all 𝑛 ≤ 𝑚 − 1,
where 𝑚 ≥ 3; then the properties of 𝐺

(𝑛) imply that it may be
factorized as follows:

𝐺
(𝑚)

(𝑝1, . . . , 𝑝𝑚) = [

𝑚

∏

𝑖=1

𝑝𝑖]
[

[

(𝑚)

∏

𝑖>𝑗

(𝑝
2
𝑖 − 𝑝

2
𝑗)

2

⋅ (𝑝
2
𝑖 + 𝑝

2
𝑗 + 𝑝𝑖𝑝𝑗) (𝑝

2
𝑖 + 𝑝

2
𝑗 − 𝑝𝑖𝑝𝑗)

]

]

⋅ 𝐺̃
(𝑚)

(𝑝1, . . . , 𝑝𝑚) ,

(77)

where 𝐺̃
(𝑚) is a homogeneous polynomial. It follows that the

degree of 𝐺
(𝑚) is at least 4𝑚

2
− 3𝑚. On the other hand, from

(76) the degree of 𝐺
(𝑚) is at most 2𝑚

2
− 𝑚 + 2. As 4𝑚

2
− 3𝑚 >

2𝑚
2
− 𝑚 + 2 for 𝑚 ≥ 3, it follows that 𝐺

(𝑚)
≡ 0. It now follows

by induction that the NSC is satisfied.

5.4. The 𝑁-Soliton Solution of the VPE. With 𝐹 given by (72)
for the VPE

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0 (78)

the dispersion relations (65) 𝐹(2𝑘𝑖, −2𝜔𝑖) = 0 (𝑖 = 1, . . . , 𝑁)
give 𝜔𝑖 = 1/4𝑘𝑖 and then

𝜂𝑖 = 𝑘𝑖 (𝑋 − 𝑐𝑖𝑇) + 𝛼𝑖 with 𝑐𝑖 =
1

4𝑘
2
𝑖

. (79)

Also, without loss of generality, we may take 𝑘1 < ⋅ ⋅ ⋅ < 𝑘𝑁

and then

𝑏𝑖𝑗 =

𝑘𝑗 − 𝑘𝑖

𝑘𝑖 + 𝑘𝑗

√
𝑘
2
𝑖 + 𝑘

2
𝑗 − 𝑘𝑖𝑘𝑗

𝑘
2
𝑖 + 𝑘

2
𝑗 + 𝑘𝑖𝑘𝑗

, where 𝑖 < 𝑗, (80)

so that 0 < 𝑏𝑖𝑗 < 1.
Consequently, the relationship (63) with (79) and (80)

gives𝑓 for theVPE. Finally, substitution of (63) into (70) gives
the 𝑁-soliton solution 𝑊(𝑋, 𝑇) of the VPE [37].

However, followingMoloney and Hodnett [57], it is more
convenient to express 𝑓 in the form

𝑓 = ℎ𝑖 + ℎ̂𝑖𝑒
2𝜂𝑖 (81)

for a given 𝑖 with 1 ≤ 𝑖 ≤ 𝑁, where

ℎ𝑖 = ∑

𝜇=0,1

exp[
[

[

2 (

𝑁

∑

𝑟=1
(𝑟 ̸=𝑖)

𝜇𝑟𝜂𝑟 +

(𝑁)

∑

𝑟<𝑠
(𝑟 ̸=𝑖,𝑠 ̸=𝑖)

𝜇𝑟𝜇𝑠 ln 𝑏𝑟𝑠)
]
]

]

,

ℎ̂𝑖 = ∑

𝜇=0,1

exp[
[

[

2 (

𝑁

∑

𝑟=1
(𝑟 ̸=𝑖)

𝜇𝑟𝜂𝑟 +

(𝑁)

∑

𝑟<𝑠
(𝑟 ̸=𝑖,𝑠 ̸=𝑖)

𝜇𝑟𝜇𝑠 ln 𝑏𝑟𝑠 +

𝑖−1

∑

𝑟=1

𝜇𝑟 ln 𝑏𝑟𝑖 +

𝑁

∑

𝑟=𝑖+1

𝜇𝑟 ln 𝑏𝑖𝑟)
]
]

]

.

(82)
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Thenwemay write the𝑁-soliton solution for VPE (50) in the
form

𝑊 =

𝑁

∑

𝑖=1

𝑊𝑖,

where 𝑊𝑖 = 6𝑘𝑖 (1 + tanh𝑔𝑖) , 𝑔𝑖 (𝑋, 𝑇) = 𝜂𝑖 +
1

2
ln[

ℎ̂𝑖

ℎ𝑖

] .

(83)

From (83) and the relationship 𝑈 = 𝑊𝑋, the 𝑁-soliton
solution for VPE (51) is

𝑈 =

𝑁

∑

𝑖=1

𝑈𝑖, where 𝑈𝑖 = 6𝑘𝑖

𝜕𝑔𝑖

𝜕𝑋
sech2𝑔𝑖. (84)

With 𝑊 and 𝑈 given by (83) and (84), respectively, and by
using (45), (46), and (52), we may write the 𝑁-loop soliton
solution to VE (11) in the parametric form:

𝑢 (𝑥, 𝑡) = 𝑈 (𝑡, 𝑇) ,

𝑥 = 𝜃 (𝑡, 𝑇) ,

𝜃 (𝑋, 𝑇) = 𝑇 + 𝑊 (𝑋, 𝑇) + 𝑥0.

(85)

5.5. The One-Loop Soliton Solution. The solution to (72)
corresponding to one soliton is given by

𝑓 = 1 + 𝑒
2𝜂

, where 𝜂 = 𝑘𝑋 − 𝜔𝑇 + 𝛼, (86)

and 𝑘, 𝜔, and 𝛼 are constants. The dispersion relation (65) is
𝐹(2𝑘, −2𝜔) = 0 from which we find that 𝜔 = 1/4𝑘 and then

𝜂 = 𝑘 (𝑋 − 𝑐𝑇) + 𝛼 with 𝑐 =
1

4𝑘2
. (87)

Substitution of (86) into (70) gives

𝑊 (𝑋, 𝑇) = 6𝑘 (1 + tanh 𝜂) (88)

so that

𝑈 (𝑋, 𝑇) = 6𝑘
2sech2𝜂. (89)

The one-loop soliton solution to the VE is given by (85) with
(88) and (89). From (85) with V = 1/𝑐 we have

𝑥 − V𝑡 = −V (𝑋 − 𝑐𝑇)

+ 6𝑘 (1 + tanh [𝑘 (𝑋 − 𝑐𝑇) + 𝛼]) + 𝑥0.

(90)

Clearly, from (89) and (90), 𝑈(𝑋, 𝑇) and 𝑥 − V𝑡 are related
by the parameter 𝜒 = 𝑋 − 𝑐𝑇 so that 𝑢(𝑥, 𝑡) is a soliton that
travels with speed V in the positive 𝑥-direction. The fact that
this soliton is a loop may be shown as follows. From (54) we
have 𝑢𝑥 = 𝜙

−1
𝑈𝑇, and on using (87) and (89) we also have

𝜙 = 1 − 𝑐𝑈 and 𝑈𝑇 = −𝑐𝑈𝑋. Hence

𝑢𝑥 = −
𝑐𝑈𝑋

(1 − 𝑐𝑈)
. (91)

Thus, as 𝜒 goes from ∞ to −∞ in (90), so that 𝑥 − V𝑡 goes
from −∞ to +∞, 𝑈𝑋 changes sign once and remains finite

whereas 𝑢𝑥 given by (91) changes sign three times and goes
infinite twice. The one-loop soliton solution may be written
in terms of the parameter 𝜒 as

𝑢 =
3V
2
sech2 (

√V𝜒
2

) ,

𝑥 − V𝑡 = 𝑥̃0 − V𝜒 + 3√V tanh(
√V𝜒

2
)

(92)

with V(> 0) and 𝑥̃0 arbitrary. Solution (92) is essentially the
one-loop soliton solution given by (30) (see [20, 21] too).

Usually it is assumed that the value 𝛼 is real in order
that the solution 𝑈(𝑋, 𝑇) is a real function. However, the real
solution is obtained also at𝛼 = −𝑖𝜋+𝛼̃ (𝛼̃ is real) (see Sections
9.1 and 11.2 and Appendix B). In this case the soliton solution
(singular soliton solution) is discontinuous [58]

𝑈 (𝑋, 𝑇) = 6𝑘
2sinh−2𝜂. (93)

5.6. The Two-Loop Soliton Solution. The solution to (72)
corresponding to two solitons is given by

𝑓 = 1 + 𝑒
2𝜂1 + 𝑒

2𝜂2 + 𝑏
2
𝑒
2(𝜂1+𝜂2),

where 𝜂𝑖 = 𝑘𝑖𝑋 − 𝜔𝑖𝑇 + 𝛼𝑖,

(94)

𝑏
2

= −
𝐹 [2 (𝑘1 − 𝑘2) , −2 (𝜔1 − 𝜔2)]

𝐹 [2 (𝑘1 + 𝑘2) , −2 (𝜔1 + 𝜔2)]
, (95)

and 𝑘𝑖, 𝜔𝑖, and 𝛼𝑖 are constants. The dispersion relation is
𝐹(2𝑘𝑖, −2𝜔𝑖) = 0 from which we find that 𝜔𝑖 = 1/4𝑘𝑖 and
then

𝜂𝑖 = 𝑘𝑖 (𝑋 − 𝑐𝑖𝑇) + 𝛼𝑖 with 𝑐𝑖 =
1

4𝑘
2
𝑖

. (96)

Without loss of generality we may take 𝑘2 > 𝑘1 and then

𝑏 =
𝑘2 − 𝑘1

𝑘2 + 𝑘1

√
𝑘
2
1 + 𝑘

2
2 − 𝑘1𝑘2

𝑘
2
1 + 𝑘

2
2 + 𝑘1𝑘2

. (97)

Substitution of (94) into (70) gives the two-soliton solution of
the VPE. Following Hodnett and Moloney [57, 59], we may
write 𝑊(𝑋, 𝑇) in the form

𝑊 = 𝑊1 + 𝑊2,

where 𝑊𝑖 = 6𝑘𝑖 (1 + tanh𝑔𝑖) ,

(98)

𝑔1 (𝑋, 𝑇) = 𝜂1 +
1

2
ln[

1 + 𝑏
2
𝑒
2𝜂2

1 + 𝑒2𝜂2
] ,

𝑔2 (𝑋, 𝑇) = 𝜂2 +
1

2
ln[

1 + 𝑏
2
𝑒
2𝜂1

1 + 𝑒2𝜂1
] .

(99)

It follows that 𝑈 may be written:

𝑈 = 𝑈1 + 𝑈2, where 𝑈𝑖 = 6𝑘𝑖

𝜕𝑔𝑖

𝜕𝑋
sech2𝑔𝑖. (100)

The two-loop soliton solution to the VE is given by (85) with
(98) and (100) [36].
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5.7. Discussion of the Two-Loop Soliton Solution. We now
consider the two-loop soliton solution found in Section 5.6
in more detail. First it is instructive to consider what happens
in 𝑋-𝑇 space.

As 𝑐1 > 𝑐2, we have

𝑋 − 𝑐2𝑇 󳨀→ ±∞

as 𝑇 󳨀→ ±∞ with 𝑋 − 𝑐1𝑇 fixed,

(101)

𝑋 − 𝑐1𝑇 󳨀→ ∓∞

as 𝑇 󳨀→ ±∞ with 𝑋 − 𝑐2𝑇 fixed.

(102)

From (99) and (100) with (101) it follows that, with 𝑋 − 𝑐1𝑇

fixed,

𝑈1 ∼ 6𝑘
2
1sech

2
𝜂1 as 𝑇 󳨀→ −∞,

𝑈1 ∼ 6𝑘
2
1sech

2
(𝜂1 + ln 𝑏) as 𝑇 󳨀→ +∞.

(103)

Similarly, from (99) and (100) with (102), with 𝑋 − 𝑐2𝑇 fixed,

𝑈2 ∼ 6𝑘
2
2sech

2
(𝜂2 + ln 𝑏) as 𝑇 󳨀→ −∞,

𝑈2 ∼ 6𝑘
2
2sech

2
𝜂2 as 𝑇 󳨀→ +∞.

(104)

Hence it is apparent that, in the limits 𝑇 → ±∞, 𝑈1 and 𝑈2

may be identified as individual solitons moving with speeds
𝑐1 and 𝑐2, respectively, in the positive 𝑥-direction. In contrast
to the familiar interaction of twoKdV “sech squared” solitons
[60], here it is the smaller soliton that overtakes the larger one.

The shifts Δ 𝑖 of the two solitons 𝑈1 and 𝑈2 in the positive
𝑥-direction due to the interaction are

Δ 1 = −
(ln 𝑏)

𝑘1

,

Δ 2 =
(ln 𝑏)

𝑘2

,

(105)

respectively. As ln 𝑏 < 0, the smaller soliton is shifted
forwards and the larger soliton is shifted backwards. Since the
“mass” of each soliton is given by ∫

∞

−∞
𝑈𝑖𝑑𝑋 = 12𝑘𝑖, where

we have used (100), and the shifts satisfy 𝑘1Δ 1 + 𝑘2Δ 2 = 0,
“momentum” is conserved.

Let 𝑟 fl 𝑘1/𝑘2 and recall that here we are assuming
that 0 < 𝑟 < 1. (From (103) and (104), 𝑟

2 is the ratio of
the amplitudes of the individual smaller and larger solitons.)
Note that 𝑈𝑋𝑋(𝑋int, 𝑇int) = 0 for 𝑟 = 𝑅 = 0.53862, where
(𝑋int, 𝑇int) is the center of the interaction. For 𝑅 < 𝑟 < 1,
we have 𝑈𝑋𝑋(𝑋int, 𝑇int) > 0 and the two-soliton solution
in 𝑋-𝑇 space always has two peaks; during interaction the
two humps exchange amplitudes. For 0 < 𝑟 < 𝑅, we have
𝑈𝑋𝑋(𝑋int, 𝑇int) < 0 and the two humps of the individual
solitons coalesce into a single hump for part of the interaction;
the smaller hump appears to pass through the larger one.

Now let us consider what happens in 𝑥-𝑡 space. From (85)
with V𝑖 = 1/𝑐𝑖 we have

𝑥 − V𝑖𝑡 = −V𝑖 (𝑋 − 𝑐𝑖𝑇) + 𝑊 (𝑋, 𝑇) + 𝑥0. (106)

Note that in (103) taking the limits 𝑇 → ±∞ with 𝑋 − 𝑐1𝑇

fixed is equivalent to taking the limits𝑋 → ±∞with𝑋−𝑐1𝑇

fixed; also note that 𝑋 = 𝑡 from (45). Accordingly from (103)
and (106) with 𝑖 = 1 we see that, in the limits 𝑡 → ±∞ with
𝑋−𝑐1𝑇 fixed,𝑈1(𝑋, 𝑇) and𝑥−V1𝑡 are related by the parameter
𝑋 − 𝑐1𝑇. Similarly, from (104) and (106) with 𝑖 = 2, in the
limits 𝑡 → ±∞ with 𝑋 − 𝑐2𝑇 fixed, 𝑈2(𝑋, 𝑇) and 𝑥 − V2𝑡
are related by the parameter 𝑋 − 𝑐2𝑇. It follows that, in the
limits 𝑡 → ±∞, 𝑢1 and 𝑢2 may be identified as individual
loop solitons moving with speeds V1 and V2, respectively, in
the positive𝑥-direction,where𝑢𝑖(𝑥, 𝑡) = 𝑈𝑖(𝑋, 𝑇). As V2 > V1,
the larger loop soliton overtakes the smaller loop soliton.

The shifts, 𝛿𝑖, of the two-loop solitons 𝑢1 and 𝑢2 in the
positive 𝑥-direction due to the interaction may be computed
from (106) as follows. From (103), as𝑇 → −∞,𝑈1 = 𝑈1max =

6𝑘
2
1, where 𝑋 − 𝑐1𝑇 = −𝛼1/𝑘1; then 𝑊1 = 6𝑘1 and, by use of

(101),𝑊2 = 0. Similarly, as𝑇 → ∞,𝑈1 = 𝑈1max = 6𝑘
2
1, where

𝑋−𝑐1𝑇 = −(𝛼1 + ln 𝑏)/𝑘1; then 𝑊1 = 6𝑘1 and 𝑊2 = 12𝑘2. Use
of these results in (106) with 𝑖 = 1 gives

𝛿1 = 4𝑘1 ln 𝑏 + 12𝑘2. (107)

By use of (102), (104), and (106) with 𝑖 = 2, a similar
calculation yields

𝛿2 = −4𝑘2 ln 𝑏 − 12𝑘1. (108)

From (108) it is found that, for 0 < 𝑟 < 1, 𝛿2 > 0 so
that the larger loop soliton is always shifted forwards by the
interaction. However, for 𝛿1 we find that,

(a) for 𝑟𝑐 < 𝑟 < 1, 𝛿1 < 0 so the smaller loop soliton is
shifted backwards;

(b) for 𝑟 = 𝑟𝑐, where 𝑟𝑐 = 0.88867 is the root of ln 𝑏+3/𝑟 =

0, 𝛿1 = 0 so the smaller loop soliton is not shifted by
the interaction;

(c) for 0 < 𝑟 < 𝑟𝑐, 𝛿1 > 0 so the smaller loop soliton is
shifted forwards.

At first sight it might seem that the behaviour in (b)
and (c) contradicts conservation of “momentum.” The fact
that this is not so is justified as follows. By integrating (11)
with respect to 𝑥 we find that ∫

∞

−∞
𝑢 𝑑𝑥 = 0; also, by

multiplying (11) by 𝑥 and integrating with respect to 𝑥 we
obtain ∫

∞

−∞
𝑥𝑢 𝑑𝑥 = 0. Thus, in 𝑥-𝑡 space, the “mass” of each

soliton is zero, and “momentum” is conserved whatever 𝛿1

and 𝛿2 may be. In particular 𝛿1 and 𝛿2 may have the same
sign as in (c), or one of them may be zero as in (b).

Cases (a), (b), and (c) are illustrated in Figures 5, 6, and 7,
respectively; in these figures 𝑢 is plotted against 𝑥 for various
values of 𝑡. For convenience in the figures, the interactions of
solitons are shown in coordinates moving with speed (V1 +

V2)/2.

5.8. Discussion of the 𝑁-Loop Soliton Solution. We now
interpret the 𝑁-loop soliton solution found at beginning of
Section 5.4 in terms of individual loop solitons [37].

First it is instructive to consider what happens in 𝑋-𝑇
space. From (83) and (84) and the fact that 𝑐1 > ⋅ ⋅ ⋅ > 𝑐𝑁
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t = 630

t = 0

u1

u1

u2

u2

x

0 20

Figure 5: The interaction process for two-loop solitons with 𝑘1 =

0.99 and 𝑘2 = 1 so that 𝑟 = 0.99 and 𝛿1 < 0.

t = 45

t = 0 u1

u1 u2

u2

x

0 10−10

Figure 6: The interaction process for two-loop solitons with 𝑘1 =

0.88867 and 𝑘2 = 1 so that 𝑟 = 0.88867 and 𝛿1 = 0.

we deduce the following behaviour: with 𝑋 − 𝑐𝑖𝑇 fixed and
𝑇 → −∞,

𝑈𝑖 ∼

{{{

{{{

{

6𝑘
2
1sech

2
𝜂1, if 𝑖 = 1,

6𝑘
2
𝑖 sech

2
(𝜂𝑖 +

𝑖−1

∑

𝑟=1

ln 𝑏𝑟𝑖) , if 2 ≤ 𝑖 ≤ 𝑁;

(109)

with 𝑋 − 𝑐𝑖𝑇 fixed and 𝑇 → +∞,

𝑈𝑖

∼

{{

{{

{

6𝑘
2
𝑖 sech

2
(𝜂𝑖 +

𝑁

∑

𝑟=𝑖+1

ln 𝑏𝑖𝑟) , if 1 ≤ 𝑖 ≤ 𝑁 − 1,

6𝑘
2
𝑁sech

2
𝜂𝑁, if 𝑖 = 𝑁.

(110)

t = 9

t = 0 u1

u1 u2

u2

x

0 5 10−10 −5

Figure 7:The interaction process for two-loop solitonswith 𝑘1 = 0.5

and 𝑘2 = 1 so that 𝑟 = 0.5 and 𝛿1 > 0.

Hence it is apparent that, in the limits 𝑇 → ±∞, each 𝑈𝑖

may be identified as an individual soliton moving with speed
𝑐𝑖 in the positive 𝑥-direction. Smaller solitons overtake larger
ones.

The shifts, Δ 𝑖, of the solitons in the positive 𝑥-direction
due to the interactions between the 𝑁 solitons are given by

Δ 1 = −
1

𝑘1

𝑁

∑

𝑟=2

ln 𝑏1𝑟,

Δ 𝑖 =
1

𝑘𝑖

(

𝑖−1

∑

𝑟=1

ln 𝑏𝑟𝑖 −

𝑁

∑

𝑟=𝑖+1

ln 𝑏𝑖𝑟) , 2 ≤ 𝑖 ≤ 𝑁 − 1,

Δ𝑁 =
1

𝑘𝑁

𝑁−1

∑

𝑟=1

ln 𝑏𝑟𝑁.

(111)

Since the “mass” of each soliton is given by ∫
∞

−∞
𝑈𝑖𝑑𝑋 = 12𝑘𝑖,

where we have used (84), and the shifts satisfy

𝑁

∑

𝑖=1

𝑘𝑖Δ 𝑖 = 0, (112)

“momentum” is conserved.
Now let us consider what happens in 𝑥-𝑡 space. From (85)

with V𝑖 = 1/𝑐𝑖 we have

𝑥 − V𝑖𝑡 = −V𝑖 (𝑋 − 𝑐𝑖𝑇) + 𝑊 (𝑋, 𝑇) + 𝑥0. (113)

Note that in (109) and (110) taking the limits 𝑇 → ±∞ with
𝑋−𝑐𝑖𝑇 fixed is equivalent to taking the limits𝑋 → ±∞with
𝑋−𝑐𝑖𝑇 fixed; also note that𝑋 = 𝑡 from (53). Accordingly from
(109), (110), and (113), with a given 𝑖, we see that, in the limits
𝑡 → ±∞with𝑋−𝑐𝑖𝑇 fixed,𝑈𝑖(𝑋, 𝑇) and 𝑥−V𝑖𝑡 are related by
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the parameter 𝑋 − 𝑐𝑖𝑇. It follows that, in the limits 𝑡 → ±∞,
𝑢𝑖may be identified as an individual loop solitonmovingwith
speed V𝑖 in the positive 𝑥-direction, where 𝑢𝑖(𝑥, 𝑡) = 𝑈𝑖(𝑋, 𝑇).
As V1 < ⋅ ⋅ ⋅ < V𝑁, larger loop solitons overtake smaller ones.

In order to calculate the shifts, 𝛿𝑖, of the loop solitons 𝑢𝑖

in the positive𝑥-direction due to the interactions between the
𝑁-loop solitons, we need the following results: from (109), as
𝑇 → −∞, 𝑈𝑖 → 𝑈𝑖max = 6𝑘

2
𝑖 , where

𝑋 − 𝑐𝑖𝑇 =

{{{

{{{

{

−
𝛼1

𝑘1

, for 𝑖 = 1, then 𝑊 󳨀→ 6𝑘1,

−
𝛼𝑖

𝑘𝑖

−
1

𝑘𝑖

𝑖−1

∑

𝑟=1

ln 𝑏𝑟𝑖, for 2 ≤ 𝑖 ≤ 𝑁, then 𝑊 󳨀→ 6𝑘𝑖 +

𝑖−1

∑

𝑟=1

12𝑘𝑟;

(114)

from (110), as 𝑇 → ∞, 𝑈𝑖 → 𝑈𝑖max = 6𝑘
2
𝑖 , where

𝑋 − 𝑐𝑖𝑇 =

{{{

{{{

{

−
𝛼𝑖

𝑘𝑖

−
1

𝑘𝑖

𝑁

∑

𝑟=𝑖+1

ln 𝑏𝑖𝑟, for 1 ≤ 𝑖 ≤ 𝑁 − 1, then 𝑊 󳨀→ 6𝑘𝑖 +

𝑁

∑

𝑟=𝑖+1

12𝑘𝑟

−
𝛼𝑁

𝑘𝑁

, for 𝑖 = 𝑁, then 𝑊 󳨀→ 6𝑘𝑁.

(115)

Use of these results in (113) gives

𝛿1 =

𝑁

∑

𝑟=2

(4𝑘1 ln 𝑏1𝑟 + 12𝑘𝑟) ,

𝛿𝑖 =

𝑁

∑

𝑟=𝑖+1

(4𝑘𝑖 ln 𝑏𝑖𝑟 + 12𝑘𝑟) −

𝑖−1

∑

𝑟=1

(4𝑘𝑖 ln 𝑏𝑟𝑖 + 12𝑘𝑟) ,

2 ≤ 𝑖 ≤ 𝑁 − 1,

𝛿𝑁 = −

𝑁−1

∑

𝑟=1

(4𝑘𝑁 ln 𝑏𝑟𝑁 + 12𝑘𝑟) .

(116)

The three-loop soliton solution is discussed in detail in
[37].There, the interaction of three-loop solitons is illustrated
in figures. The interaction process is more complicated than
that for the two-loop soliton solution [36] given in Sections
5.6 and 5.7. From the three examples illustrated in [37] it is
clear that several different types of interaction are possible
and it is not always possible to predict what will happen on
the basis of the results in [36] alone.

6. The Vakhnenko-Parkes Equation from
the Viewpoint of the Inverse Scattering
Method for the KdV Equation

Unlike the earlier Sections 5.5–5.8 where the interaction of
the solitons was studied by the Hirota method [14, 15, 49], we
use now elements of the inverse scattering transform (IST)
method as developed for theKdVequation [38].The formula-
tion of the ISTmethod is discussed for theVakhnenko-Parkes
equation (50). It is shown that the equation system for the
inverse scattering problem associated with the VPE cannot
contain the isospectral Schrödinger equation. The results

of this section were completed before we made appreciable
progress in formulation of the IST problem for the VPE.

As we will prove later in Section 8.1, the spectral problem
associated with the VPE is of third order [43, 61–63]. At first
reading, the present section can be omitted. Nevertheless,
methods stated here may be useful in the investigation of a
new equation for which the spectral problem is unknown.

6.1. One-Soliton Solutions as Reflectionless Potentials. As was
noted previously, the VE (11)

(𝑢𝑡 + 𝑢𝑢𝑥)𝑥 + 𝑢 = 0 (117)

and the KdV equation

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 (118)

have the same hydrodynamic nonlinearity and do not contain
dissipative terms; only the dispersive terms are different. The
similarity between these equations indicates that, in studying
the VE and the VPE (50), the application of the IST method
should be possible. The IST method is the most appropriate
way of tackling initial value problems.The results of applying
the IST method would be useful in solving the Cauchy
problem for both the VE and the VPE. The study of the
VPE is of scientific interest from the viewpoint of the general
problem of integrability of nonlinear equations.

The method of the IST is a powerful method as a means
for solving the nonlinear differential equations. Let us recall
that KdV equation (118) is associated with the system of the
equations

𝜓𝑥𝑥 + 𝑢𝜓 = 𝜆𝜓, (119)

𝜓𝑡 + 3𝜆𝜓𝑥 + 𝜓𝑥𝑥𝑥 + 3𝑢𝜓𝑥 = 0. (120)

Equation system (119) and (120) is a case of the IST method
presented in the classic paper [1]. Since system (119) and (120)
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contains Schrödinger equation (119), we will use the elements
of the IST method as applied to the KdV equation in order
to analyze the VPE. The known one-soliton solution of KdV
equation (118) has the form (without the time-dependence)

𝑢 = 2󰜚
2sech2󰜚𝑥. (121)

Here, as an example, we will consider the case 󰜚 = 1.
The results in this paper are based on the assumption that

the system of equations associated with VPE (50), which are
analogous to (119) and (120), is unknown.

Now let us focus on the fact that (48) is the Schrödinger
equation

𝜕
2
𝜓

𝜕𝑋2
− 𝑄𝜓 = 𝜆𝜓 (122)

with the eigenvalue (energy) 𝜆 = 0 and potential 𝑄 = −𝑈.
Equation (48) determines the dependence on the coordinate
𝑋, and time 𝑇 appears here as a parameter. However, the
time-dependence is determined by (47).

The known one-soliton solution of (50), which we
obtained in Section 5.5, has the form

𝑈 =
3V
2
sech2 (

V𝑋 − 𝑇

2√V
) . (123)

If it is not otherwise noted, for convenience here we will
consider V = 4 and 𝑇 = 0, and then (123) reduces to

𝑈 = 6 sech2𝑋. (124)

Theprincipal fact is that both𝑢 = 2 sech2𝑥 from (121) and𝑈 =

6 sech2𝑋 from (124) relate to reflectionless potentials. The
general formof the reflectionless potentials is (see Section 2.4
in [8])

𝑢 = 𝑚 (𝑚 + 1) sech2𝑥. (125)

We have 𝑚 = 1 for the potential (121) and 𝑚 = 2 for
the potential (124). It is known [8, 13] that, for integrable
nonlinear equations, reflectionless potentials generate soliton
solutions (in the general case, 𝑁-soliton solutions).

6.2. Two-Level Reflectionless Potential. Let us consider the
one-soliton solution of system (119) and (120) in the frame-
work of the IST method for the KdV equation. For this
purpose let us analyze the Schrödinger equation with the
potential 𝑄 ≡ −𝑈 = −6 sech2𝑋 (𝑇 is a parameter)

𝑑
2
𝜓

𝑑𝑋2
− 𝑄𝜓 = −𝑘

2
𝜓, 𝑘

2
= −𝜆. (126)

For the scattering problem, the solution of (126) should
satisfy the boundary conditions

𝜓 (𝑋, 𝑘) =
{

{

{

𝑒
−𝑖𝑘𝑋

, 𝑋 󳨀→ −∞

𝑏 (𝑘) 𝑒
𝑖𝑘𝑋

+ 𝑎 (𝑘) 𝑒
−𝑖𝑘𝑋

, 𝑋 󳨀→ +∞,

(127)

where 𝑏(𝑘) and 𝑎(𝑘) are the coefficients of reflection and
transmission, respectively.

In Section 2.4 in [8], the original method for finding
the wave-functions 𝜓 and eigenvalues for the reflectionless
potential𝑄𝑚 = −𝑚(𝑚+1) sech2𝑋was described.The general
solution 𝑦𝑚 of (126) for the potential 𝑄𝑚 connects with the
general solution 𝑌0 for 𝑄0 = 0 by the relationship

𝑦𝑚 (𝑋, 𝑘) =

𝑚

∏

𝑚󸀠=1

(𝑚
󸀠 tanh𝑋 −

𝑑

𝑑𝑋
) 𝑌0 (𝑋, 𝑘) , (128)

and then

𝑎 (𝑘) =

𝑚

∏

𝑚󸀠=1

𝑖𝑘 + 𝑚
󸀠

𝑖𝑘 − 𝑚󸀠
,

𝑏 (𝑘) = 0.

(129)

In our case (𝑚 = 2) (126) has two bound states

−𝑖𝑘1 ≡ 𝜅1 = 1,

𝜓1 = √
3

2
tanh𝑋 sech𝑋,

−𝑖𝑘2 ≡ 𝜅2 = 2,

𝜓2 =
√3

2
sech2𝑋.

(130)

Thewave-functions𝜓𝑖 are normalized; that is, ∫+∞
−∞

|𝜓𝑖|
2
𝑑𝑋 =

1, and this conforms to the requirement used in the IST
method.

Here themain difference between theVPE and the known
integrable nonlinear equations appears. It is connected with
the existence of only one bound state for the known equations
associated with the isospectral Schrödinger equation, while
for the VPE two bound states occur. Indeed, for the known
integrable equations, the potential corresponding to the one-
soliton solution has the following dependence on the space
coordinate (see Equation (4.3.9) in [8])

𝑢 (𝑥) = 2󰜚
2sech2󰜚𝑥. (131)

It is easy to see that this is related to the case 𝑚 = 1 in (125);
that is, there is only the one bound state

𝜓 = √
󰜚

2
sech 󰜚𝑥,

𝜓 󳨀→ 𝑐√󰜚 exp (−󰜚𝑥) , 𝑐 = √2, as 𝑥 󳨀→ +∞.

(132)

6.3. Reconstruction of the One-Soliton Solution for the VPE.
Keeping in mind that there is an incomplete analogy of our
problem to the known integrable equations, we will try to
reconstruct the potential (the solution of the VPE) from the
scattering data and to find afterwards the time-dependence
for the scattering data and for the one-soliton solution.

As is well known [8, 13], in order to reconstruct the
potential for the Schrödinger equation (126), we have to know
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the scattering data. From relationships (130) we obtain, as
𝑋 → ∞,

𝜓1 󳨀→ 𝑐1𝑒
−𝜅1𝑋, 𝑐1 = √6, 𝜅1 = 1,

𝜓2 󳨀→ 𝑐2𝑒
−𝜅2𝑋, 𝑐2 = √12, 𝜅2 = 2.

(133)

Clearly, 𝜅1 = (1/2)𝜅2 = 1 is in agreement with (123), (124),
and (121). However, we will abandon this condition, that is,
V = 4, in (131) and in the final formulas.

For convenience we reproduce the well-known procedure
for the reconstruction of the potential. The function 𝐵(𝑋; 𝑇)

is constructed from the scattering data (𝑇 is the parameter)

𝐵 (𝑋; 𝑇) =

𝑛

∑

𝑚=1

𝑐
2
𝑚 (𝑡) 𝑒

−𝜅𝑚𝑋

+
1

2𝜋
∫

+∞

−∞
𝑏 (𝑘, 𝑇) 𝑒

𝑖𝑘𝑋
𝑑𝑘.

(134)

In the next step the Marchenko-Gelfand-Levitan equation is
to be solved [64] for the unknown 𝐾(𝑋, 𝑦; 𝑇)

𝐾 (𝑋, 𝑦; 𝑇) + 𝐵 (𝑋 + 𝑦; 𝑇)

+ ∫

+∞

𝑋
𝐵 (𝑦 + 𝑧; 𝑇) 𝐾 (𝑋, 𝑧; 𝑇) 𝑑𝑧 = 0.

(135)

The potential is then obtained by means of the relationship

−𝑈 = 𝑄 = −2
𝑑

𝑑𝑋
𝐾 (𝑋, 𝑋; 𝑇) . (136)

In particular, for the reflectionless potential (125), 𝑏(𝑘) = 0 in
(127), and the solution can be found in the form

𝐾 (𝑋, 𝑦; 𝑇) = −

𝑁

∑

𝑚=1

𝑐𝑚 (𝑇) 𝜓𝑚 (𝑋; 𝑇) 𝑒
−𝜅𝑚𝑦. (137)

This procedure, as is well known, leads to the equation system
in 𝜓𝑚

AΨ = C, (138)

where the matrix A = [𝑎𝑚𝑛] has elements

𝑎𝑚𝑛 = 𝛿𝑚𝑛 + 𝑐𝑛 (𝑇) 𝑐𝑚 (𝑇)
𝑒
−𝑋(𝜅𝑚+𝜅𝑛)

𝜅𝑚 + 𝜅𝑛

, (139)

andΨ = [𝜓𝑚] and C = [𝑐𝑚(𝑇)𝑒
−𝜅𝑚𝑋] are column-vectors.

In (135)–(138), 𝑇 is a parameter. Although we took 𝑇 = 0

earlier, we preserve the variable 𝑇 in these relationships in
order to use them later to find the time-dependence of the
scattering data.

It is known [8, 13] that for a reflectionless potential the
value of the determinant Δ = det[𝑎𝑚𝑛] is sufficient for
reconstructing the potential. Then (136) is reduced to

𝐾 (𝑋, 𝑋; 𝑇) =
𝑑 ln |Δ|

𝑑𝑋
,

−𝑈 = −2
𝑑
2 ln |Δ|

𝑑𝑋2
.

(140)

We use (138) and (140) to obtain the one-soliton solution
of the VPE. The scattering data (133) and 𝑏(𝑘) = 0 enable us
to define the determinant

Δ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +
𝑐
2
1

2
𝑒
−2𝑋 𝑐1𝑐2

3
𝑒
−3𝑋

𝑐1𝑐2

3
𝑒
−3𝑋

1 +
𝑐
2
2

4
𝑒
−4𝑋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (1 + 𝑒
−2𝑋

)
3

(141)

and then the potential

−𝑈 = 12
𝑑

𝑑𝑋
(

𝑒
−2𝑋

1 + 𝑒−2𝑋
) = −6 sech2𝑋. (142)

Thus we have repeated the standard method for reproducing
the potential bymeans of scattering data (as yet without time-
dependence). It is clear from 𝑈 = 𝑊𝑋 and (140) that

𝑊 = 2𝐾 (𝑋, 𝑋; 𝑇) . (143)

It is noted that the determinant for the one-soliton solution
of KdV equation (118) has the form

Δ = 1 + 𝑒
−2𝑥

,

𝑢 = 2 sech2𝑥.

(144)

The interpretation of (141) is important. In the matrix,
two states (133) are involved. Clearly, the time-dependence
for an individual state is its own characteristic.However, since
these two states relate to the common soliton, there must be
a connection between them; that is, 𝑐1(𝑇) and 𝑐2(𝑇) must be
connected. Relation (141) determines this connection.

In the first instance we considered the dependence of
the potential on the space coordinate, and the time was
a parameter. Let us now find the time-dependence of the
scattering data 𝑐1(𝑇) and 𝑐2(𝑇) that enables us to find the
functional dependence of the potential (124) on 𝑇, that is, the
time-dependence of the one-soliton solution. We start from
the relation (see Equation (22), Chapter 1, Section 2 in [13]):

𝜓 (𝑋, 𝑘; 𝑇) = 𝑒
−𝑖𝑘𝑋

+ ∫

+∞

𝑋
𝐾 (𝑋, 𝑦; 𝑇) 𝑒

−𝑖𝑘𝑦
𝑑𝑦. (145)

Hence, there is a linear operator that reduces the solution
𝑒
−𝑖𝑘𝑋 of the Schrödinger equation with null potential 𝑄 =

0 to the solution of this equation with the potential 𝑈(𝑋).
The function 𝐾(𝑋, 𝑦; 𝑇) is the kernel of the transformation
operator.

We write (145) for 𝑘 = 0; this procedure is correct and an
appropriate theorem has been proved (see Section 3.3 in [8]):

𝜓 (𝑋, 𝑘 = 0; 𝑇) = 1 + ∫

+∞

𝑋
𝐾 (𝑋, 𝑦; 𝑇) 𝑑𝑦. (146)

Clearly, 𝜓(𝑋, 𝑘 = 0; 𝑇) = 𝜑(𝑋, 𝑇), where 𝜑(𝑋, 𝑇) satisfies the
equation system (47) and (48). Taking into account (136) and
(146), we obtain from the relationship (47):

1 + ∫

+∞

𝑋
𝐾 (𝑋, 𝑦; 𝑇) 𝑑𝑦 = 2

𝜕𝐾 (𝑋, 𝑋, 𝑇)

𝜕𝑇
+ 𝐶. (147)
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Since this equation must be valid at arbitrary 𝑋, and taking
into account that the function 𝐾(𝑋, 𝑦; 𝑇) → 0 at |𝑋| →

∞, we define the constant of integration 𝐶 = 1. We write,
once again, 𝐾(𝑋, 𝑦; 𝑇) as (137), because the potential is
reflectionless, and we obtain from (147)

2

∑

𝑚=1

𝑐𝑚 (𝑇)

𝜅𝑚

𝜓𝑚 (𝑋; 𝑇) 𝑒
−𝜅𝑚𝑋

= 2

2

∑

𝑚=1

𝜕𝑐𝑚 (𝑇) 𝜓𝑚 (𝑋; 𝑇)

𝜕𝑇
𝑒
−𝜅𝑚𝑋.

(148)

In this equation we must substitute the values 𝜓𝑚 that are
the solution of system (138). Here we consider the values 𝑐𝑚

already as functions of 𝑇; that is, 𝑐𝑚 = 𝑐𝑚(𝑇). For example 𝜓1

is given by

𝜓1 = Δ
−1

(𝑐1𝑒
−𝜅1𝑋 +

𝑐1𝑐
2
2

2𝜅2

𝑒
−(𝜅1+2𝜅2)𝑋

−
𝑐1𝑐

2
2

𝜅1 + 𝜅2

𝑒
−(𝜅1+2𝜅2)𝑋) .

(149)

Here Δ is the determinant (141) with time-dependence of
𝑐𝑚 = 𝑐𝑚(𝑇). We can calculate the following terms which are
required for (148) (𝜅1 = 1, 𝜅2 = 2):

2

∑

𝑚=1

𝑐𝑚 (𝑇)

𝜅𝑚

𝜓𝑚 (𝑋; 𝑇) 𝑒
−𝜅𝑚𝑋

= Δ
−1

(𝑐
2
1 𝑒

−2𝑋
+

1

2
𝑐
2
2 𝑒

−4𝑋
) ,

2

∑

𝑚=1

𝑐𝑚 (𝑇) 𝜓𝑚 (𝑋; 𝑇) 𝑒
−𝜅𝑚𝑋

= Δ
−1

(𝑐
2
1 𝑒

−2𝑋
+ 𝑐

2
2 𝑒

−4𝑋
+

1

12
𝑐
2
1 𝑐

2
2 𝑒

−6𝑋
) .

(150)

Then, substituting (150) into (148) and equating to zero the
coefficients of 𝑒

−2𝑗𝑋, (𝑗 = 1, . . . , 6), we obtain the system of
differential equations for 𝑐𝑚(𝑇)(𝑚 = 1, 2)

𝑒
−2𝑋: (𝑐

2
1 )

󸀠
=

1

2
𝑐
2
1 ,

𝑒
−4𝑋: (𝑐

2
2 )

󸀠
=

1

4
(𝑐

2
2 + 𝑐

4
1 ) ,

𝑒
−6𝑋: 1

3
(𝑐

2
1 𝑐

2
2 )

󸀠
+ 𝑐

2
1 (𝑐

2
2 )

󸀠
− 𝑐

2
2 (𝑐

2
1 )

󸀠
= 𝑐

2
1 𝑐

2
2 ,

𝑒
−8𝑋: 𝑐

2
1 (𝑐

2
1 𝑐

2
2 )

󸀠
− 𝑐

2
1 𝑐

2
2 (𝑐

2
1 )

󸀠
=

1

4
(𝑐

4
1 𝑐

2
2 + 9𝑐

4
2 ) ,

𝑒
−10𝑋: 𝑐

2
2 (𝑐

2
1 𝑐

2
2 )

󸀠
− 𝑐

2
1 𝑐

2
2 (𝑐

2
2 )

󸀠
=

1

2
𝑐
2
1 𝑐

4
2 ,

𝑒
−12𝑋: 𝑐

2
1 𝑐

2
2 (𝑐

2
1 𝑐

2
2 )

󸀠
= 𝑐

2
1 𝑐

2
2 (𝑐

2
1 𝑐

2
2 )

󸀠
,

(151)

where the prime denotes the derivative with respect to time
𝑇.

Equation system (151) is an overdetermined one; only first
two equations are independent. Consequently, we solve them
with initial conditions 𝑐

2
1 (0) = 6, 𝑐22 (0) = 12. At first, we write

the general solution of system (151):

𝑐
2
1 (𝑇) = 𝑟1𝑒

𝑇/2
,

𝑐
2
2 (𝑇) = 𝑟2𝑒

𝑇/4
+

1

3
𝑟
2
1𝑒

𝑇
,

(152)

where 𝑟1, 𝑟2 are arbitrary constants.Hence, in the general case,
the time-dependence of the first and second states is different.
Nevertheless, we have 𝑟2 ≡ 0 due to the relationship between
𝑐1(0) and 𝑐2(0) and then

𝑐
2
1 (𝑇) = 𝑐

2
1 (0) 𝑒

𝑇/2
= 6𝑒

𝑇/2
,

𝑐
2
2 (𝑇) =

1

3
𝑐
4
1 (0) 𝑒

𝑇
= 12𝑒

𝑇
.

(153)

Thus, the time-dependences satisfy the condition 𝑐
2
1 (𝑇)/

𝑐2(𝑇) = const. Indeed, if the time-dependence is as in (153),
the determinant (141) can be rewritten as a perfect cube;
namely,

Δ = (1 + 𝑒
−2(𝑋−𝑇/4)

)
3

. (154)

For convenience, up to this point we have used 𝜅1 = 1, 𝜅2 = 2.
Now we return one arbitrary parameter 𝜅1 (with 𝜅2 = 2𝜅1)
and rename it as 𝛼 ≡ 𝜅1, and then we obtain

Δ = {1 + exp [−2𝛼 (𝑋 −
𝑇

4𝛼2
)]}

3

. (155)

The potential for the one-soliton solution can easily be found
by (140):

𝑈 = 2
𝑑
2 ln |Δ|

𝑑𝑋2
= 6𝛼

2sech2Θ,

Θ = 𝛼 (𝑋 − 𝑋0 −
𝑇

4𝛼2
) .

(156)

This is one-soliton solution for the VPE.
For reference we give the complete equations for finding

the solution of VE (11) in terms of the initial variables 𝑥, 𝑡
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(for convenience 𝑇 is renamed as 𝜇 ≡ 𝑇 because here 𝜇 is a
parameter):

𝜕

𝜕𝑥
(

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
) 𝑢 + 𝑢 = 0, (157)

𝑢 = (
𝜕𝑊

𝜕𝑡
)

𝜇

,

𝑥 = 𝑥0 + 𝜇 + 𝑊,

𝑊 = 2 (
𝜕 ln |Δ|

𝜕𝑡
)

𝜇

,

(158)

Δ = (1 + 𝑞
2
)
3

,

𝑞 = exp (−Θ) ,

Θ = 𝛼 (𝑡 −
𝜇 − 𝜇0

4𝛼2
) ,

(159)

𝛼 = const.,

𝜇0 = const.
(160)

Thus we have obtained the one-soliton solution of the VE
as well as the VPE using elements of the IST method for the
KdV equation. The proposed method is also applicable for
finding the two-soliton solution. It is likely that this procedure
will shed light upon the formulation of the IST problem that
enables one to make progress in the study of the Cauchy
problem for the VE (11).

6.4. Two-Soliton Solution. Let us consider the two-soliton
solution for VE (11). The key for constructing this solution is
the value which is assigned to determinant (158) in the one-
soliton solution. For information we rewrite the values (159)
once again

Δ = (1 + 𝑞
2
)
3

,

𝑞 = exp [−𝛼 (𝑡 −
𝜇 − 𝜇0

4𝛼2
)] .

(161)

It can be seen that there is some analogy to the one-soliton
solution of KdV equation (144); namely,

Δ = 1 + 𝑞
2
,

𝑞 = exp (𝛼𝑥 − 4𝛼
3
𝑡) .

(162)

Moreover, as we noted, the potentials corresponding to the
one-soliton solution,

(a) for the VPE (𝑇 = 0, 𝛼 = 1)

𝑈 = 6 sech2𝑋, (163)

(b) for the KdV equation (𝑡 = 0, 󰜚 = 1)

𝑢 = 2 sech2𝑥, (164)
differ from each other by their coefficients. Bearing in mind
(136) and that 𝐾 = 𝜕 ln |Δ|/𝜕𝑋 (see (140)), one can see that
coefficient 6 in (163), in contrast to coefficient 2 in (164), is
generated by exponent 3 in relationship (161).

Now, if it is recalled that the two-soliton solution for the
KdV has the form [15]

𝐹̃ = Δ = 1 + 𝑞
2
1 + 𝑞

2
2 + 𝐴̃12𝑞

2
1𝑞

2
2,

𝐴̃12 =
(𝛼1 − 𝛼2)

2

(𝛼1 + 𝛼2)
2
,

𝑞𝑖 = exp [𝛼𝑖 (𝑥 − 𝑥0𝑖) − 4𝛼
3
𝑖 𝑡] ,

(165)

we can expect that the two-soliton solution for VE can be
found in form (158) with the following value of 𝐹 instead of
Δ in relation (140):

𝐹 = (1 + 𝑞
2
1 + 𝑞

2
2 + 𝐴12𝑞

2
1𝑞

2
2)

3
,

𝑞𝑖 = exp[−𝛼𝑖 (𝑡 −
𝜇 − 𝜇𝑖

4𝛼
2
𝑖

)] .

(166)

The value𝐴12 is to be determined. It should be noted that𝐹 is
not equal to the determinant Δ of the matrix in (138) which is
constructed from four states with 𝑞1, 𝑞

2
1, 𝑞2, 𝑞

2
2, (each soliton

has two bound states (130))

Δ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 3𝑞
2
1 2√2𝑞

3
1

6√𝛼1𝛼2

𝛼1 + 𝛼2

𝑞1𝑞2

6√2𝛼1𝛼2

𝛼1 + 2𝛼2

𝑞1𝑞
2
2

2√2𝑞
3
1 1 + 3𝑞

4
1

6√2𝛼1𝛼2

2𝛼1 + 𝛼2

𝑞
2
1𝑞2

6√𝛼1𝛼2

𝛼1 + 𝛼2

𝑞
2
1𝑞

2
2

6√𝛼1𝛼2

𝛼1 + 𝛼2

𝑞1𝑞2

6√2𝛼1𝛼2

2𝛼1 + 𝛼2

𝑞
2
1𝑞2 1 + 3𝑞

2
2 2√2𝑞

3
2

6√2𝛼1𝛼2

𝛼1 + 2𝛼2

𝑞1𝑞
2
2

6√𝛼1𝛼2

𝛼1 + 𝛼2

𝑞
2
1𝑞

2
2 2√2𝑞

3
2 1 + 3𝑞

4
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (167)
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If the relation 𝐹 = Δ were true, we would have 𝐴12 = 𝐴̃12.
Moreover, these conditions would lead us to the statement
that the problem for scattering data for VE (11) should
connect with the isospectral Schrödinger equation. This
statement was made in the paper by Hirota and Satsuma [49]
as well as in the monograph by Newell (see Chapters 3 and 4
in [16]). However, because 𝐹 ̸= Δ and 𝐴12 ̸= 𝐴̃12, we can state
that the equation system for the IST problem associated with
the VPE (50) does not contain the isospectral Schrödinger
equation.

The value 𝐴12 for (166) can be determined in the fol-
lowing way. The functional relation (166), with 𝐴12 regarded
as unknown, is substituted into (158) and then into (50).
Equating to zero the coefficients of exp[−2(𝑖𝛼1+𝑗𝛼2)𝑋], (𝑖, 𝑗 =

0, . . . , 4, 𝑖 + 𝑗 ̸= 0), we obtain a system of equations in one
unknown 𝐴12. It turns out that the equations are dependent.
As a result we obtain

𝐴12 =
(𝛼1 − 𝛼2)

2

(𝛼1 + 𝛼2)
2

⋅
𝛼
2
1 + 𝛼

2
2 − 𝛼1𝛼2

𝛼
2
1 + 𝛼

2
2 + 𝛼1𝛼2

. (168)

Thus the relationships (158), (166), and (168) are the exact
two-soliton solution of the VE (11). In terms of 𝑥 and 𝑡, we
have

𝜕

𝜕𝑥
(

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
) 𝑢 + 𝑢 = 0,

𝑢 = (
𝜕𝑊

𝜕𝑡
)

𝜇

,

𝑥 = 𝑥0 + 𝜇 + 𝑊,

𝑊 = 2 (
𝜕 ln |𝐹|

𝜕𝑡
)

𝜇

,

𝐹 = (1 + 𝑞
2
1 + 𝑞

2
2 + 𝐴12𝑞

2
1𝑞

2
2)

3
,

𝑞𝑖 = exp (−Θ𝑖) ,

𝐴12 =
(𝛼1 − 𝛼2)

2

(𝛼1 + 𝛼2)
2

⋅
𝛼
2
1 + 𝛼

2
2 − 𝛼1𝛼2

𝛼
2
1 + 𝛼

2
2 + 𝛼1𝛼2

,

Θ𝑖 = 𝛼𝑖𝑡 −
𝜇 − 𝜇𝑖

4𝛼𝑖

,

𝛼𝑖 = const.,

𝜇𝑖 = const.

(169)

Function 𝑊(𝑋, 𝑇) in space (𝑋, 𝑇) is two-soliton solution for
the VPE.

An equivalent result has been obtained, independently of
themethod presented here, in Section 5.6 by themeans of the
Hirota method [14, 15, 49] in terms of other variables.

6.5. Remarks aboutThis Section. Themain result of Section 6
is that we have obtained a way of applying the IST method to
theVPE.Keeping inmind that the IST is themost appropriate
way of tackling the initial value problem, one has to formulate

the associated eigenvalue problem. We have proved that the
equation system for the IST problem associated with the
VPE does not contain the isospectral Schrödinger equation.
Nevertheless, the analysis of the VPE in the context of the
isospectral Schrödinger equation allowed us to obtain the
two-soliton solution. Thus the results stated here may be
useful in the investigation of a new equation for which the
spectral problem is unknown.

Historically, once this investigation was completed, we
were able to make some progress in the formulation of the
IST for the VPE. In Section 8.1 we will prove that the spectral
problem associated with the VPE is of third order.

7. Bäcklund Transformation and Conservation
Laws for the VPE

In Section 5.1 we wrote the VPE (50)

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0 (170)

in Hirota bilinear form (72)

(𝐷𝑇𝐷
3
𝑋 + 𝐷

2
𝑋) 𝑓 ⋅ 𝑓 = 0. (171)

This enabled us to obtain the 𝑁-soliton solution of the VPE.
Moreover, it turns out that a Bäcklund transformation follows
from the bilinear form of the nonlinear evolution equation
[43].

The definition of a Bäcklund transformation which was
given by Rund in [65] is now the generally accepted one.
Let 𝑢(𝑥, 𝑡) and 𝑢̃(𝑥, 𝑡) satisfy the partial differential equations
𝐸(𝑢) = 0 and 𝐷(𝑢̃) = 0, respectively. Then the set of relations
𝑅𝑖((𝑢), (𝑢̃), (𝜁)) = 0 (𝑗 = 1, . . . , 𝑛), where (𝑢) and (𝑢̃) denote
strings, not necessarily of equal length, consisting of 𝑢, 𝑢̃

and their various partial derivatives, is called a Bäcklund
transformation if these relations ensure that 𝑢̃ satisfies𝐷(𝑢̃) =

0 whenever 𝑢 satisfies 𝐸(𝑢) = 0 and vice versa. If 𝑢 and 𝑢̃

satisfy the same equation, the adjective “auto” is inserted in
front of Bäcklund transformation.

Themain significance of Bäcklund transformations is that
they have typically associated nonlinear superposition prin-
ciples whereby infinite sequences of solutions to nonlinear
equations may be generated by purely algebraic procedures.
A Bäcklund transformation achieves the passage between
different solution types, whether it is a one-soliton, two-
soliton, bound state, and so forth. Multisoliton solutions of
many important nonlinear evolution equations can thereby
be constructed. We will show that a special form of the
Bäcklund transformation suggested by Hirota [66] is a key
for finding an infinite number of conservation laws as well as
allowing one to formulate the inverse scattering problem.

Thus, the next step in the investigation of nonlinear evo-
lution equations should be directed to obtaining the bilinear
form of the Bäcklund transformation from the bilinear form
of the nonlinear equation.

7.1. Bäcklund Transformation in Bilinear Form. Now we
present a Bäcklund transformation for VPE (50) written in
the bilinear form (72). This type of Bäcklund transformation
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was first introduced byHirota [66] and has the advantage that
the transformation equations are linear with respect to each
dependent variable. This Bäcklund transformation is easily
transformed to the ordinary one.

We follow the method developed in [66]. First we define
𝑃 as follows:

𝑃 fl 2 {[(𝐷𝑇𝐷
3
𝑋 + 𝐷

2
𝑋) 𝑓

󸀠
⋅ 𝑓

󸀠
] 𝑓𝑓

− 𝑓
󸀠
𝑓
󸀠
[(𝐷𝑇𝐷

3
𝑋 + 𝐷

2
𝑋) 𝑓 ⋅ 𝑓]} ,

(172)

where 𝑓 ̸= 𝑓
󸀠. We aim to find a pair of equations such that

each equation is linear in each of the dependent variables 𝑓

and 𝑓
󸀠 and such that together 𝑓 and 𝑓

󸀠 satisfy 𝑃 = 0. (It
then follows that if 𝑓 is a solution of (72) then so is 𝑓

󸀠 and
vice versa.) The pair of equations is the required Bäcklund
transformation.

We show that the Bäcklund transformation is given by
pair of the equations

(𝐷
3
𝑋 − 𝜆) 𝑓

󸀠
⋅ 𝑓 = 0, (173)

(3𝐷𝑋𝐷𝑇 + 1 + 𝜇𝐷𝑋) 𝑓
󸀠
⋅ 𝑓 = 0, (174)

where 𝜆 = 𝜆(𝑋) is an arbitrary function of 𝑋 and 𝜇 = 𝜇(𝑇) is
an arbitrary function of 𝑇.

We prove that together 𝑓 and 𝑓
󸀠, as determined by (173)

and (174), satisfy 𝑃 = 0 as follows. By using the identities
(VII.3) and (VII.4) and Equation (5.86) from [14] we may
express 𝑃 in the following form:

𝑃 = 𝐷𝑇 [(𝐷
3
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓

󸀠
𝑓) − 3 (𝐷

2
𝑋𝑓

󸀠
⋅ 𝑓)

⋅ (𝐷𝑋𝑓
󸀠
⋅ 𝑓)] + 𝐷𝑋 [3 (𝐷𝑇𝐷

2
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓

󸀠
𝑓)

− 6 (𝐷𝑋𝐷𝑇𝑓
󸀠
⋅ 𝑓) ⋅ (𝐷𝑋𝑓

󸀠
⋅ 𝑓) − 3 (𝐷

2
𝑋𝑓

󸀠
⋅ 𝑓)

⋅ (𝐷𝑇𝑓
󸀠
⋅ 𝑓) + 4 (𝐷𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓

󸀠
𝑓)] .

(175)

We can rewrite 𝑃 in the following form

𝑃 = 4𝐷𝑇 ({𝐷
3
𝑋 − 𝜆 (𝑋)} 𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓

󸀠
𝑓)

− 4𝐷𝑋 ({3𝐷𝑇𝐷𝑋 + 1 + 𝜇 (𝑇) 𝐷𝑋} 𝑓
󸀠
⋅ 𝑓)

⋅ (𝐷𝑋𝑓
󸀠
⋅ 𝑓) ,

(176)

if we use the following identities

𝐷
3
𝑋 [(𝐷𝑇𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓𝑓

󸀠
)] = 𝐷𝑇 [(𝐷

3
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝑓𝑓

󸀠
)

− 3 (𝐷
2
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝐷𝑋𝑓

󸀠
⋅ 𝑓)] ,

(177)

4𝐷𝑇 (𝐷
2
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝐷𝑋𝑓

󸀠
⋅ 𝑓) = 𝐷𝑋 [(𝐷𝑇𝐷

2
𝑋𝑓

󸀠
⋅ 𝑓)

⋅ (𝑓
󸀠
𝑓) + 2 (𝐷𝑇𝐷𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝐷𝑋𝑓

󸀠
⋅ 𝑓)

− (𝐷
2
𝑋𝑓

󸀠
⋅ 𝑓) ⋅ (𝐷𝑇𝑓

󸀠
⋅ 𝑓)] − 𝐷

3
𝑋 (𝐷𝑇𝑓

󸀠
⋅ 𝑓)

⋅ (𝑓
󸀠
𝑓) .

(178)

Identities (177) and (178) come from

exp (𝐷1) [exp (𝐷2) 𝑓
󸀠
⋅ 𝑓] ⋅ [exp (𝐷3) 𝑓

󸀠
⋅ 𝑓]

= exp (
1

2
{𝐷2 − 𝐷3})

⋅ [exp {
1

2
(𝐷2 + 𝐷3) + 𝐷1} 𝑓

󸀠
⋅ 𝑓]

⋅ [exp {
1

2
(𝐷2 + 𝐷3) − 𝐷1} 𝑓

󸀠
⋅ 𝑓]

(179)

which is Equation (5.83) in [14], where 𝐷𝑖 fl 𝜀𝑖𝐷𝑋 + 𝛿𝑖𝐷𝑇.
In the order 𝜀

3
1𝛿3, (179) yields (177), and in the order 𝛿1𝜀

2
2𝜀3,

(179) yields (178). From (176) it follows that if (173) and (174)
hold then 𝑃 = 0 as required.

Thus we have proved that the pair of (173) and (174) con-
stitute a Bäcklund transformation in bilinear form for (72).
Separately these equations appear as part of the Bäcklund
transformation for other nonlinear evolution equations. For
example, (173) is the same as one of the equations that is
part of the Bäcklund transformation for a higher order KdV
equation (see Equation (5.139) in [14]), and (175) is similar
to Equation (5.132) in [14] that is part of the Bäcklund
transformation for amodel equation for shallowwater waves.

The inclusion of 𝜇 in the operator 3𝐷𝑇 + 𝜇 which appears
in (177) corresponds to a multiplication of 𝑓 and 𝑓

󸀠 by terms
of the form 𝑒

𝑔(𝑇) and 𝑒
𝑔󸀠(𝑇), respectively; however, this has no

effect on 𝑊 or 𝑊
󸀠 because, from (70), 𝑊 = 6(ln𝑓)𝑋. Hence,

without loss of generality, we may take 𝜇 = 0 in (174) if we
wish.

7.2. Bäcklund Transformation in Ordinary Form. Following
the procedure given in [14, 67], we can rewrite the Bäcklund
transformation in ordinary form in terms of the potential
𝑊 = ∫

𝑋

−∞
𝑈 𝑑𝑋

󸀠 given by (49). In new variables defined by

𝜙 = ln
𝑓
󸀠

𝑓
, 𝜌 = ln𝑓

󸀠
𝑓, (180)

(173) and (174) have the form

𝜙𝑋𝑋𝑋 + 3𝜙𝑋𝜌𝑋𝑋 + 𝜙
3
𝑋 − 𝜆 = 0, (181)

3 (𝜌𝑋𝑇 + 𝜙𝑋𝜙𝑇) + 1 + 𝜇𝜙𝑋 = 0, (182)

respectively, where we have used results similar to (XI.1)–
(XI.3) in [14]. From the definitions (70) and (180), different
solutions 𝑊, 𝑊󸀠 of VPE (50) are related to 𝜙 and 𝜌 by

𝑊
󸀠
− 𝑊 = 6𝜙𝑋,

𝑊
󸀠
+ 𝑊 = 6𝜌𝑋.

(183)
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Substitution of (183) into (181) and (182) with 𝜇 = 0 leads to

(𝑊
󸀠
− 𝑊)

𝑋𝑋
+

1

2
(𝑊

󸀠
− 𝑊) (𝑊

󸀠
+ 𝑊)

𝑋
+

1

36
(𝑊

󸀠

− 𝑊)
3

− 6𝜆 = 0,

(184)

3𝜆 (𝑊
󸀠
− 𝑊)

𝑇

+ [(1 − 𝑊𝑇) ((𝑊
󸀠
− 𝑊)

𝑋
+

1

6
(𝑊

󸀠
− 𝑊)

2
)

− 𝑊𝑋𝑇 (𝑊
󸀠
− 𝑊)]

𝑋
= 0,

(185)

respectively. The required Bäcklund transformation in ordi-
nary form is given by (184) and (185).

Thus, by usingVPE as an example, we have traced how the
bilinear and ordinary forms of the Bäcklund transformation
can be found from the bilinear form of an evolution equation.

7.3. The Infinite Sequence of Conservation Laws. An impor-
tant property of a soliton equation is that it has conservation
laws. The existence of an infinite number of conserved
quantities is associated with the integrability of an equation
[16].

A systematic way to derive higher conservation laws via
the Bäcklund transformation has been developed by Satsuma;
he applied it to the KdV equation [68]. Later Satsuma
and Kaup [67] applied the method to a higher order KdV
equation. Following [68], from the Bäcklund transformation
we now construct the recurrence formula which gives the
infinite sequence of conserved quantities for the VPE. An
infinite sequence of conservation laws having the form

𝜕𝐼𝑛

𝜕𝑇
+

𝜕𝐹𝑛

𝜕𝑋
= 0 (186)

provides, inmost cases, a corresponding sequence of integrals
of motion given by the functionals ∫ 𝐼𝑛𝑑𝑋. Let us rewrite
(184) (one of the Bäcklund transformation equations) in the
form

𝑊
󸀠
− 𝑊

= 6𝜁
3

√1 −
1

6𝜁3
((𝑊󸀠 − 𝑊)𝑋𝑋 +

1

2
(𝑊󸀠 − 𝑊) (𝑊󸀠 + 𝑊)𝑋),

𝜁
3

= 𝜆.

(187)

Assuming 1/|𝜁| is small, we may consider (187) to be an
infinitesimal transformation from 𝑊 to 𝑊

󸀠. Indeed, in the
first approximation𝑊

󸀠
≃ 𝑊+6𝜁 and the next approximation

with respect to |𝜁|
−1

𝑊
󸀠

= 𝑊 + 6𝜁 +
1

6𝜁
𝐼1. (188)

Thus, we put 𝑊 in the form

𝑊
󸀠

= 𝑊 + 6𝜁 +

∞

∑

𝑛=1

1

6𝑛𝜁𝑛
𝐼𝑛 (𝑊, 𝑊𝑋, 𝑊𝑋𝑋, . . .) . (189)

Substituting (189) into (184), and equating the coefficients for
the higher powers of 1/|𝜁|, we have

𝑂 (𝜁
1
) : 𝐼1 = −2𝑊𝑋,

𝑂 (𝜁
0
) : 𝐼2 = 2𝑊𝑋𝑋,

𝑂 (𝜁
−1

) : 𝐼3 = −
4

3
𝑊𝑋𝑋𝑋,

𝑂 (𝜁
−2

) : 𝐼4 =
2

3
𝑊𝑋𝑋𝑋𝑋,

𝑂 (𝜁
−3

) : 𝐼5 = −
2

9
𝑊𝑋𝑋𝑋𝑋𝑋 +

1

9
(𝑊

2
𝑋)

𝑋𝑋
−

2

9
𝑊

2
𝑋𝑋

+
2

27
𝑊

3
𝑋.

(190)

The general recursion relations for 𝑛 ≥ 5 are as follows:

𝐼𝑛 = −
1

3
𝐼𝑛−2,𝑋𝑋 − 𝐼𝑛−1,𝑋 −

1

6

𝑛−3

∑

𝑖=1

𝐼𝑖𝐼𝑛−𝑖−2,𝑋 −
1

3
𝑊𝑋𝐼𝑛−2

−
1

6

𝑛−2

∑

𝑖=1

𝐼𝑖𝐼𝑛−𝑖−1 −
1

108
∑

𝑖+𝑗+𝑙=𝑛−2

𝐼𝑖𝐼𝑗𝐼𝑙.

(191)

The fact that these quantities are the conserved densities can
be shown as follows. Let us calculate the integral ∫(𝑊

󸀠
−

𝑊 − 6𝜁)𝑇𝑑𝑋 with suitable boundary conditions. Taking into
account (189), we have

(∫ (𝑊
󸀠
− 𝑊 − 6𝜁) 𝑑𝑋)

𝑇
= [

1

6𝑛𝜁𝑛

∞

∑

𝑖=1

(∫ 𝐼𝑛𝑑𝑋)]

𝑇

= 0.

(192)

Thus we deduce that the VPE has an infinite sequence of
conservation laws.

8. The Inverse Scattering Method for the VPE

The inverse scattering transform (IST) method is arguably
the most important discovery in the theory of solitons. The
method enables one to solve the initial value problem for a
nonlinear evolution equation. Moreover, it provides a proof
of the complete integrability of the equation.

The idea of the inverse scattering method was first intro-
duced for the KdV equation [1] and subsequently developed
for the nonlinear Schrödinger equation [13], the mKdV
equation [69, 70], the sine-Gordon equation [12, 71], and
the equation of motion for a one-dimensional exponential
lattice (Toda lattice) [72]. It is to be remarked that the inverse
method is a unique theory whereby the initial value problem
for the nonlinear differential equations can be solved exactly.
For the KdV equation this method was expressed in general
form by Lax [73].

The essence of the application of the IST is as follows.The
equation of interest for study (in our case VPE (50)) is written
as the compatibility condition for two linear equations.These
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equations, (194) and (195), will be derived below. Then
𝑊(𝑋, 0) is mapped into the scattering data 𝑆(0) for (194).
It is important that since the variable 𝑊(𝑋, 𝑇) contained in
the spectral equation (194) evolves according to (50), the
spectrum𝜆 always retains constant values.The time evolution
of 𝑆(𝑇) is simple and linear. From a knowledge of 𝑆(𝑇), we
reconstruct 𝑊(𝑋, 𝑇).

8.1. Formulation of the Inverse Scattering Eigenvalue Problem.
Since we have obtained the 𝑁-loop soliton solution to VPE
(50) by use of the Hirota method (see Sections 5.4–5.8), we
can state that VPE (50) is integrable. The use of the IST is the
most appropriate way of tackling the initial value problem.
In order to apply the IST method, one first has to formulate
the associated eigenvalue problem. This can be achieved
by finding a Bäcklund transformation associated with the
VPE. We have already shown in Section 7 that the Bäcklund
transformation is one of the analytical tools for dealing with
soliton problems. The main aim of Section 8 is to give the
details of the IST method for solving the VPE, so first we will
formulate the scattering problem.

Now we will show that the IST problem for the VPE in
form (50) has a third-order eigenvalue problem that is similar
to the one associated with a higher order KdV equation [67,
74], a Boussinesq equation [74–78], and a model equation for
shallow water waves [14, 49].

Introducing the function

𝜓 =
𝑓
󸀠

𝑓
, (193)

and taking into account (70), we find that (173) and (174)
reduce to

𝜓𝑋𝑋𝑋 + 𝑊𝑋𝜓𝑋 − 𝜆𝜓 = 0, (194)

3𝜓𝑋𝑇 + (1 + 𝑊𝑇) 𝜓 + 𝜇𝜓𝑋 = 0, (195)

respectively, where we have used results similar to (X.1)–(X.3)
in [14].

From (194) and (195) it can be shown that

3𝜆𝜓𝑇 + (1 + 𝑊𝑇) 𝜓𝑋𝑋 − 𝑊𝑋𝑇𝜓𝑋

+ [𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 + 𝜇𝜆] 𝜓 = 0,

(196)

[𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋]𝑋 𝜓 + (3𝜓𝑇 + 𝜇𝜓) 𝜆𝑋 = 0. (197)

In view of (50), (196) becomes

3𝜆𝜓𝑇 + (1 + 𝑊𝑇) 𝜓𝑋𝑋 − 𝑊𝑋𝑇𝜓𝑋 + 𝜆𝜇𝜓 = 0, (198)

and (197) implies that 𝜆𝑋 = 0 so the spectrum 𝜆 of (194)
remains constant. Constant 𝜆 is what is required in the IST
problem. Equation (197) yields the equation 𝑊𝑋𝑋𝑇 + (1 +

𝑊𝑇)𝑊𝑋 = ℎ(𝑇), where ℎ(𝑇) is an arbitrary function of 𝑇.
Now, according to (209) and (221), the inverse scattering
method restricts the solutions to those that vanish as |𝑋| →

∞, so ℎ(𝑇) is to be identically zero.Thus the pair of (194) and

(195) or (194) and (197) can be considered as the Lax pair for
VPE (50).

Since (194) and (195) are alternative forms of (173) and
(174), respectively, it follows that the pair of (194) and (195)
is associated with VPE (50) considered here. Thus the IST
problem is directly related to a spectral equation of third
order, namely, (194). The inverse problem for certain third-
order spectral equations has been considered by Kaup [74]
and Caudrey [75, 76]. As expected, (194) and (195) are similar
to, but cannot be transformed into, the corresponding equa-
tions for the Hirota-Satsuma equation (HSE) (see Equations
(A8a) and (A8b) in [79]). Clarkson and Mansfield [80]
note that the scattering problem for the HSE is similar to
that for the Boussinesq equation which has been studied
comprehensively by Deift et al. [78].

After the Lax pair for the VPE was derived in [43], in
[81] the Lax pair was written in its original variables as a zero
curvature condition. Moreover, in [81] Hone and Wang have
shown that there is a subtle connection between the Sawada-
Kotera hierarchy and theVE, between theDegasperis-Procesi
equation (DPE) and the VE (see also [82, 83]), and between
the Lax pairs of the DPE and the VE. For the Cauchy
problem at long-time, the IST approach presents throughout
a Riemann-Hilbert problem [84, 85] in original (physical)
independent variables for the VE in [85].

8.2. Example of the Use of the IST Method to Find the One-
Soliton Solution. Consider the one-soliton solution of the
VPE obtained in Section 5.5, but by application of the IST
method. Let the initial perturbation be

𝑊 (𝑋, 0) = 6𝑘 (1 + tanh (𝜂)) , 𝜂 = 𝑘𝑋 + 𝛼. (199)

For convenience we introduce new notations 𝜉1 and 𝛽1

instead of parameters 𝑘 and 𝛼 by

𝑘 =
√3

2
𝜉1,

𝛼 =
1

2
ln(

𝛽1

2√3𝜉1

) ;

(200)

then

𝑊 (𝑋, 0)

= 6√3𝜉1

𝜕

𝜕𝑋
ln[1 +

𝛽1

2√3𝜉1

exp (√3𝜉1𝑋)]

(201)

is the initial condition for the VPE.
The first step in the IST method is to solve spectral

equation (194) with spectral parameter 𝜆 for the given initial
condition 𝑊(𝑋, 0). In our example it is (201). The solution
is studied over the complex 𝜁-plane, where 𝜁

3
= 𝜆. One

can verify by direct substitution of (202) in (194) that the
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solution𝜓(𝑋, 0; 𝜁) of the linearODE (194), normalized so that
𝜓(𝑋, 0; 𝜁)exp(−𝜁𝑋) → 1 at 𝑋 → −∞, is given by

𝜓 (𝑋, 0; 𝜁) exp (−𝜁𝑋) = 1

−

𝛽1 exp (√3𝜉1𝑋)

1 + 𝛽1 (exp (√3𝜉1𝑋) /2√3𝜉1)

[
𝜔2

𝑖𝜔2𝜉1 − 𝜁

+
𝜔3

−𝑖𝜔3𝜉1 − 𝜁
] ,

(202)

where 𝜔𝑗 = 𝑒
𝑖2𝜋(𝑗−1)/3 are the cube of roots of 1 (𝑗 = 1, 2, 3).

The constants 𝛽1 and 𝜉1, as we will show, are associated with
the local spectral data.

The second step in the IST method is to obtain the
evolution of 𝛽1 and 𝜉1. The time-dependence of the solution
𝜓(𝑋, 𝑇) is described by (195). Analyzing (195), wemay assume
that

𝜉1 (𝑇) = 𝜉1 (0) = const.,

𝛽1 (𝑇) = 𝛽1 (0) exp(−
1

√3𝜉1

𝑇) .

(203)

Below, the assumption of these relationships will be justified.
Indeed, we know that the spectrum 𝜆 in (194) remains
constant if 𝑊(𝑋, 𝑇) evolves according to (50). Therefore,
as will be proved, the spectrum data evolve as in (219). In
notations (226) and (227), from (219) we obtain relations
(203).

The final step in IST method is to select the solution
𝑊(𝑋, 𝑇) from (202) with 𝜉1(𝑇) and 𝛽1(𝑇) as in (203).
According to Equation (2.7) in [74] we expand 𝜓(𝑋, 𝑇; 𝜁) as
an asymptotic series in 𝜁

−1 to obtain

𝜓 (𝑋, 0; 𝜁) exp (−𝜁𝑋)

= 1 −
1

3𝜁
[𝑊 (𝑋) − 𝑊 (−∞)] + 𝑂 (𝜁

−2
) ,

(204)

that is, 𝑊(𝑋) − 𝑊(−∞) = lim𝜁→∞[3𝜁(1 − 𝜓 exp(−𝜁𝑋))].
Taking into account the functional dependence (203), we find
the required one-soliton solution of the VPE in form

𝑊 (𝑋, 𝑇) = 6√3𝜉1

𝜕

𝜕𝑋

⋅ ln[1 +
𝛽1

2√3
exp(√3𝜉1𝑋 −

1

√3𝜉1

𝑇)]

+ const.

(205)

Thus, for the example of the one-soliton solution, we have
demonstrated the IST method.

8.3.TheDirect Spectral Problem. Let us consider the principal
aspects of the inverse scattering transform problem for a
third-order equation. The inverse problem for certain third-
order spectral equations has been considered by Kaup [74]
and Caudrey [75, 76]. The time evolution of 𝜓 is determined
from (195) or (198).

Following the method described by Caudrey [75], spec-
tral equation (194) can be rewritten

𝜕

𝜕𝑋
𝜓 = [A (𝜁) + B (𝑋, 𝜁)] ⋅ 𝜓 (206)

with

𝜓 = (

𝜓

𝜓𝑋

𝜓𝑋𝑋

) ,

A = (

0 1 0

0 0 1

𝜆 0 0

) ,

B = (

0 0 0

0 0 0

0 −𝑊𝑋 0

) .

(207)

The matrix A has eigenvalues 𝜆𝑗(𝜁) and left- and right-
eigenvectors k̃𝑗(𝜁) and k𝑗(𝜁), respectively.These quantities are
defined through a spectral parameter 𝜆 as

𝜆𝑗 (𝜁) = 𝜔𝑗𝜁,

𝜆
3
𝑗 (𝜁) = 𝜆,

k𝑗 (𝜁) = (

1

𝜆𝑗 (𝜁)

𝜆
2
𝑗 (𝜁)

) ,

k̃𝑗 (𝜁) = (𝜆
2
𝑗 (𝜁) 𝜆𝑗 (𝜁) 1) ,

(208)

where, as previously, 𝜔𝑗 = 𝑒
2𝜋𝑖(𝑗−1)/3 are the cube roots of 1

(𝑗 = 1, 2, 3). Obviously 𝜆𝑗(𝜁) are distinct and they and k̃𝑗(𝜁)

and k𝑗(𝜁) are analytic throughout the complex 𝜁-plane.
The solution of linear equation (194) (or equivalently

(206)) has been obtained by Caudrey [75] in terms of Jost
functions 𝜙𝑗(𝑋, 𝜁) which have the asymptotic behaviour

Φ𝑗 (𝑋, 𝜁) fl exp {−𝜆𝑗 (𝜁) 𝑋} 𝜙𝑗 (𝑋, 𝜁) 󳨀→ k𝑗 (𝜁)

as 𝑋 󳨀→ −∞.

(209)

Caudrey [75] showed how (206) can be solved by expressing
it as a Fredholm integral equation.

The complex 𝜁-plane is to be divided into regions such
that, in the interior of each region, the order of the numbers
Re(𝜆𝑖(𝜁)) is fixed. As we pass from one region to another
this order changes and hence, on a boundary between two
regions, Re(𝜆𝑖(𝜁)) = Re(𝜆𝑗(𝜁)) for at least one pair 𝑖 ̸= 𝑗. The
Jost function 𝜙𝑗 is regular throughout the complex 𝜁-plane
apart from poles and finite singularities on the boundaries
between the regions. At any point in the interior of any region
of the complex 𝜁-plane, the solution of (206) is obtained by
the relation (2.12) from [75]. It is the direct spectral problem.
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8.4. The Spectral Data. The information about the singulari-
ties of the Jost functions 𝜙𝑗(𝑋, 𝜁) resides in the spectral data.
First let us consider the poles. It is assumed that a pole 𝜁

(𝑘)
𝑖 in

𝜙𝑖(𝑋, 𝜁) is simple, does not coincide with a pole of 𝜙𝑗(𝑋, 𝜁),
𝑗 ̸= 𝑖, and does not lie on a boundary between two regions.
Then, as proven in [75], the residue is

Res𝜙𝑖 (𝑋, 𝜁
(𝑘)
𝑖 ) =

𝑛

∑

𝑗=1
𝑗 ̸=𝑖

𝛾
(𝑘)
𝑖𝑗 𝜙𝑗 (𝑋, 𝜁

(𝑘)
𝑖 ) (210)

and it can be found because we know solution (194) in
any regular regions from solving the direct problem (see
Section 8.3). Note that, for 𝜙𝑗(𝑋, 𝜁

(𝑘)
𝑖 ), the point 𝜁

(𝑘)
𝑖 lies in

the interior of a regular region. The quantities 𝜁
(𝑘)
𝑖 and 𝛾

(𝑘)
𝑖𝑗

constitute the discrete part of the spectral data.
Now we consider the singularities on the boundaries

between regions. However, in order to simplify matters, we
first make some observations. The solution of the spectral
problem can be facilitated by using various symmetry prop-
erties. In view of (194), we need only to consider the first
elements of

𝜙𝑖 (𝑋, 𝜁) = (

𝜙𝑖 (𝑋, 𝜁)

𝜙𝑖 (𝑋, 𝜁)𝑋

𝜙𝑖 (𝑋, 𝜁)𝑋𝑋

) , (211)

while the symmetry

𝜙1 (𝑋,
𝜁

𝜔1

) = 𝜙2 (𝑋,
𝜁

𝜔2

) = 𝜙3 (𝑋,
𝜁

𝜔3

) (212)

means we need only to consider 𝜙1(𝑋, 𝜁). In our case, for
𝜙1(𝑋, 𝜁), the complex 𝜁-plane is divided into four regions by
two lines (see Figure 8) given by

(i) 𝜁
󸀠

= 𝜔2𝜉, where Re (𝜆1 (𝜁)) = Re (𝜆2 (𝜁)) ,

(ii) 𝜁
󸀠

= −𝜔3𝜉, where Re (𝜆1 (𝜁)) = Re (𝜆3 (𝜁)) ,

(213)

where 𝜉 is real (see Figure 8). The singularity of 𝜙1(𝑋, 𝜁) can
appear only on these boundaries between the regular regions
on the 𝜁-plane and it is characterized by functions 𝑄1𝑗(𝜁

󸀠
) at

each fixed 𝑗 ̸= 1. We denote the limit of a quantity, as the
boundary is approached, by the superfix ± according to the
sign of Re(𝜆1(𝜁) − 𝜆𝑗(𝜁)) (see Figure 8).

In [75] (see Equation (3.14) there) the jump of 𝜙1(𝑋, 𝜁) on
the boundaries is calculated as

𝜙
+
1 (𝑋, 𝜁) − 𝜙

−
1 (𝑋, 𝜁) =

3

∑

𝑗=2

𝑄1𝑗 (𝜁) 𝜙
−
𝑗 (𝑋, 𝜁) , (214)

where, from (213), the sum is over the lines 𝜁
󸀠

= 𝜔2𝜉 and
𝜁
󸀠

= −𝜔3𝜉 given by

(i) 𝜁
󸀠

= 𝜔2𝜉, with 𝑄
(1)
12 (𝜁

󸀠
) ̸= 0, 𝑄

(1)
13 (𝜁

󸀠
) ≡ 0,

(ii) 𝜁
󸀠

= −𝜔3𝜉, with 𝑄
(2)
12 (𝜁

󸀠
) ≡ 0, 𝑄

(2)
13 (𝜁

󸀠
) ̸= 0.

(215)

Re(𝜆1 − 𝜆3) < 0Re(𝜆1 − 𝜆2) > 0

Re(𝜆1 − 𝜆2) < 0 Re(𝜆1 − 𝜆3) > 0

Re(𝜁)

Line 𝜁 = 𝜔2𝜉
Re(𝜆1 − 𝜆2) = 0

≠ 0

Line 𝜁 = −𝜔3𝜉

Re(𝜆1 − 𝜆3) = 0

Pole 1

Pole 2

𝜁(2)1 = −i𝜔3𝜉1

𝛾(2)13 = 𝜔3𝛽1

𝜁(1)1 = i𝜔2𝜉1

𝛾(1)12 = 𝜔2𝛽1

Line 𝜁 = −i𝜔3𝜉Line 𝜁 = i𝜔2𝜉

Q(1)
13 (𝜁

󳰀) = 0, Q(1)
12 (𝜁

󳰀)≠ 0Q(2)
12 (𝜁

󳰀) = 0, Q(2)
13 (𝜁

󳰀)

Im(𝜁)

Figure 8:The regular regions for Jost functions 𝜙1(𝑋, 𝜁) in the com-
plex 𝜁-plane. The dashed lines determine the boundaries between
regular regions.These lines are lines where the singularity functions
𝑄1𝑗(𝜁

󸀠
) are given. The dotted lines are the lines where the poles

appear.

The singularity functions 𝑄1𝑗(𝜁
󸀠
) are determined by

𝑊(𝑋, 0) through the matrix B(𝑋, 𝜁) (207) (see Equation
(3.13) in [75])

𝑄1𝑗 (𝜁) =
1

k̃𝑗 (𝜁) ⋅ k𝑗 (𝜁)
k̃𝑗 (𝜁)

⋅ ∫

∞

−∞
exp [(𝜆1 (𝜁) − 𝜆𝑗 (𝜁)) 𝑧]B (𝑧, 𝜁)

⋅ 𝜙
−
1 (𝑋, 𝜁) 𝑑𝑧.

(216)

The quantities 𝑄1𝑗(𝜁
󸀠
) along all the boundaries constitute the

continuum part of the spectral data.
Thus, the spectral data are

𝑆 = {𝜁
(𝑘)
1 , 𝛾

(𝑘)
1𝑗 , 𝑄1𝑗 (𝜁

󸀠
) ; 𝑗 = 2, 3, 𝑘 = 1, 2, . . . , 𝑚} . (217)

One of the important features which is to be noted for the
IST method is as follows. After the spectral data have been
found from B(𝑋, 0; 𝜁), that is, at initial time, we need to seek
the time evolution of the spectral data from (195). Analyzing
(195) at 𝑋 → ∞ together with (209)

𝜙𝑖 (𝑋, 𝑇, 𝜁) = exp [− (3𝜆𝑖 (𝜁))
−1

𝑇] 𝜙𝑖 (𝑋, 0, 𝜁) , (218)
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the 𝑇-dependence is revealed as

𝜁
(𝑘)
𝑗 (𝑇) = 𝜁

(𝑘)
𝑗 (0) ,

𝛾
(𝑘)
1𝑗 (𝑇) = 𝛾

(𝑘)
1𝑗 (0)

⋅ exp {[− (3𝜆𝑗 (𝜁
(𝑘)
1 ))

−1
+ (3𝜆1 (𝜁

(𝑘)
1 ))

−1
] 𝑇} ,

𝑄1𝑗 (𝑇; 𝜁
󸀠
) = 𝑄1𝑗 (0; 𝜁

󸀠
)

⋅ exp {[− (3𝜆𝑗 (𝜁
󸀠
))

−1
+ (3𝜆1 (𝜁

󸀠
))

−1
] 𝑇} .

(219)

The final step in the application of the IST method is to
reconstructB(𝑋, 𝑇; 𝜁) from the evaluated spectral data. In the
next section, we show how to do this.

8.5. The Inverse Spectral Problem. The final procedure in IST
method is that of the reconstruction of the matrix B(𝑋, 𝑇; 𝜁)

and 𝑊(𝑋, 𝑇) from the spectral data 𝑆.
The spectral data define Φ1(𝑋, 𝜁) uniquely in the form

(see Equation (6.20) in [75])

Φ1 (𝑋, 𝑇; 𝜁) = 1 −

𝐾

∑

𝑘=1

3

∑

𝑗=2

𝛾
(𝑘)
1𝑗 (𝑇)

⋅

exp {[𝜆𝑗 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁

(𝑘)
1 )] 𝑋}

𝜆1 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁)

Φ1 (𝑋, 𝑇; 𝜔𝑗𝜁
(𝑘)
1 )

+
1

2𝜋𝑖
∫

3

∑

𝑗=2

𝑄1𝑗 (𝑇; 𝜁
󸀠
)

⋅

exp {[𝜆𝑗 (𝜁
󸀠
) − 𝜆1 (𝜁

󸀠
)] 𝑋}

𝜁󸀠 − 𝜁
Φ
−
1 (𝑋, 𝑇;

𝜔𝑗𝜁
󸀠
) 𝑑𝜁

󸀠
.

(220)

Equation (220) contains the spectral data, namely, 𝐾 poles
with the quantities 𝛾

(𝑘)
1𝑗 for the bound state spectrum aswell as

the functions𝑄1𝑗(𝜁
󸀠
) given along all the boundaries of regular

regions for the continuous spectrum. The integral in (220) is
along all the boundaries (see the dashed lines in Figure 8).
The direction of integration is taken so that the side chosen
to be Re(𝜆1(𝜁)−𝜆𝑗(𝜁)) < 0 is shown by the arrows in Figure 8
(for the lines (213), 𝜉 sweeps from −∞ to +∞).

It is necessary to note that we should carry out the
integration along the lines 𝜔2(𝜉 + 𝑖𝜀) and −𝜔3(𝜉 + 𝑖𝜀) with
𝜀 > 0. In this case condition (209) is satisfied. Passing to
the limit 𝜀 → 0 we can obtain the solution which does not
satisfy condition (209) (see Section 11.1.1). However, for any
finite 𝜀 > 0, the restricted region on 𝑋 can be determined
where the solution associated with a finite 𝜀 > 0 (for which
condition (209) is valid) and the solution associated with
𝜀 = 0 are sufficiently close to each other. In this sense,
taking the integration at 𝜀 = 0, we remain within the inverse
scattering theory [75], and so condition (209) can be omitted.
The solution obtained at 𝜀 = 0 can be extended to sufficiently

large finite 𝑋. Thus, we will interpret the solution obtained at
𝜀 = 0 as the solution of VPE (50) which is valid for arbitrary
but finite 𝑋.

By choosing appropriate values for 𝜁, the left-hand
side in (220) can be Φ1(𝑋, 𝑇; 𝜔𝑗𝜁

(𝑘)
1 ), or by allowing 𝜁

to approach the boundaries from the appropriate sides,
the left-hand side can be Φ

−
1 (𝑋, 𝑇; 𝜔𝑗𝜁

󸀠
). We acquire a

set of linear matrix/Fredholm equations in the unknowns
Φ1(𝑋, 𝑇; 𝜔𝑗𝜁

(𝑘)
1 ) and Φ

−
1 (𝑋, 𝑇; 𝜔𝑗𝜁

󸀠
). The solution of this

equation system enables one to defineΦ1(𝑋, 𝑇; 𝜁) from (220).
By knowing Φ1(𝑋, 𝑇; 𝜁), we can take extra information

into account, namely, that the expansion of Φ1(𝑋, 𝑇; 𝜁) as an
asymptotic series in 𝜆

−1
1 (𝜁) connects with 𝑊(𝑋, 𝑇) as follows

(cf. Equation (2.7) in [74]):

Φ1 (𝑋, 𝑇; 𝜁) = 1 −
1

3𝜆1 (𝜁)
[𝑊 (𝑋, 𝑇) − 𝑊 (−∞)]

+ 𝑂 (𝜆
−2
1 (𝜁)) .

(221)

Consequently, the solution𝑊(𝑋, 𝑇) and thematrixB(𝑋, 𝑇; 𝜁)

can be reconstructed from the spectral data.
Sections 9–11 show how the ISTmethod can be applied to

the VPE.

9. The 𝑁-Soliton Solution

In this section the procedure for finding the exact 𝑁-soliton
solution of the VPE via the inverse scattering method will
be described [43, 61–63]. To do this we consider (220) with
𝑄1𝑗(𝜁) ≡ 0. Then there is only the bound state spectrum
which is associated with the soliton solutions.

Let the bound state spectrum be defined by 𝐾 poles.
Relation (220) is reduced to the form

Φ1 (𝑋, 𝑇; 𝜁) = 1 −

𝐾

∑

𝑘=1

3

∑

𝑗=2

𝛾
(𝑘)
1𝑗 (𝑇)

⋅

exp {[𝜆𝑗 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁

(𝑘)
1 )] 𝑋}

𝜆1 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁)

Φ1 (𝑋, 𝑇;

𝜔𝑗𝜁
(𝑘)
1 ) .

(222)

Equation (222) involves the spectral data, namely, the poles
𝜁
(𝑘)
1 and the quantities 𝛾

(𝑘)
1𝑗 . First we will prove that Re 𝜆 = 0

for compact support. From (194) we have

(𝜓𝑋)𝑋𝑋𝑋 + (𝑈𝜓𝑋)𝑋 − 𝜆𝜓𝑋 = 0, (223)

and together with (194) this enables us to write

𝜕

𝜕𝑋
(

𝜕
2

𝜕𝑋2
𝜓𝑋𝜓

∗
− 3𝜓𝑋𝑋𝜓

∗
𝑋 + 𝑈𝜓𝑋𝜓

∗
)

− 2Re 𝜆𝜓𝑋𝜓
∗

= 0.

(224)

Integrating (224) over all values of 𝑋, we obtain that, for
compact support, Re 𝜆 = 0 since, in the general case,
∫
∞

−∞
𝜓𝑋𝜓

∗
𝑑𝑋 ̸= 0.
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As follows from (2.12), (2.13), (2.36), and (2.37) of [74],
𝜓𝑋(𝜁) is related to the adjoint states 𝜓

𝐴
𝑋(−𝜁). In the usual

manner, using the adjoint states and Equation (14) from [76]
and Equation (2.37) from [74], one can obtain

𝜙1𝑋 (𝑋, 𝜁) =
𝑖

√3
[𝜙1𝑋 (𝑋, −𝜔2𝜁) 𝜙1 (𝑋, −𝜔3𝜁)

− 𝜙1𝑋 (𝑋, −𝜔3𝜁) 𝜙1 (𝑋, −𝜔2𝜁)] .

(225)

It is easily seen that if 𝜁
(1)
1 is a pole of 𝜙1(𝑋, 𝜁), then

there is a pole either at 𝜁
(2)
1 = −𝜔2𝜁

(1)
1 (if 𝜙1(𝑋, −𝜔2𝜁) has

a pole) or at 𝜁
(2)
1 = −𝜔3𝜁

(1)
1 (if 𝜙1(𝑋, −𝜔3𝜁) has a pole). For

definiteness let 𝜁
(2)
1 = −𝜔2𝜁

(1)
1 . Then, as follows from (225),

−𝜔3𝜁
(2)
1 should be a pole. However, this pole coincides with

the pole 𝜁
(1)
1 , since −𝜔3𝜁

(2)
1 = −𝜔3(−𝜔2)𝜁

(1)
1 = 𝜁

(1)
1 . Hence the

poles appear in pairs, 𝜁
(2𝑛−1)
1 and 𝜁

(2𝑛)
1 , under the condition

𝜁
(2𝑛)
1 /𝜁

(2𝑛−1)
1 = −𝜔2, where 𝑛 is the pair number.

Let us consider 𝑁 pairs of poles; that is, in all there are
𝐾 = 2𝑁 poles over which the sum is taken in (225). For the
pair 𝑛 (𝑛 = 1, 2, . . . , 𝑁) we have the properties

(i) 𝜁
(2𝑛−1)
1 = 𝑖𝜔2𝜉𝑛,

(ii) 𝜁
(2𝑛)
1 = −𝑖𝜔3𝜉𝑛.

(226)

Since 𝑈 is real and 𝜆 is imaginary, 𝜉𝑘 is real. Relationships
(226) are in line with condition (2.33) from [74]. These
relationships are also similar to Equations (6.24) and (6.25)

in [75], while 𝛾
(𝑘)
1𝑗 turns out to be different from 𝛾̃

(𝑘)
1𝑗 for the

Boussinesq equation (see Equations (6.24) and (6.25) in [75]).
Indeed, by considering (225) in the vicinity of the first pole
𝜁
(2𝑛−1)
1 of the pair 𝑛 and using relation (222), one can obtain
a relation between 𝛾

(𝑘)
12 and 𝛾

(𝑘)
13 . In this case the functions

𝜙1,𝑋(𝑋, 𝜁), 𝜙1(𝑋, −𝜔2𝜁), and 𝜙1,𝑋(𝑋, −𝜔2𝜁) also have poles

here, while the functions 𝜙1(𝑋, −𝜔3𝜁) and 𝜙1,𝑋(𝑋, −𝜔3𝜁) do
not have poles here. Substituting 𝜙1(𝑋, 𝜁) in form (222) into
(225) and letting 𝑋 → −∞, we have the ratio 𝛾

(2𝑛)
13 /𝛾

(2𝑛−1)
12 =

𝜔2 and 𝛾
(2𝑛)
12 = 𝛾

(2𝑛−1)
13 = 0. Therefore the properties of 𝛾

(𝑘)
𝑖𝑗

should be defined by the relationships

(i) 𝛾
(2𝑛−1)
12 = 𝜔2𝛽𝑘, 𝛾

(2𝑛−1)
13 = 0,

(ii) 𝛾
(2𝑛)
12 = 0, 𝛾

(2𝑛)
13 = 𝜔3𝛽𝑘,

(227)

where, as it will be proved below, 𝛽𝑘 is real when 𝑈 = 𝑊𝑋 is
real.

By defining

Ψ𝑘 (𝑋, 𝑇)

=

3

∑

𝑗=2

𝛾
(𝑘)
1𝑗 (𝑇) exp {𝜆𝑗 (𝜁

(𝑘)
1 ) 𝑋} Φ1 (𝑋, 𝑇; 𝜔𝑗𝜁

(𝑘)
1 ) ,

(228)

we may rewrite relationship (222) as (see, for instance,
Equations (6.33) and (6.34) in [75])

Φ1 (𝑋, 𝑇; 𝜁) = 1 −

2𝑁

∑

𝑘=1

exp {−𝜆1 (𝜁
(𝑘)
1 ) 𝑋}

𝜆1 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁)

Ψ𝑘 (𝑋, 𝑇) . (229)

From (221) and (229) it may be shown that (cf. Equation
(6.38) in [75])

𝑊 (𝑋, 𝑇) − 𝑊 (−∞)

= −3

2𝑁

∑

𝑘=1

exp {−𝜆1 (𝜁
(𝑘)
1 ) 𝑋} Ψ𝑘 (𝑋, 𝑇)

= 3
𝜕

𝜕𝑋
ln (det𝑀 (𝑋, 𝑇)) .

(230)

The 2𝑁 × 2𝑁 matrix 𝑀(𝑋, 𝑇) is defined as in relationship
(6.36) in [75] by

𝑀𝑘𝑙 (𝑋, 𝑇) = 𝛿𝑘𝑙 −

3

∑

𝑗=2

𝛾
(𝑘)
1𝑗 (0)

exp {[− (3𝜆𝑗 (𝜁
(𝑘)
1 ))

−1
+ (3𝜆1 (𝜁

(𝑘)
1 ))

−1
] 𝑇 + (𝜆𝑗 (𝜁

(𝑘)
1 ) − 𝜆1 (𝜁

(𝑙)
1 )) 𝑋}

𝜆𝑗 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁

(𝑙)
1 )

, (231)

and 𝑛 = 1, 2, . . . , 𝑁,

𝜆1 (𝜁
(2𝑛−1)
1 ) = 𝑖𝜔2𝜉𝑛,

𝜆2 (𝜁
(2𝑛−1)
1 ) = 𝑖𝜔3𝜉𝑛,

𝛾
(2𝑛−1)
12 = 𝜔2𝛽𝑛,

𝛾
(2𝑛−1)
13 = 0,

𝜆1 (𝜁
(2𝑛)
1 ) = −𝑖𝜔3𝜉𝑛,

𝜆3 (𝜁
(2𝑛)
1 ) = −𝑖𝜔2𝜉𝑛,

𝛾
(2𝑛)
12 = 0,

𝛾
(2𝑛)
13 = 𝜔3𝛽𝑛.

(232)
For the 𝑁-soliton solution there are 𝑁 arbitrary constants 𝜉𝑛

and 𝑁 arbitrary constants 𝛽𝑛.
The final result for the 𝑁-soliton solution of the VPE is

defined by relationship (230) with (231).

9.1. Examples of One- and Two-Soliton Solutions. In order to
obtain the one-soliton solution of VPE (50)

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0, (233)
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we need first to calculate the 2 × 2 matrix 𝑀(𝑋, 𝑇) according
to (231) with 𝑁 = 1. We find that the matrix is

(

1 −
𝜔2𝛽1

√3𝜉1

exp [√3𝜉1𝑋 − (√3𝜉1)
−1

𝑇]
𝑖𝜔3𝛽1

2𝜉1

exp [2𝑖𝜔3𝜉1𝑋 − (√3𝜉1)
−1

𝑇]

−𝑖𝜔2𝛽1

2𝜉1

exp [−2𝑖𝜔2𝜉1𝑋 − (√3𝜉1)
−1

𝑇] 1 −
𝜔3𝛽1

√3𝜉1

exp [√3𝜉1𝑋 − (√3𝜉1)
−1

𝑇]

) (234)

and its determinant is

det𝑀 (𝑋, 𝑇)

= {1 +
𝛽1

2√3𝜉1

exp[√3𝜉1 (𝑋 −
𝑇

3𝜉
2
1

)]}

2

.

(235)

Consequently, from (230) we have the one-soliton solution of
the VPE:

𝑈 (𝑋, 𝑇) = 𝑊𝑋 (𝑋, 𝑇)

=
9

2
𝜉
2
1sech

2
[

√3

2
𝜉1 (𝑋 −

𝑇

3𝜉
2
1

) + 𝛼1] ,

(236)

where 𝛼1 = (1/2) ln(𝛽1/2√3𝜉1) is an arbitrary constant. Since
𝑈 is real, it follows from (236) that 𝛽1 is real. By writing
√3𝜉1/2 = 𝑘 in (236), with the condition 𝛽1/𝜉1 > 0 we recover
the one-soliton solution as we found previously by Hirota’s
method (see Equation (3.4) in [36] and/or (89)).

Note that with 𝛽1/𝜉1 < 0 we have the real solution in the
form of the singular soliton (93) [58]. Analysis of the singular
soliton solution is presented in Section 11.2 and Appendix B.

It is of interest to compare (236) with the solution of
the fifth-order KdV-like equation discussed in [74]. Spectral
equation (195) is the same as that given by (1.1) (with𝑅 = 0) in
[74], whereas the equation that governs the time-dependence
of 𝜓, that is, (195), is different from (1.2) in [74]. Thus the 𝑋

dependence of (235) should agree with the 𝑥 dependence of
the solution given by (3.30) in [74]. With the identification
𝑈 = 5𝑄, 𝜉1 = 𝜂, this is indeed the case.

Let us now consider the two-soliton solution of the VPE.
In this case 𝑀(𝑋, 𝑇) is a 4 × 4 matrix. We will not give the
explicit form here, but we find that

det𝑀 (𝑋, 𝑇) = (1 + 𝑞
2
1 + 𝑞

2
2 + 𝑏

2
𝑞
2
1𝑞

2
2)

2
, (237)

where

𝑞𝑖 = exp[
√3

2
𝜉𝑖 (𝑋 −

𝑇

3𝜉
2
𝑖

) + 𝛼𝑖] ,

𝑏
2

= (
𝜉2 − 𝜉1

𝜉2 + 𝜉1

)

2
𝜉
2
1 + 𝜉

2
2 − 𝜉1𝜉2

𝜉
2
1 + 𝜉

2
2 + 𝜉1𝜉2

,

(238)

and 𝛼𝑖 = (1/2) ln(𝛽𝑖/2√3𝜉𝑖) are arbitrary constants. The two-
soliton solution to the VPE as found by the IST method is
given by (230) together with (237). With the identification
√3𝜉𝑖/2 = 𝑘𝑖 (𝑖 = 1, 2) we recover the two-soliton solution
as given by Hirotas method (see Equations (4.1)–(4.5) in [36]
and/or (98)).

Finally we note that comparison of (230) with 𝑊 =

6(ln𝑓)𝑋 from (70) shows that

ln (det𝑀 (𝑋, 𝑇)) = 2 ln (𝑓) (239)

so that det𝑀(𝑋, 𝑇) is a perfect square for arbitrary 𝑁.

10. Accounting for the Continuum Part of
Spectral Data

Now, in addition to the bound state spectrum,we consider the
continuous spectrum of the associated eigenvalue problem
[44–46, 86]; that is, assume that at least some of the functions
𝑄1𝑗(𝜁

󸀠
) are nonzero. At each fixed 𝑗 ̸= 1 the functions 𝑄1𝑗(𝜁

󸀠
)

characterize the singularity of Φ1(𝑋, 𝜁). As we have shown,
this singularity can appear only on boundaries between
the regular regions on the 𝜁-plane, where the condition
Re(𝜆1(𝜁

󸀠
)−𝜆𝑗(𝜁

󸀠
)) = 0 constitutes these boundaries [75]. For

VPE (50)

𝑊𝑋𝑋𝑇 + (1 + 𝑊𝑇) 𝑊𝑋 = 0, (240)

as we know, the complex 𝜁-plane is divided into four regions
by two lines (215)

(i) 𝜁
󸀠

= 𝜔2𝜉, with 𝑄
(1)
12 (𝜁

󸀠
) ̸= 0, 𝑄

(1)
13 (𝜁

󸀠
) ≡ 0,

(ii) 𝜁
󸀠

= −𝜔3𝜉, with 𝑄
(2)
12 (𝜁

󸀠
) ≡ 0, 𝑄

(2)
13 (𝜁

󸀠
) ̸= 0,

(241)

where 𝜉 is real (see Figure 8) and sweeps from −∞ to +∞.
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Let us consider the singularity functions 𝑄1𝑗(𝜁
󸀠
) on the

boundaries, on which the Jost function 𝜙1(𝑋, 𝜁) is singular,
in the form (𝑚 = 1, 2, . . . , 𝑀):

𝑄
(1)
12 (𝜁

󸀠
) = −2𝜋𝑖

𝑀

∑

𝑚=1

𝑞
(2𝑚−1)
12 𝛿 (𝜁

󸀠
− 𝜁

󸀠
2𝑛−1) ,

𝑄
(1)
13 (𝜁

󸀠
) = −2𝜋𝑖

𝑀

∑

𝑚=1

𝑞
(2𝑚−1)
13 𝛿 (𝜁

󸀠
− 𝜁

󸀠
2𝑛−1) ≡ 0,

on the line 𝜁
󸀠

= 𝜔2𝜉,

𝑄
(2)
12 (𝜁

󸀠
) = −2𝜋𝑖

𝑀

∑

𝑚=1

𝑞
(2𝑚)
12 𝛿 (𝜁

󸀠
− 𝜁

󸀠
2𝑛) ≡ 0,

𝑄
(2)
13 (𝜁

󸀠
) = −2𝜋𝑖

𝑀

∑

𝑚=1

𝑞
(2𝑚)
13 𝛿 (𝜁

󸀠
− 𝜁

󸀠
2𝑛) ,

on the line 𝜁
󸀠

= −𝜔3𝜉.

(242)

For the singularity functions (242) and for 𝑁 pairs of poles,
relationship (220) is reduced to the form (provisionally the
time-dependence is not written)

Φ1 (𝑋, 𝜁) = 1 −

2𝑁

∑

𝑘=1

3

∑

𝑗=2

𝛾
(𝑘)
1𝑗

⋅

exp {[𝜆𝑗 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁

(𝑘)
1 )] 𝑋}

𝜆1 (𝜁
(𝑘)
1 ) − 𝜆1 (𝜁)

Φ1 (𝑋, 𝜔𝑗𝜁
(𝑘)
1 )

−

2𝑀

∑

𝑙=1

3

∑

𝑗=2

𝑞
(𝑙)
1𝑗

⋅

exp {[𝜆𝑗 (𝜁
󸀠
𝑙 ) − 𝜆1 (𝜁

󸀠
𝑙 )] 𝑋}

𝜁
󸀠
𝑙

− 𝜁
Φ1 (𝑋, 𝜔𝑗𝜁

󸀠
𝑙 ) .

(243)

In Section 9 (see [43] too) it is proved that the poles appear
in pairs only 𝜁

(2𝑛−1)
1 = 𝑖𝜔2𝜉𝑛 and 𝜁

(2𝑛)
1 = −𝑖𝜔3𝜉𝑛, under the

conditions 𝛾
(2𝑛−1)
12 = 𝜔2𝛽𝑛, 𝛾

(2𝑛−1)
13 = 0, 𝛾

(2𝑛)
12 = 0, 𝛾

(2𝑛)
13 =

𝜔3𝛽𝑛 (𝑛 = 1, 2, . . . , 𝑁). If we consider both the bound state
spectrum and the continuous spectrum, the constants 𝛽𝑛 are
complex values in the general case. The restrictions on 𝛽𝑛 for
real solutions 𝑈 = 𝑊𝑋 follow from a separate problem which
will be analyzed in Section 11.

As follows from relationships (225) and (243), the sin-
gularities in form (242) appear in pairs 𝜁

󸀠
2𝑚−1 = 𝜔2𝜉𝑚 and

𝜁
󸀠
2𝑚 = −𝜔3𝜉𝑚. From (225), on considering the limits 𝜁 → 𝜁

󸀠
𝑙

and 𝑋 → −∞, it immediately follows that

𝑞
(2𝑚−1)
12 𝜔2 = 𝑞

(2𝑚)
13 for 𝑚 = 1, 2, . . . , 𝑀. (244)

Insofar as we have 2𝑁 poles and 2𝑀 coefficients 𝑞
(2𝑚−1)
12

and 𝑞
(2𝑚)
13 in adopted specifications (242) of the singularity

functions 𝑄1𝑗(𝜁
󸀠
), it is convenient to introduce the notation

𝜇𝑗𝑖 =
{

{

{

𝜆𝑗 (𝜁
(𝑖)
1 )

𝜆𝑗 (𝜁
󸀠
(𝑖−𝐾)) ,

𝑝
(𝑖)
1𝑗 =

{

{

{

𝛾
(𝑖)
1𝑗 at 𝑖 = 1, . . . , 𝐾

𝑞
(𝑖−𝐾)
1𝑗 at 𝑖 = 𝐾 + 1, . . . , 𝐾 + 𝐿,

(245)

where 𝐾 = 2𝑁 and 𝐿 = 2𝑀. Then relationship (243) is
rewritten as follows:

Φ1 (𝑋, 𝜁)

= 1 −

𝐾+𝐿

∑

𝑖=1

3

∑

𝑗=2

𝑝
(𝑖)
1𝑗

exp [(𝜇𝑗𝑖 − 𝜇1𝑖) 𝑋]

𝜇1𝑖 − 𝜁
Φ1 (𝑋, 𝜇𝑗𝑖) .

(246)

By defining

Ψ𝑖 (𝑋) =

3

∑

𝑗=2

𝑝
(𝑖)
1𝑗 exp (𝜇𝑗𝑖𝑋) Φ1 (𝑋, 𝜇𝑗𝑖) , (247)

we may rewrite relationship (246) as

Φ1 (𝑋, 𝜁) = 1 −

𝐾+𝐿

∑

𝑖=1

exp (−𝜇1𝑖𝑋)

𝜇1𝑖 − 𝜁
Ψ𝑖 (𝑋) . (248)

Taking into account (221), namely,

Φ1 (𝑋, 𝜁) = 1 −
1

3𝜆1 (𝜁)
[𝑊 (𝑋) − 𝑊 (−∞)]

+ 𝑂 (𝜆
−2
1 (𝜁)) ,

(249)

and (247) and (248), the following key relationship may be
found (see also (230)):

𝑊 (𝑋) − 𝑊 (−∞) = −3

𝐿+𝑀

∑

𝑘=1

exp (−𝜇𝑗𝑘𝑋) Ψ𝑘 (𝑋)

= 3
𝜕

𝜕𝑋
ln (det𝑀 (𝑋)) .

(250)

Here the matrix 𝑀(𝑋) is defined as follows:

𝑀𝑖𝑙 (𝑋) = 𝛿𝑖𝑙 −

3

∑

𝑗=2

𝑝
(𝑖)
1𝑗

exp [(𝜇𝑗𝑖 − 𝜇1𝑙) 𝑋]

𝜇𝑗𝑖 − 𝜇1𝑙

. (251)

Restoring the𝑇-evolution in the relationships, the final result
for the solution of the VPE, when we consider the spectral
data from both the bound state spectrum and the continuous
spectrum, is as follows:

𝑈 (𝑋, 𝑇) = 𝑊𝑋 (𝑋, 𝑇) = 3
𝜕
2

𝜕𝑋2
ln (det𝑀 (𝑋, 𝑇)) . (252)
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Here 𝑀(𝑋, 𝑇) is the (𝐾 + 𝐿) × (𝐾 + 𝐿) matrix given by

𝑀𝑘𝑙 (𝑋, 𝑇) = 𝛿𝑘𝑙 −

3

∑

𝑗=2

𝑝
(𝑘)
1𝑗

⋅

exp {(𝜇𝑗𝑘 − 𝜇1𝑙) 𝑋 + [− (3𝜇𝑗𝑘)
−1

+ (3𝜇1𝑘)
−1

] 𝑇}

𝜇𝑗𝑘 − 𝜇1𝑙

,

(253)

where, for 𝑖 ≤ 𝑁,

𝜇1(2𝑖−1) = 𝜆1 (𝜁
(2𝑖−1)
1 ) = 𝑖𝜔2𝜉𝑖,

𝜇2(2𝑖−1) = 𝜆2 (𝜁
(2𝑖−1)
1 ) = 𝑖𝜔3𝜉𝑖,

𝑝
(2𝑖−1)
12 = 𝛾

(2𝑖−1)
12 = 𝜔2𝛽𝑖,

𝑝
(2𝑖−1)
13 = 𝛾

(2𝑖−1)
13 = 0,

𝜇1(2𝑖) = 𝜆1 (𝜁
(2𝑖)
1 ) = −𝑖𝜔3𝜉𝑖,

𝜇3(2𝑖) = 𝜆3 (𝜁
(2𝑖)
1 ) = −𝑖𝜔2𝜉𝑖,

𝑝
(2𝑖)
12 = 𝛾

(2𝑖)
12 = 0,

𝑝
(2𝑖)
13 = 𝛾

(2𝑖)
13 = 𝜔3𝛽𝑖,

(254)

and, for 𝑁 < 𝑖 ≤ 𝑁 + 𝑀,

𝜇1(2𝑖−1) = 𝜆1 (𝜁
󸀠
2(𝑖−𝑀)−1) = 𝜔2𝜉𝑖,

𝜇2(2𝑖−1) = 𝜆2 (𝜁
󸀠
2(𝑖−𝑀)−1) = 𝜔3𝜉𝑖,

𝑝
(2𝑖−1)
12 = 𝑞

(2(𝑖−𝑀)−1)
12 = 𝜔2𝛽𝑖,

𝑝
(2𝑖−1)
13 = 𝑞

(2(𝑖−𝑀)−1)
13 = 0,

𝜇1(2𝑖) = 𝜆1 (𝜁
󸀠
2(𝑖−𝑀)) = −𝜔3𝜉𝑖,

𝜇3(2𝑖) = 𝜆3 (𝜁
󸀠
2(𝑖−𝑀)) = −𝜔2𝜉𝑖,

𝑝
(2𝑖)
12 = 𝑞

(2(𝑖−𝑀))
12 = 0,

𝑝
(2𝑖)
13 = 𝑞

(2(𝑖−𝑀))
13 = 𝜔3𝛽𝑖.

(255)

For solution (252) and (253) there are (𝑁 + 𝑀) arbitrary
constants 𝜉𝑖 and (𝑁+𝑀) arbitrary constants𝛽𝑖.The constants
𝜉𝑖 are real, while the constants 𝛽𝑖, in the general case, are
complex.

As will be clear from the examples in Section 11, solution
(252) and (253) includes 𝑀 discrete frequencies from the
continuum part of the spectral data. For this reason, solution
(252) and (253) without solitons (i.e., with 𝑁 = 0) will be
referred to as an 𝑀-mode solution of the VPE. Evidently
these discrete modes emanate from the special choice (242)
of the singularity functions 𝑄1𝑗(𝜁

󸀠
).

The solution obtained through matrix (253) is in general
a complex function. Consequently, there is a problem in
selecting the real solutions from the complex solutions. It
turns out that we can obtain the real solutions by means of
restriction of arbitrariness in the choice of the constants 𝛽𝑖.
We have succeeded in finding these restrictions.

11. Real Solutions for the VPE

Now we select the real solutions 𝑈 = 𝑊𝑋 from (252) and
(253).We analyze a number of examples, as well as the general
case, for the interaction of the solitons and multimode waves
[44–46, 86]. To obtain the solutions of the VPE, one has to
calculate the determinant of matrix (253). Firstly, we present
four results of such a calculation for 𝑁 + 𝑀 ≤ 4. For
convenience we will use the auxiliary function 𝐹(𝑋, 𝑇) given
by the definition𝐹(𝑋, 𝑇) = √det𝑀(𝑋, 𝑇). In particular, from
(253),

(1) for 𝑁 + 𝑀 = 1 we have

𝐹 = 1 + 𝑐1𝑞1; (256)

(2) for 𝑁 + 𝑀 = 2 we have

𝐹 = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑏12𝑐1𝑐2𝑞1𝑞2; (257)

(3) for 𝑁 + 𝑀 = 3 we have

𝐹 = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑐3𝑞3 + 𝑏12𝑐1𝑐2𝑞1𝑞2

+ 𝑏13𝑐1𝑐3𝑞1𝑞3 + 𝑏23𝑐2𝑐3𝑞2𝑞3

+ 𝑏12𝑏13𝑏23𝑐1𝑐2𝑐3𝑞1𝑞2𝑞3;

(258)

(4) for 𝑁 + 𝑀 = 4 we have

𝐹 = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑐3𝑞3 + 𝑐4𝑞4 + 𝑏12𝑐1𝑐2𝑞1𝑞2

+ 𝑏13𝑐1𝑐3𝑞1𝑞3 + 𝑏14𝑐1𝑐4𝑞1𝑞4 + 𝑏23𝑐2𝑐3𝑞2𝑞3

+ 𝑏24𝑐2𝑐4𝑞2𝑞4 + 𝑏34𝑐3𝑐4𝑞3𝑞4

+ 𝑏12𝑏13𝑏23𝑐1𝑐2𝑐3𝑞1𝑞2𝑞3 + 𝑏12𝑏14𝑏24𝑐1𝑐2𝑐4𝑞1𝑞2𝑞4

+ 𝑏13𝑏14𝑏34𝑐1𝑐3𝑐4𝑞1𝑞3𝑞4 + 𝑏23𝑏24𝑏34𝑐2𝑐3𝑐4𝑞2𝑞3𝑞4

+ 𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34𝑐1𝑐2𝑐3𝑐4𝑞1𝑞2𝑞3𝑞4.

(259)

For 𝑁 + 𝑀 > 4, the explicit expression for the function
𝐹(𝑋, 𝑇) can be obtained in a similar manner. It is helpful
to present the quantities 𝑐𝑖, 𝑞𝑖, and 𝑏𝑖𝑗 involved in formulas
(256)–(259) separately for three distinct cases:

(1) The purely solitonic case (𝑖, 𝑗) ≤ 𝑁 has

𝑞𝑖 = exp (2𝜃𝑖)

2𝜃𝑖 = √3𝜉𝑖𝑋 − (√3𝜉𝑖)
−1

𝑇, 𝑐𝑖 =
𝛽𝑖

2√3𝜉𝑖

,

𝑏𝑖𝑗 = (

𝜉𝑖 − 𝜉𝑗

𝜉𝑖 + 𝜉𝑗

)

2
𝜉
2
𝑖 + 𝜉

2
𝑗 − 𝜉𝑖𝜉𝑗

𝜉
2
𝑖 + 𝜉

2
𝑗 + 𝜉𝑖𝜉𝑗

, 𝑏𝑖𝑗 ≥ 0.

(260)
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(2) The case of purely multimode waves 𝑁 < (𝑖, 𝑗) ≤ 𝑁 +

𝑀 has

𝑞𝑖 = exp (2𝜃𝑖)

2𝜃𝑖 = −𝑖√3𝜉𝑖𝑋 + (𝑖√3𝜉𝑖)
−1

𝑇, 𝑐𝑖 =
𝑖𝛽𝑖

2√3𝜉𝑖

,

𝑏𝑖𝑗 = (

𝜉𝑖 − 𝜉𝑗

𝜉𝑖 + 𝜉𝑗

)

2
𝜉
2
𝑖 + 𝜉

2
𝑗 − 𝜉𝑖𝜉𝑗

𝜉
2
𝑖 + 𝜉

2
𝑗 + 𝜉𝑖𝜉𝑗

, 𝑏𝑖𝑗 ≥ 0.

(261)

(3) The case of a combination of solitons (𝑖, 𝑖
󸀠
) ≤ 𝑁 and

multimode waves 𝑁 < (𝑗, 𝑗
󸀠
) ≤ 𝑁 + 𝑀 has

𝑞𝑖 = exp (2𝜃𝑖)

2𝜃𝑖 = √3𝜉𝑖𝑋 − (√3𝜉𝑖)
−1

𝑇, 𝑐𝑖 =
𝛽𝑖

2√3𝜉𝑖

,

𝑞𝑗 = exp (2𝜃𝑗)

2𝜃𝑗 = −𝑖√3𝜉𝑗𝑋 + (𝑖√3𝜉𝑗)
−1

𝑇, 𝑐𝑗 =

𝑖𝛽𝑗

2√3𝜉𝑗

,

𝑏𝑖𝑖󸀠 = (
𝜉𝑖 − 𝜉𝑖󸀠

𝜉𝑖 + 𝜉𝑖󸀠
)

2
𝜉
2
𝑖 + 𝜉

2
𝑖󸀠 − 𝜉𝑖𝜉𝑖󸀠

𝜉
2
𝑖 + 𝜉

2
𝑖󸀠

+ 𝜉𝑖𝜉𝑖󸀠
, 0 ≤ 𝑏𝑖𝑖󸀠 ≤ 1,

𝑏𝑗𝑗󸀠 = (

𝜉𝑗 − 𝜉𝑗󸀠

𝜉𝑗 + 𝜉𝑗󸀠
)

2
𝜉
2
𝑗 + 𝜉

2
𝑗󸀠 − 𝜉𝑗𝜉𝑗󸀠

𝜉
2
𝑗 + 𝜉

2
𝑗󸀠

+ 𝜉𝑗𝜉𝑗󸀠
, 0 ≤ 𝑏𝑗𝑗󸀠 ≤ 1,

𝑏𝑖𝑗 = (

𝜉𝑖 + 𝑖𝜉𝑗

𝜉𝑖 − 𝑖𝜉𝑗

)

2
𝜉
2
𝑖 − 𝜉

2
𝑗 + 𝑖𝜉𝑖𝜉𝑗

𝜉
2
𝑖 − 𝜉

2
𝑗 − 𝑖𝜉𝑖𝜉𝑗

,
󵄨󵄨󵄨󵄨󵄨
𝑏𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≡ 1.

(262)

With the above found representation of the auxiliary function
𝐹(𝑋, 𝑇) and taking into account key relationship (252), we
can write the explicit solution to basic nonlinear evolution
equation (50) in the following concise form:

𝑊 (𝑋, 𝑇) = 6
𝜕

𝜕𝑋
ln (𝐹 (𝑋, 𝑇)) + const. (263)

The function 𝐹 is complex-valued in the general case because
the values of 𝛽𝑖 (and hence of 𝑐𝑖) are complex constants.

Since we are interested only in the real solution 𝑊𝑋 with
real constants 𝜉𝑖, we need restrictions on the constants 𝑐𝑖 in
(256)–(259).

11.1. The Solutions Associated with the Continuous Spectrum.
We study the multimode solutions for 𝑁 = 0 and 𝑀 =

1, 2, 3, 4, while for 𝑀 ≥ 5 all formulas can easily be obtained
by means of a generalization of these examples.

11.1.1. The One-Mode Solution. In order to obtain the one-
mode solution of VPE (50) we need first to calculate the 2 × 2

matrix 𝑀(𝑋, 𝑇) according to (253) with 𝑁 = 0 and 𝑀 = 1.
For the matrix elements 𝑀𝑘𝑙(𝑋, 𝑇) we have

𝑀11 (𝑋, 𝑇)

= 1 −
𝑖𝜔2𝛽1

√3𝜉1

exp [−𝑖√3𝜉1𝑋 + (𝑖√3𝜉1)
−1

𝑇] ,

𝑀12 (𝑋, 𝑇) = −
𝜔3𝛽1

2𝜉1

exp [2𝜔3𝜉1𝑋 + (𝑖√3𝜉1)
−1

𝑇] ,

𝑀21 (𝑋, 𝑇) =
𝜔2𝛽1

2𝜉1

exp [−2𝜔2𝜉1𝑋 + (𝑖√3𝜉1)
−1

𝑇] ,

𝑀22 (𝑋, 𝑇)

= 1 −
𝑖𝜔3𝛽1

√3𝜉1

exp [−𝑖√3𝜉1𝑋 + (𝑖√3𝜉1)
−1

𝑇] ,

(264)

so that the respective determinant is

det𝑀 (𝑋, 𝑇)

= [1 + 𝑐1 exp (−𝑖√3𝜉1𝑋 + (𝑖√3𝜉1)
−1

𝑇)]

2

,

𝑐1 =
𝑖𝛽1

2√3𝜉1

.

(265)

As has been noted already, the singularity functions in form
(242) with 𝑀 = 1 give rise to a single frequency for the
continuous part of the spectral data. Hence, expression (265),
having been substituted into concise formula (263), must
provide us with the one-mode solution.

The condition that 𝑊𝑋 is real requires a restriction on the
constant 𝛽1 (if the constant 𝜉1 is arbitrary but real). We have
succeeded in obtaining this restriction (see Appendix A),
namely, that the constant 𝑐1, which in general is complex-
valued one with 𝑐1 = |𝑐1| exp(𝑖𝜒1), should possess unit
modulus |𝑐1| = 1, while the arbitrary real constant 𝜒1 defines
an initial shift of solution 𝑋1 = 𝜒1/(√3𝜉1) so that

det𝑀 (𝑋, 𝑇)

= [1 + exp(−𝑖√3𝜉1 (𝑋 − 𝑋1) +
𝑇

𝑖√3𝜉1

)]

2

.

(266)

The final result for one mode of the continuous spectrum is
solution (263) with (266); namely,

𝑊 (𝑋, 𝑇)

= −3√3𝜉1 tan(
√3

2
𝜉1 (𝑋 − 𝑋1) +

𝑇

2√3𝜉1

)

+ const.

(267)

The corresponding solution for 𝑈 = 𝑊𝑋 was obtained
recently by other methods, for example, by the sine-cosine
method [87], the (𝐺

󸀠
/𝐺)-expansion method [40], and the

extended tanh-function method [87, 88]. However, only the
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approach developed here and the solution in form (252)
and (253) enable us to study the interaction of solitons and
periodic waves.

We obtain periodic solutions even for 𝑀 = 1. Let us
call attention once again to condition (209) which in the
final result is shown below to restrict the region of 𝑋 for
periodic solutions. At first glance it would seem that there
is a contradiction between condition (209) and the periodic
solution. Indeed, on the one hand, condition (209) demands
that the solution 𝑊(𝑋, 𝑇) should vanish as 𝑋 → −∞; on
the other hand, the periodic solution obtained here does not
satisfy condition (209). Nevertheless, consideration of the
details enables us to find a reasonable explanation. So, in [75]
at the derivation of relation (220) (see also (4.5) in [75]),
the integral in (220) appears as a result of the integration on
two sides of the boundaries between regular regions. For an
understanding of this fact, relationship (252) from [75] plays
an important role. Hence, the integration in (220) (also as in
(4.5) in [75]) should be carried out over the lines 𝜔2(𝜉 + 𝑖𝜀)

and −𝜔3(𝜉 + 𝑖𝜀) as 𝜉 sweeps from −∞ to ∞, where 𝜀 > 0. As a
result, in relationship (266) we should exchange 𝜉1 for (𝜉1+𝑖𝜀)

and that enables us to define the solution in the form
𝑊 (𝑋, 𝑇) = −𝑖6√3 (𝜉1 + 𝑖𝜀)

⋅

exp (√3𝜀𝑋) exp (−𝑖√3𝜉1 (𝑋 − 𝑋1) + 𝑇/𝑖√3𝜉1)

1 + exp (√3𝜀𝑋) exp (−𝑖√3𝜉1 (𝑋 − 𝑋1) + 𝑇/𝑖√3𝜉1)

,

(268)

which tends to constants as |𝑋| → ∞ at arbitrary 𝜀 >

0. Thus, on one hand, condition (209) is satisfied, and, on
the other hand, at small 𝜀 > 0 we have a sufficiently large
region over 𝑋 where the solution associated with a finite
𝜀 > 0 and the periodic solution associated with 𝜀 = 0 are
sufficiently close to each other.The region of 𝑋 with periodic
solutions can be extended to sufficiently large, but finite, |𝑋|.
For any sequence 𝜀𝑛 → 0 we remain within the inverse
scattering theory [75] where condition (209) is not violated.
Consequently, the periodic solution obtained at 𝜀 = 0 is to
be interpreted as the solution of the VPE which is valid on
arbitrary but finite |𝑋|.

11.1.2. The Two-Mode Solution. Let us consider a two-mode
solution of the VPE. In this case 𝑀(𝑋, 𝑇) is a 4 × 4 matrix.
For its determinant, according to (257) we find

√det𝑀 (𝑋, 𝑇) = 𝐹 (𝑋, 𝑇)

= 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑏12𝑐1𝑐2𝑞1𝑞2,

(269)

where 𝑞𝑖, 𝑐𝑖, and 𝑏12 are defined by (261).
Since the solution 𝑊𝑋 should be real and the constants 𝜉𝑖

are arbitrary, but real, there are restrictions on the constants
𝑐𝑖 = |𝑐𝑖| exp(𝑖𝜒𝑖). The real constants 𝜒𝑖 define the initial shifts
of solutions 𝑋𝑖 = 𝜒𝑖/(√3𝜉𝑖). The analysis in considerable
detail shows (see Appendix A) that the relations |𝑐1| = |𝑐2| =

1/√𝑏12 are the sufficient conditions in order that 𝑊𝑋 be real.
Thus, the interaction of two periodic waves for the VPE is
described by relationship (263) with

𝐹 (𝑋, 𝑇) = 1 +
1

√𝑏12

𝑞1 +
1

√𝑏12

𝑞2 + 𝑞1𝑞2, (270)

where 𝑏12 is as in (261), and the dependencies in 𝑞𝑖 now
contain the phase shifts 𝑋𝑖 = 𝜒𝑖/(√3𝜉𝑖) as follows:

𝑞𝑖 = exp (−𝑖√3𝜉𝑖 (𝑋 − 𝑋𝑖) + (𝑖√3𝜉𝑖)
−1

𝑇) . (271)

11.1.3.TheThree-Mode Solution. For𝑁 = 0 and𝑀 = 3, in the
relationship

𝐹 (𝑋, 𝑇) = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑐3𝑞3 + 𝑐1𝑐2𝑏12𝑞1𝑞2

+ 𝑐1𝑐3𝑏13𝑞1𝑞3 + 𝑐2𝑐3𝑏23𝑞2𝑞3

+ 𝑐1𝑐2𝑐3𝑏12𝑏13𝑏23𝑞1𝑞2𝑞3

(272)

obtained from (253) (see also (258)) with 𝑞𝑖, 𝑐𝑖, and 𝑏𝑖𝑗 as
in (261), we write 𝑐𝑖 = |𝑐𝑖| exp(𝑖𝜒𝑖). Then the arguments 𝜒𝑖

determine the initial phase shifts of modes 𝑋𝑖 = 𝜒𝑖/(√3𝜉𝑖).
As is proved in Appendix A, the conditions on the constants
𝑐𝑖 are

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 =

1

√𝑏12𝑏13

,

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 =

1

√𝑏12𝑏23

,

󵄨󵄨󵄨󵄨𝑐3
󵄨󵄨󵄨󵄨 =

1

√𝑏13𝑏23

.

(273)

Hence the three-mode solution is relation (263) with

𝐹 (𝑋, 𝑇) = 1 +
1

√𝑏12𝑏13

(𝑞1 + 𝑞2𝑞3)

+
1

√𝑏12𝑏23

(𝑞2 + 𝑞1𝑞3)

+
1

√𝑏13𝑏23

(𝑞3 + 𝑞1𝑞2) + 𝑞1𝑞2𝑞3.

(274)

Here the phase shifts 𝑋𝑖 are taken into account in 𝑞𝑖 by way
of (271).

11.1.4. The Four-Mode Solution. For 𝑁 = 0 and 𝑀 = 4, the
restrictions have the form (see Appendix A)

󵄨󵄨󵄨󵄨𝑐𝑖
󵄨󵄨󵄨󵄨 =

4

∏

𝑗=1
𝑗 ̸=𝑖

𝑏
−1/2
𝑖𝑗 , 0 ≤ 𝑏𝑖𝑗 = 𝑏𝑗𝑖 ≤ 1, 𝑖 = 1, 2, 3, 4. (275)
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The function 𝐹 for real solution (263) is

𝐹 (𝑋, 𝑇) = 1 +
1

√𝑏12𝑏13𝑏14

(𝑞1 + 𝑞2𝑞3𝑞4)

+
1

√𝑏12𝑏23𝑏24

(𝑞2 + 𝑞1𝑞3𝑞4)

+
1

√𝑏13𝑏23𝑏34

(𝑞3 + 𝑞1𝑞2𝑞4)

+
1

√𝑏14𝑏24𝑏34

(𝑞4 + 𝑞1𝑞2𝑞3)

+
1

√𝑏13𝑏14𝑏23𝑏24

(𝑞1𝑞2 + 𝑞3𝑞4)

+
1

√𝑏12𝑏14𝑏23𝑏34

(𝑞1𝑞3 + 𝑞2𝑞4)

+
1

√𝑏12𝑏13𝑏24𝑏34

(𝑞1𝑞4 + 𝑞2𝑞3)

+ 𝑞1𝑞2𝑞3𝑞4.

(276)

As before, 𝑏𝑖𝑗 and 𝑞𝑖 are defined by (261) and (271), respec-
tively.

11.2. The Solutions Associated with Bound State Spectrum.
The features of the solutions associated with the bound
state spectrum can be shown by considering the two-soliton
solution for which 𝑁 = 2 and 𝑀 = 0. Solution (263) can be
obtained through (257) with (260), that is,

𝐹 (𝑋, 𝑇) = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑏12𝑐1𝑐2𝑞1𝑞2 (277)

with

𝑞𝑖 = exp (2𝜃𝑖)

2𝜃𝑖 = √3𝜉𝑖𝑋 − (√3𝜉𝑖)
−1

𝑇, 𝑐𝑖 =
𝛽𝑖

2√3𝜉𝑖

,

𝑏𝑖𝑗 = (

𝜉𝑖 − 𝜉𝑗

𝜉𝑖 + 𝜉𝑗

)

2
𝜉
2
𝑖 + 𝜉

2
𝑗 − 𝜉𝑖𝜉𝑗

𝜉
2
𝑖 + 𝜉

2
𝑗 + 𝜉𝑖𝜉𝑗

, 𝑏𝑖𝑗 ≥ 0.

(278)

In Appendix B it is proved that the constants 𝑐𝑖 have to be real.
Moreover, the signs of 𝛼𝑖 = 𝑐𝑖/|𝑐𝑖| can independently take the
values ±1; that is, we have four variants, namely, 𝛼1 = 𝛼2 = 1,
𝛼1 = 𝛼2 = −1, 𝛼1 = −𝛼2 = 1, and 𝛼1 = −𝛼2 = −1. Note that in
[58] only the first two variants are discussed. The standard
soliton solution for which 𝛼1 = 𝛼2 = 1 and the singular
soliton solutions for which 𝛼1 = 𝛼2 = −1, 𝛼1 = −𝛼2 = 1,
and 𝛼1 = −𝛼2 = −1 are obtained by means of relation (263)

𝑈 (𝑋, 𝑇) = 𝑊 (𝑋, 𝑇)𝑋

= 6
𝜕
2

𝜕𝑋2
ln (𝐹) + 6

𝜕
2

𝜕𝑋2
ln (𝐺𝑖) ,

(279)

where 𝐺𝑖 are defined by (B.7)–(B.10).

Forms (B.3) and (B.7)–(B.10) for 𝐹 are more preferable,
since we see that the solution is dependent on two combina-
tions of the spectral parameters 𝜉1 + 𝜉2 and 𝜉1 − 𝜉2, but not
three values 𝜉1, 𝜉2, and 𝜉1 + 𝜉2 as it may appear from relation
(279).

For 𝑁 ≥ 3 we give the conditions without proof. All the
constants 𝑐𝑖 are to be real and the signs of 𝛼𝑖 = 𝑐𝑖/|𝑐𝑖| can be
equal to ±1 independently of each other.

11.3. Real Soliton and Multimode Solutions of the VPE. In this
subsection we will consider the general case, when both the
bound state spectrum and the continuous spectrum are taken
into account in the associated spectral problem. We will find
the conditions on 𝑐𝑖 for real solutions of the VPE. To obtain
the solution, we need to know the function 𝐹 (see (256)–
(259)).

Let the indexes 𝑖 and 𝑖
󸀠 be related to the values involved

in the bound state spectrum for which (𝑖, 𝑖
󸀠
) ≤ 𝑁, while

the indexes 𝑗 and 𝑗
󸀠 are related to the values involved in the

continuous part of the spectral data for which 𝑁 < (𝑗, 𝑗
󸀠
) ≤

𝑁 + 𝑀.

11.3.1. The Interaction of a Soliton with One-Mode Wave. The
interaction of a standard soliton with periodic one-mode
wave can be described bymeans of relations (257) with𝑁 = 1

and 𝑀 = 1

𝐹 (𝑋, 𝑇) = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑏12𝑐1𝑐2𝑞1𝑞2 (280)

with 𝑞𝑖 and 𝑏12 as in (262); namely,

𝑞1 = exp (√3𝜉1𝑋 − (√3𝜉1)
−1

𝑇) , 𝑐1 =
𝛽1

2√3𝜉1

,

𝑞2 = exp (−𝑖√3𝜉2𝑋 + (𝑖√3𝜉2)
−1

𝑇) ,

𝑐2 =
𝑖𝛽2

2√3𝜉2

,

𝑏12 = (
𝜉1 + 𝑖𝜉2

𝜉1 − 𝑖𝜉2

)

2
𝜉
2
1 − 𝜉

2
2 + 𝑖𝜉1𝜉2

𝜉
2
1 − 𝜉

2
2 − 𝑖𝜉1𝜉2

,
󵄨󵄨󵄨󵄨𝑏12

󵄨󵄨󵄨󵄨 ≡ 1.

(281)

First, we emphasize that the soliton one-mode wave (267)
propagates in opposite directions. The soliton propagates in
the positive direction of the 𝑥-axis, while one-mode wave
(267) propagates in the negative direction of the 𝑥-axis.

Here we restrict ourselves to the simplest case 𝑏12𝑐1𝑐2 =

1 that describes the interaction of a standard soliton with a
one-mode wave. As follows immediately from Appendix C,
for real solutions (263),

𝑊 (𝑋, 𝑇) = 6
𝜕

𝜕𝑋
ln (𝐹 (𝑋, 𝑇)) + const., (282)

where 𝐹(𝑋, 𝑇) is

𝐹 (𝑋, 𝑇) = 1 +
1

√𝑏12

𝑞1 +
1

√𝑏12

𝑞2 + 𝑞1𝑞2. (283)
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There is an exceptional case at 𝜉1 = 𝜉2.Thenwe have 𝑏12 =

1, and 𝐹 = (1 + 𝑞1)(1 + 𝑞2). Consequently, solution (263) is
reduced to the relation

𝑊 = 𝑊1 + 𝑊2

= 3√3𝜉1 tanh(
√3

2
𝜉1 (𝑋 − 𝑋1) −

𝑇

2√3𝜉1

)

− 3√3𝜉1 tan(
√3

2
𝜉1 (𝑋 − 𝑋0) +

𝑇

2√3𝜉1

)

+ const.

(284)

Here 𝑊1 is the one-soliton solution and 𝑊2 is solution (267)
associated with one mode in the continuous part of the
spectral data. The relationship 𝑊 = 𝑊1 + 𝑊2 is easily verified
also by direct substitution into VPE (50). The two waves
𝑊1 and 𝑊2 propagate in different directions with the same
speed without change of wave profile and phase shift. In other
words, only in the case 𝜉1 = 𝜉2 is there a simple superposition
of the solutions 𝑊1 and 𝑊2. It is obvious that interactions
of two solitons with a one-mode wave and/or of the two-
mode solution with one soliton do not satisfy this form of the
interaction.

11.3.2. Real Solutions for 𝑁 Solitons and the 𝑀-Mode Wave.
The interaction of𝑁 solitons and𝑀-mode wave (267) can be
obtained by means of the function 𝐹(𝑋, 𝑇) with restrictions
(C.8) given in Appendix C, namely,

𝑐𝑖 =
±1

√∏
𝑁+𝑀
𝑗=1,𝑗 ̸=𝑖𝑏𝑖𝑗

, 𝑏𝑖𝑗 = 𝑏𝑗𝑖, 𝑖 = 1, . . . , 𝑁 + 𝑀, (285)

and with the retention of the phase shifts 𝑋𝑖 in the quantities
𝑞𝑖 (C.2).The signs for 𝑐𝑖 in (285) can be chosen independently
of each other. If the index 𝑖 in (285) is connected with the
continuous part of the spectral data (𝑁 < 𝑖 ≤ 𝑁 + 𝑀), then
the solutions generated by plus and minus signs in (285) are
different only in the phase shifts. However, for the index 𝑖

from the bound state spectrum (𝑖 ≤ 𝑁), the solutions have
different forms of function dependence. Here it is relevant
to remember that there are standard soliton solutions and
singular soliton solutions generated by different signs in the
constants 𝑐𝑖 (285).

The solution will contain (𝑁 + 𝑀) real constants 𝜉𝑖 for
determining the values 𝑏𝑖𝑗 and (𝑁 + 𝑀) real constants 𝑋𝑖 to
define the phase shifts.

In Sections 8–11 we have described the procedure for
finding the solutions of the Vakhnenko-Parkes equation by
means of the inverse scattering method. Both the bound
state spectrum and the continuous spectrum are taken into
account in the associated eigenvalue problem. The special
form of the singularity functions enables us to obtain the
multimode solutions. Sufficient conditions have been proved
in order that the solutions become real functions. Finally we
studied the interaction of solitons and the multimode wave.

In [89, 90] the Vakhnenko-Parkes equation has been
generalized to an equation that is known as the generalized

Vakhnenko equation. It turns out that this new evolution
equation possesses a wider variety of solutions, is integrable,
and has been solved by both the Hirota method [89, 90] and
the IST method [47, 91]. Now this equation is investigated
very actively in the scientific literature.

Appendices

A. The Conditions on Constants 𝑐𝑖 for
Multimode Waves

In this appendixwewill prove the conditions on the constants
𝑐𝑖 = |𝑐𝑖|exp(𝑖𝜒𝑖) for solutions associated with the continuous
part of the spectral data only. We use the case 𝑀 = 4 as
an example to prove the restrictions on the constants, at
which the solution 𝑊𝑋(𝑋, 𝑇) is real. The auxiliary function
𝐹(𝑋, 𝑇) = √det𝑀(𝑋, 𝑇) for finding the solution is (259);
namely,

𝐹 (𝑋, 𝑇) = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑐3𝑞3 + 𝑐4𝑞4

+ 𝑐1𝑐2𝑏12𝑞1𝑞2 + 𝑐1𝑐3𝑏13𝑞1𝑞3 + 𝑐1𝑐4𝑏14𝑞1𝑞4

+ 𝑐2𝑐3𝑏23𝑞2𝑞3 + 𝑐2𝑐4𝑏24𝑞2𝑞4 + 𝑐3𝑐4𝑏34𝑞3𝑞4

+ 𝑐1𝑐2𝑐3𝑏12𝑏13𝑏23𝑞1𝑞2𝑞3

+ 𝑐1𝑐2𝑐4𝑏12𝑏14𝑏24𝑞1𝑞2𝑞4

+ 𝑐1𝑐3𝑐4𝑏13𝑏14𝑏34𝑞1𝑞3𝑞4

+ 𝑐2𝑐3𝑐4𝑏23𝑏24𝑏34𝑞2𝑞3𝑞4

+ 𝑐1𝑐2𝑐3𝑐4𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34𝑞1𝑞2𝑞3𝑞4.

(A.1)

Here we redefine the values 𝑐𝑖 in such a way that 𝑐𝑖 = |𝑐𝑖|, since
the arguments 𝜒𝑖 can always be introduced into the variables
𝑞𝑖 = exp(𝑖2𝜃𝑖) with 2𝜃𝑖 = −√3𝜉𝑖(𝑋 − 𝑋𝑖) − (√3𝜉𝑖)

−1
𝑇 and

𝑋𝑖 = 𝜒𝑖/(√3𝜉𝑖) serving as the shifts of solutions.The solution
then has the form (263)

𝑊 (𝑋, 𝑇) = 6
𝜕

𝜕𝑋
ln (𝐹 (𝑋, 𝑇)) + const. (A.2)

The function 𝐹 is complex-valued; that is,

𝐹 = 𝐹Re + 𝑖𝐹Im = |𝐹| exp (𝑖𝜒𝐹) ,

𝐹Re = Re (𝐹) , 𝐹Im = Im (𝐹) , tan (𝜒𝐹) =
𝐹Im
𝐹Re

;

(A.3)

hence

𝑊 (𝑋, 𝑇)

6
=

𝜕

𝜕𝑋
ln (|𝐹|) + 𝑖

𝜕𝜒𝐹

𝜕𝑋
+ const. (A.4)
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If we succeed in making 𝜕
2
𝜒𝐹/𝜕𝑋

2
≡ 0 by the choice of

the constants 𝑐𝑖, then the solution 𝑊𝑋(𝑋, 𝑇) will be a real
function.

Let us write 𝐹Im and 𝐹Re in explicit forms; namely,

𝐹Im = 𝑐1 sin (2𝜃1) + 𝑐2 sin (2𝜃2) + 𝑐3 sin (2𝜃3) + 𝑐4

⋅ sin (2𝜃4) + 𝑐1𝑐2𝑏12 sin [2 (𝜃1 + 𝜃2)] + 𝑐1𝑐3𝑏13

⋅ sin [2 (𝜃1 + 𝜃3)] + 𝑐1𝑐4𝑏14 sin [2 (𝜃1 + 𝜃4)]

+ 𝑐2𝑐3𝑏23 sin [2 (𝜃2 + 𝜃3)] + 𝑐2𝑐4𝑏24

⋅ sin [2 (𝜃2 + 𝜃4)] + 𝑐3𝑐4𝑏34 sin [2 (𝜃3 + 𝜃4)]

+ 𝑐1𝑐2𝑐3𝑏12𝑏13𝑏23 sin [2 (𝜃1 + 𝜃2 + 𝜃3)]

+ 𝑐1𝑐2𝑐4𝑏12𝑏14𝑏24 sin [2 (𝜃1 + 𝜃2 + 𝜃4)]

+ 𝑐1𝑐3𝑐4𝑏13𝑏14𝑏34 sin [2 (𝜃1 + 𝜃3 + 𝜃4)]

+ 𝑐2𝑐3𝑐4𝑏23𝑏24𝑏34 sin [2 (𝜃2 + 𝜃3 + 𝜃4)]

+ 𝑐1𝑐2𝑐3𝑐4𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34

⋅ sin [2 (𝜃1 + 𝜃2 + 𝜃3 + 𝜃4)] ,

𝐹Re = 1 + 𝑐1 cos (2𝜃1) + 𝑐2 cos (2𝜃2) + 𝑐3 cos (2𝜃3)

+ 𝑐4 cos (2𝜃4) + 𝑐1𝑐2𝑏12 cos [2 (𝜃1 + 𝜃2)] + 𝑐1𝑐3𝑏13

⋅ cos [2 (𝜃1 + 𝜃3)] + 𝑐1𝑐4𝑏14 cos [2 (𝜃1 + 𝜃4)]

+ 𝑐2𝑐3𝑏23 cos [2 (𝜃2 + 𝜃3)] + 𝑐2𝑐4𝑏24

⋅ cos [2 (𝜃2 + 𝜃4)] + 𝑐3𝑐4𝑏34 cos [2 (𝜃3 + 𝜃4)]

+ 𝑐1𝑐2𝑐3𝑏12𝑏13𝑏23 cos [2 (𝜃1 + 𝜃2 + 𝜃3)]

+ 𝑐1𝑐2𝑐4𝑏12𝑏14𝑏24 cos [2 (𝜃1 + 𝜃2 + 𝜃4)]

+ 𝑐1𝑐3𝑐4𝑏13𝑏14𝑏34 cos [2 (𝜃1 + 𝜃3 + 𝜃4)]

+ 𝑐2𝑐3𝑐4𝑏23𝑏24𝑏34 cos [2 (𝜃2 + 𝜃3 + 𝜃4)]

+ 𝑐1𝑐2𝑐3𝑐4𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34

⋅ cos [2 (𝜃1 + 𝜃2 + 𝜃3 + 𝜃4)] .

(A.5)

Let us try to present 𝐹Im and 𝐹Re in the forms

𝐹Im = 2𝐺 sin (𝜃1 + 𝜃2 + 𝜃3 + 𝜃4) ,

𝐹Re = 2𝐺 cos (𝜃1 + 𝜃2 + 𝜃3 + 𝜃4) ,

(A.6)

where 𝐺 is the same in both formulas (A.6).This can be done
if the following conditions are satisfied:

𝑐1 = 𝑐2𝑐3𝑐4𝑏23𝑏24𝑏34,

𝑐2 = 𝑐1𝑐3𝑐4𝑏13𝑏14𝑏34,

𝑐3 = 𝑐1𝑐2𝑐4𝑏12𝑏14𝑏24,

𝑐4 = 𝑐1𝑐2𝑐3𝑏12𝑏13𝑏23,

𝑐1𝑐2𝑏12 = 𝑐3𝑐4𝑏34,

𝑐1𝑐3𝑏13 = 𝑐2𝑐4𝑏24,

𝑐1𝑐4𝑏14 = 𝑐2𝑐3𝑏23,

𝑐1𝑐2𝑐3𝑐4𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34 = 1.

(A.7)

It turns out that all these relations are valid when

𝑐1 =
1

√𝑏12𝑏13𝑏14

,

𝑐2 =
1

√𝑏12𝑏23𝑏24

,

𝑐3 =
1

√𝑏13𝑏23𝑏34

,

𝑐4 =
1

√𝑏14𝑏24𝑏34

.

(A.8)

With conditions (A.8), the expression for 𝐺 reads as follows:

𝐺 = cos (𝜃1 + 𝜃2 + 𝜃3 + 𝜃4)

+
1

√𝑏12𝑏13𝑏14

cos (𝜃1 − 𝜃2 − 𝜃3 − 𝜃4)

+
1

√𝑏12𝑏23𝑏24

cos (𝜃2 − 𝜃1 − 𝜃3 − 𝜃4)

+
1

√𝑏13𝑏23𝑏34

cos (𝜃3 − 𝜃1 − 𝜃2 − 𝜃4)

+
1

√𝑏14𝑏24𝑏34

cos (𝜃4 − 𝜃1 − 𝜃2 − 𝜃3)

+
1

√𝑏13𝑏14𝑏23𝑏24

cos (𝜃1 + 𝜃2 − 𝜃3 − 𝜃4)

+
1

√𝑏12𝑏14𝑏23𝑏34

cos (𝜃1 + 𝜃3 − 𝜃2 − 𝜃4)

+
1

√𝑏12𝑏13𝑏24𝑏34

cos (𝜃1 + 𝜃4 − 𝜃2 − 𝜃3) .

(A.9)

Now it is readily seen from (A.3) that

𝜒𝐹 = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 (A.10)

and as consequence we have

𝜕
2
𝜒𝐹

𝜕𝑋2
=

𝜕
2
𝜒𝐹

𝜕𝑋𝜕𝑇
= 0. (A.11)
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Hence, as follows from (A.4), the four-mode solution of the
VPE can be reduced to real form with four real constants 𝑋𝑖

and four real constants 𝜉𝑖 (see (276)).
Without proof here we give the following conditions on

the constants 𝑐𝑖 that ensure the real 𝑀-mode solution of the
VPE:

󵄨󵄨󵄨󵄨𝑐𝑖
󵄨󵄨󵄨󵄨 =

𝑀

∏

𝑗=1
𝑗 ̸=𝑖

𝑏
−1/2
𝑖𝑗 , 𝑏𝑖𝑗 = 𝑏𝑗𝑖, 𝑖 = 1, . . . , 𝑀, (A.12)

where the 𝑀 constants 𝜉𝑖 determine the values 𝑏𝑖𝑗 and the 𝑀

constants 𝑋𝑖 define the phase shifts for each mode. Note that
relations (A.12) are sufficient conditions, but not necessary
ones.

B. The Conditions on Constants 𝑐𝑖 under
the Interaction of Two Solitons

Here we consider the conditions on signs for the constants 𝑐𝑖

under the interaction of two solitons (𝑁 = 2, 𝑀 = 0). We
start with the relationship (257) and (260):

𝐹 = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑏12𝑐1𝑐2𝑞1𝑞2. (B.1)

Let us present the constants 𝑐𝑖 in the form

𝑐𝑖 = 𝛼𝑖
󵄨󵄨󵄨󵄨𝑐𝑖

󵄨󵄨󵄨󵄨 exp (𝑖𝜒𝑖) = 𝑏
−1/2
12 exp (−√3𝜉𝑖𝑋𝑖 + 𝑖𝜎𝑖) ,

𝜎𝑖 = 𝜒𝑖 +
𝜋 (1 − 𝛼𝑖)

2
.

(B.2)

All new constants 𝜒𝑖 and 𝑋𝑖 = − ln(|𝑐𝑖√𝑏12|)/(√3𝜉𝑖) are real.
We assume that −𝜋/2 < 𝜒𝑖 ≤ 𝜋/2; then the values 𝛼𝑖 retain
the signs of the constants Re(𝑐𝑖); that is, 𝛼𝑖 = Re(𝑐𝑖)/|Re(𝑐𝑖)|. It
is convenient for analyzing to rewrite (B.1) (the same as (257))
in the form

𝐹 = 2 exp (𝜃1 + 𝜃2 +
𝑖

2
(𝜎1 + 𝜎2)) 𝐺 (B.3)

with

𝐺 = cosh (𝜃1 + 𝜃2 +
𝑖

2
(𝜎1 + 𝜎2))

+ 𝑏
−1/2
12 cosh (𝜃1 − 𝜃2 +

𝑖

2
(𝜎1 − 𝜎2)) ,

(B.4)

2𝜃𝑖 = √3𝜉𝑖 (𝑋 − 𝑋𝑖) − (√3𝜉𝑖)
−1

𝑇. (B.5)

It is easily seen that only 𝐺 defines the solution, since
(𝜕

2
/𝜕𝑋

2
)ln(𝐹) = (𝜕

2
/𝜕𝑋

2
) ln(𝐺), while the conditions that

the function 𝐺 is real are as follows:
𝜒𝑖 = 0,

𝜎𝑖 + 𝜎2 = 2𝜋𝑘1,

𝜎𝑖 − 𝜎2 = 2𝜋𝑘2

(B.6)

with 𝑘𝑖 = 0, 1. Restrictions (B.6) lead to the requirements𝛼1 =

±1 and 𝛼2 = ±1, independently of each other, and 𝜒𝑖 = 0.
Then the function 𝐹 has the following forms:

(1) For 𝛼1 = 𝛼2 = 1

𝐹 = 2 exp (𝜃1 + 𝜃2) 𝐺1,

𝐺1 = cosh (𝜃1 + 𝜃2) + 𝑏
−1/2
12 cosh (𝜃1 − 𝜃2) .

(B.7)

(2) For 𝛼1 = 𝛼2 = −1

𝐹 = 2 exp (𝜃1 + 𝜃2) 𝐺2,

𝐺2 = cosh (𝜃1 + 𝜃2) − 𝑏
−1/2
12 cosh (𝜃1 − 𝜃2) .

(B.8)

(3) For 𝛼1 = −𝛼2 = 1

𝐹 = 2 exp (𝜃1 + 𝜃2) 𝐺3,

𝐺3 = − sinh (𝜃1 + 𝜃2) + 𝑏
−1/2
12 sinh (𝜃1 − 𝜃2) .

(B.9)

(4) For 𝛼1 = −𝛼2 = −1

𝐹 = 2 exp (𝜃1 + 𝜃2) 𝐺4,

𝐺4 = − sinh (𝜃1 + 𝜃2) − 𝑏
−1/2
12 sinh (𝜃1 − 𝜃2) .

(B.10)

Hence, the standard soliton solution that follows from (B.7)
and the singular soliton solutions that follow from (B.8)–
(B.10) are the real functions:

𝑈 (𝑋, 𝑇) = 𝑊𝑋 (𝑋, 𝑇) = 6
𝜕
2

𝜕𝑋2
ln (𝐺𝑖) . (B.11)

Now we rewrite the restrictions in a somewhat different
form. By retaining the values of the phase shifts 𝑋𝑖 in the
quantities 𝑞𝑖, we require

𝑐1 =
±1

√𝑏12

,

𝑐2 =
±1

√𝑏12

,

(B.12)

where the signs are independent of each other. Note that for
this case there are two arbitrary real constants 𝜉𝑖 and two
arbitrary real constants 𝑋𝑖 (𝑖 = 1, 2).

The notation in (B.7)–(B.10) shows that the solution is
defined by two combinations of the spectral parameters,
namely, 𝜉1 + 𝜉2 and 𝜉1 − 𝜉2, but not three values 𝜉1, 𝜉2, and
𝜉1 + 𝜉2 as it may appear from (B.1).

The foregoing proof points to a way for finding the
restrictions for any 𝑁 with 𝑀 = 0. Here it should be
underlined that only at real 𝑐𝑖 with any sign of 𝛼𝑖 = 𝑐𝑖/|𝑐𝑖|, are
the soliton (or singular soliton) solutions determined by a real
function. The conditions on the constants 𝑐𝑖 are as follows:

𝑐𝑖 =
±1

√∏
𝑁
𝑗=1,𝑗 ̸=𝑖𝑏12

𝑖 = 1, . . . , 𝑁 (B.13)

with the retention of the phase shifts 𝑋𝑖 in the quantities 𝑞𝑖.
The signs for 𝑐𝑖 are independent of each other. The solution
will contain the𝑁 real constants 𝜉𝑖 for determining the values
𝑏𝑖𝑗 and the 𝑁 real constants 𝑋𝑖 to define the phase shifts.
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C. The Restrictions on Constants 𝑐𝑖 in
the General Case

In this appendix we will obtain the restrictions on the
constants 𝑐𝑖 for real solutions, in the general case, taking into
account the spectral data fromboth the bound state spectrum
and the continuous spectrum. All features are inherent in the
case 𝑁 + 𝑀 = 4 considered here as an example. To find the
solution bymeans of the inverse scatteringmethod, one needs
to know function (259):

𝐹 = 1 + 𝑐1𝑞1 + 𝑐2𝑞2 + 𝑐3𝑞3 + 𝑐4𝑞4 + 𝑏12𝑐1𝑐2𝑞1𝑞2

+ 𝑏13𝑐1𝑐3𝑞1𝑞3 + 𝑏14𝑐1𝑐4𝑞1𝑞4 + 𝑏23𝑐2𝑐3𝑞2𝑞3

+ 𝑏24𝑐2𝑐4𝑞2𝑞4 + 𝑏34𝑐3𝑐4𝑞3𝑞4

+ 𝑏12𝑏13𝑏23𝑐1𝑐2𝑐3𝑞1𝑞2𝑞3 + 𝑏12𝑏14𝑏24𝑐1𝑐2𝑐4𝑞1𝑞2𝑞4

+ 𝑏13𝑏14𝑏34𝑐1𝑐3𝑐4𝑞1𝑞3𝑞4 + 𝑏23𝑏24𝑏34𝑐2𝑐3𝑐4𝑞2𝑞3𝑞4

+ 𝑏12𝑏13𝑏14𝑏23𝑏24𝑏34𝑐1𝑐2𝑐3𝑐4𝑞1𝑞2𝑞3𝑞4.

(C.1)

For convenience we rewrite the variables 𝑞𝑖 in the somewhat
different form:

𝑞𝑖 = exp (2𝜃𝑖) ,

𝑞𝑗 = exp (𝑖2𝜃𝑗) ,

2𝜃𝑖 = √3𝜉𝑖 (𝑋 − 𝑋𝑖) − (√3𝜉𝑖)
−1

𝑇,

2𝜃𝑗 = −√3𝜉𝑗 (𝑋 − 𝑋𝑗) − (√3𝜉𝑗)
−1

𝑇.

(C.2)

The phase shifts 𝑋𝑖 are arbitrary real constants. The values 𝑏𝑖𝑗

in (C.1) are as in (262):

𝑏𝑖𝑖󸀠 = (
𝜉𝑖 − 𝜉𝑖󸀠

𝜉𝑖 + 𝜉𝑖󸀠
)

2
𝜉
2
𝑖 + 𝜉

2
𝑖󸀠 − 𝜉𝑖𝜉𝑖󸀠

𝜉
2
𝑖 + 𝜉

2
𝑖󸀠

+ 𝜉𝑖𝜉𝑖󸀠
, 0 ≤ 𝑏𝑖𝑖󸀠 ≤ 1,

𝑏𝑗𝑗󸀠 = (

𝜉𝑗 − 𝜉𝑗󸀠

𝜉𝑗 + 𝜉𝑗󸀠
)

2
𝜉
2
𝑗 + 𝜉

2
𝑗󸀠 − 𝜉𝑗𝜉𝑗󸀠

𝜉
2
𝑗 + 𝜉

2
𝑗󸀠

+ 𝜉𝑗𝜉𝑗󸀠
, 0 ≤ 𝑏𝑗𝑗󸀠 ≤ 1,

𝑏𝑖𝑗 = (

𝜉𝑖 + 𝑖𝜉𝑗

𝜉𝑖 − 𝑖𝜉𝑗

)

2
𝜉
2
𝑖 − 𝜉

2
𝑗 + 𝑖𝜉𝑖𝜉𝑗

𝜉
2
𝑖 − 𝜉

2
𝑗 − 𝑖𝜉𝑖𝜉𝑗

,
󵄨󵄨󵄨󵄨󵄨
𝑏𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≡ 1,

(C.3)

where (𝑖, 𝑖
󸀠
) ≤ 𝑁 and 𝑁 < (𝑗, 𝑗

󸀠
) ≤ 𝑁 + 𝑀. Note that 𝑏𝑖𝑖󸀠 and

𝑏𝑗𝑗󸀠 are real values, and 𝑏
∗
𝑖𝑗 = 1/𝑏𝑖𝑗.

Without loss of generality, we will consider one set of
values 𝑁 and 𝑀, for example, 𝑁 = 1 and 𝑀 = 3. Now we
will show that restrictions (A.8)

𝑐1 =
±1

√𝑏12𝑏13𝑏14

,

𝑐2 =
±1

√𝑏12𝑏23𝑏24

,

𝑐3 =
±1

√𝑏13𝑏23𝑏34

,

𝑐4 =
±1

√𝑏14𝑏24𝑏34

(C.4)

(with 𝑏𝑖𝑗 determined by (C.3)) are sufficient in order to obtain
the real solutions.

For definiteness, we assume that √𝑏𝑖𝑗 is a root of the

equation 𝑥
2

= 𝑏𝑖𝑗 with −𝜋/2 < arg√𝑏𝑖𝑗 ≤ 𝜋/2. Let us rewrite

relations (C.4) in the form 𝑐𝑖 = 𝛼𝑖/∏
4
𝑗=1,𝑗 ̸=𝑖√𝑏𝑖𝑗, where 𝛼𝑖 =

±1. It is evident that we can always attain 𝛼2 = 𝛼3 = 𝛼4 = 1

by choosing the phase shifts 𝑋2, 𝑋3, and 𝑋4, while we need
to consider the two cases 𝛼1 = ±1. By defining 𝜎 = (1−𝛼1)/2,
we can rewrite the auxiliary function𝐹 from (C.1) in the form

𝐹 (𝑋, 𝑇) = 2𝐺𝑒
𝑖𝜋𝜎

(𝑏12𝑏13𝑏14)
−1/4

⋅ exp (𝜃1 +
𝑖𝜋𝜎

2
+ 𝑖𝜃2 + 𝑖𝜃3 + 𝑖𝜃4) ,

(C.5)

𝐺𝑒
𝑖𝜋𝜎

= [(𝑏12𝑏13𝑏14)
1/4

⋅ cos(−𝑖𝜃1 +
𝜋𝜎

2
+ 𝜃2 + 𝜃3 + 𝜃4)

+ (𝑏12𝑏13𝑏14)
−1/4

⋅ cos(−𝑖𝜃1 +
𝜋𝜎

2
− 𝜃2 − 𝜃3 − 𝜃4)] + (𝑏23𝑏24)

−1/2

⋅ [(
𝑏13𝑏14

𝑏12

)

1/4

cos(𝑖𝜃1 −
𝜋𝜎

2
+ 𝜃2 − 𝜃3 − 𝜃4)

+ (
𝑏13𝑏14

𝑏12

)

−1/4

cos(−𝑖𝜃1 +
𝜋𝜎

2
+ 𝜃2 − 𝜃3 − 𝜃4)]

+ (𝑏23𝑏34)
−1/2

[(
𝑏12𝑏14

𝑏13

)

1/4

⋅ cos(𝑖𝜃1 −
𝜋𝜎

2
+ 𝜃3 − 𝜃2 − 𝜃4) + (

𝑏12𝑏14

𝑏13

)

−1/4

⋅ cos(−𝑖𝜃1 +
𝜋𝜎

2
+ 𝜃3 − 𝜃2 − 𝜃4)] + (𝑏24𝑏34)

−1/2

⋅ [(
𝑏12𝑏13

𝑏14

)

1/4

cos(𝑖𝜃1 −
𝜋𝜎

2
+ 𝜃4 − 𝜃2 − 𝜃3)

+ (
𝑏12𝑏13

𝑏14

)

−1/4

cos(−𝑖𝜃1 +
𝜋𝜎

2
+ 𝜃4 − 𝜃2 − 𝜃3)] .

(C.6)

Since 𝑏23, 𝑏24, and 𝑏34 are real, and 𝑏
∗
1𝑗 = 1/𝑏1𝑗 for 𝑗 = 2, 3, 4, it

is evident that 𝐺
∗

= 𝐺; that is, the variable 𝐺 in the solution
is a real-valued function. Hence the solution of the VPE,
namely,

𝑈 (𝑋, 𝑇) = 𝑊𝑋 (𝑋, 𝑇) = 6
𝜕
2

𝜕𝑋2
ln (𝐹)

= 6
𝜕
2

𝜕𝑋2
ln (𝐺) ,

(C.7)

is a real quantity.
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Using this example, one can prove without difficulty that
the procedure considered above can be extended to any 𝑁

and 𝑀 with restrictions (see also (A.12), (B.13), and (C.4)):

𝑐𝑖 =
±1

√∏
𝑁+𝑀
𝑗=1,𝑗 ̸=𝑖𝑏𝑖𝑗

, 𝑏𝑖𝑗 = 𝑏𝑗𝑖, 𝑖 = 1, . . . , 𝑁 + 𝑀, (C.8)

while the quantities 𝑞𝑖 retain the phase shifts 𝑋𝑖 (see (C.2)).
The signs in (C.8) can be chosen independently of each other.
For the interaction of𝑁 solitons and the𝑀-mode wave there
are (𝑁 + 𝑀) real constants 𝜉𝑖 and (𝑁 + 𝑀) real constants 𝑋𝑖.

Note that restrictions (C.8) are sufficient conditions in
order that the solution of the VPE is real.
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Miura, Ed., pp. 199–226, Springer, New York, NY, USA, 1974.

[66] R. Hirota, “A new form of Bäcklund transformations and
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