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The new integrable semidiscrete multicomponent nonlinear system characterized by two
coupling parameters is presented. Relying upon the lowest local conservation laws the con-
cise form of the system is given and its selfconsistent symmetric parametrization in terms
of four independent field variables is found. The comprehensive analysis of quartic disper-
sion equation for the system low-amplitude excitations is made. The criteria distinguishing
the domains of stability and instability of low-amplitude excitations are formulated and a
collection of qualitatively distinct realizations of a dispersion law are graphically pre-
sented. The loop-like structure of a low-amplitude dispersion law of reduced system
emerging within certain windows of adjustable coupling parameter turns out to resemble
the loop-like structure of a dispersion law typical of beam-plasma oscillations. Basing on
the peculiarities of low-amplitude dispersion law as the function of adjustable coupling
parameter it is possible to predict the windows of spontaneous symmetry breaking even
without an explicit knowledge of the system Lagrangian function. Having been rewritten
in terms of properly chosen modified field variables the reduced four wave integrable sys-
tem can be qualified as consisting of two coupled nonlinear lattice subsystems, namely the
self-dual ladder network and the vibrational ones.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Since the discovery of first integrable nonlinear dynam-
ical models on a regular one-dimensional lattice [1–4] the
interest to the development of new integrable semidiscrete
nonlinear systems has been steadily supported by the wide
range of physical problems, where the spatial discreteness
and regularity play a crucial role. Among the most typical
physical objects, where the semidiscrete nonlinear systems
found their applications, are the optical waveguide arrays
[5], semiconductor superlattices [6,7], electric superstruc-
tures [8] as well as the regular macromolecular structures
of both natural [9] and synthetic [10] origin.

Evidently the more complex nonlinear physical phe-
nomenon requires the more rich nonlinear model for its
adequate description. The richness of semidiscrete integra-
ble nonlinear system is dictated by the order of auxiliary
spectral matrix LðnjzÞ consistent with some evolution ma-
trix AðnjzÞ in the framework of system zero-curvature
representation

_LðnjzÞ ¼ Aðnþ 1jzÞLðnjzÞ � LðnjzÞAðnjzÞ: ð1:1Þ

Here the dot written over the matrix LðnjzÞ in the left-hand
side of zero-curvature equation (1.1) means the differenti-
ation with respect to time s, the integer n denotes the dis-
crete spatial coordinate running from minus to plus
infinity, while z denotes the auxiliary spectral parameter
independent of time: _z ¼ 0.
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According to Caudrey [11,12] the order of spectral
matrix LðnjzÞ is determined by the number of distinct
eigenvalues of either of limiting spectral matrices
L�ðzÞ ¼ limn!�1LðnjzÞ or LþðzÞ ¼ limn!þ1LðnjzÞ. The order
of LðnjzÞ depends both on the rank of limiting spectral ma-
trix and on its matrix structure. Here it is worth noticing
that the auxiliary spectral problems linked with known
multicomponent semidiscrete nonlinear Schrödinger sys-
tems [13–16] taken at vanishing boundary conditions must
be treated as the second-order ones despite being rather
sophisticated matrix generalizations of the basic Ablo-
witz–Ladik spectral problem [3,4]. The similar property is
typical of the auxiliary spectral problems associated with
the matrix generalizations [17,18] of nonlinear Toda sys-
tem [1,2]. From the physical standpoint the generalized
systems in both of just mentioned examples do not acquire
the brand-new physical quality inasmuch as the number of
parameters responsible for the nonlinear couplings re-
mains the same as in their prototype twins. In the case of
semidiscrete nonlinear Schrödinger systems this statement
can be confirmed by the direct consideration of low-ampli-
tude normal modes exhibiting essentially the same depen-
dences on wave vector both in the prototype and
generalized systems despite the effect of parallel splitting
admissible in the latter ones.

Meanwhile recently we have suggested early unknown
semidiscrete integrable nonlinear systems [19,20] associ-
ated with the fourth order spectral problem, whose spec-
tral matrix reads as follows

LðnjzÞ ¼

0 t12ðnÞ u13ðnÞz�1 0
t21ðnÞ r22ðnÞz2 þ t22ðnÞ s23ðnÞzþ u23ðnÞz�1 s24ðnÞz

u31ðnÞz�1 s32ðnÞzþ u32ðnÞz�1 t33ðnÞ þ v33ðnÞz�2 t34ðnÞ
0 s42ðnÞz t43ðnÞ 0

0
BBB@

1
CCCA:

ð1:2Þ

Each of the systems is characterized by several coupling
parameters and appears to have all chances to manifest
the effect of spontaneous symmetry breaking (in a sense
adopted in the theory of fields [21,22]) playing the funda-
mental role in many branches of physics. In view of the
very complicated structure of above systems we have
decided to verify the idea about symmetry breaking on a
more simple but new and still integrable nonlinear system
characterized at least by two coupling parameters.

The first step in this direction was to obtain an appro-
priate new semidiscrete integrable nonlinear system in
the framework of zero-curvature scheme seeking the aux-
iliary spectral matrix as the third-order one. In so doing it
was reasonable to keep some elements of succession be-
tween the antecendent [19,20] and sought-for schemes
otherwise the procedure of empirical selection of auxiliary
spectral matrix consistent with a proper auxiliary evolu-
tion matrix in the framework of zero-curvature approach
may fail to be fruitful (see expressions (1.2) and (2.2) for
the previous LðnjzÞ and new MðnjzÞ spectral operators for
comparison). The above observation, when combined with
the Caudrey definition of the order of a spectral operator
[11,12,23], has allowed us to reveal the constructive ver-
sion of early unknown third-order auxiliary spectral matrix
(2.2) giving rise to new integrable systems.
Having been restricted to the reduced semidiscrete
nonlinear integrable system in symmetric parametrization
we have carried out the comprehensive analysis of its low-
amplitude excitations under assumption of real-valued
adjustable coupling parameter. Namely, the linear analysis
constitutes the second step of our investigation allowing to
detect the windows of spontaneous symmetry breaking in
each of two reduced nonlinear system under study. The ap-
proach does not operate with the system Lagrangian func-
tion whose sole isolation seems to be an essentially
nontrivial task. The same linear analysis is expected to be
helpful in detecting all qualitatively distinct regimes of
nonlinear (soliton) dynamics predetermined by the dis-
tinct intervals of adjustable coupling parameter framed
by the critical points.

2. Zero-curvature equation and mutually consistent
auxiliary matrices

In order to ensure the integrability of desired nonlinear
system one need to approbate the zero-curvature equation
[24]

_MðnjzÞ ¼ Bðnþ 1jzÞMðnjzÞ �MðnjzÞBðnjzÞ ð2:1Þ

by the spectral MðnjzÞ and evolution BðnjzÞmatrices chosen
properly among the square matrices assumed as Laurent
polynomials of spectral parameter z.

The arguments given in Introduction prompt us to de-
fine the spectral matrix MðnjzÞ as the following 3� 3
matrix

MðnjzÞ ¼
z2 þ TðnÞ bFþðnÞzþ aFþðnÞ GþðnÞzþ G�ðnÞz�1

aF�ðnÞzþ bF�ðnÞ 0 aF�ðnÞ þ bF�ðnÞz�1

G�ðnÞzþ GþðnÞz�1 bFþðnÞ þ aFþðnÞz�1 TðnÞ þ z�2

0
B@

1
CA

ð2:2Þ

and to seek the evolution matrix BðnjzÞ in the form

BðnjzÞ ¼
aðnÞz2 þ dðnÞ bbþðnÞzþ abþðnÞ cþðnÞzþ c�ðnÞz�1

ab�ðnÞzþ bb�ðnÞ dðnÞ � cðnÞ ab�ðnÞ þ bb�ðnÞz�1

c�ðnÞzþ cþðnÞz�1 bbþðnÞ þ abþðnÞz�1 dðnÞ þ aðnÞz�2

0
B@

1
CA;

ð2:3Þ

where a and b are some fitting parameters independent of
time. Then the direct calculations based on the zero-curva-
ture equation (2.1) confirm our conjecture and permit to
decipher almost all matrix elements BjkðnjzÞ of the tested
evolution matrix BðnjzÞ through the matrix elements
MjkðnjzÞ of chosen spectral matrix MðnjzÞ provided

a2 þ b2 ¼ 0: ð2:4Þ

Thus, for the functions entering into the evolution matrix
BðnjzÞ we have

aðnÞ ¼ k; ð2:5Þ
bþðnÞ ¼ kFþðnÞ; ð2:6Þ
b�ðnÞ ¼ kF�ðn� 1Þ; ð2:7Þ
cþðnÞ ¼ kGþðnÞ; ð2:8Þ
c�ðnÞ ¼ kG�ðn� 1Þ; ð2:9Þ
dðnÞ ¼ �kabFþðnÞF�ðn� 1Þ � kGþðnÞG�ðn� 1Þ; ð2:10Þ

where the summation quantity k can be thought as an
arbitrary function of time s. The only exception is the
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sampling function cðnÞwhich similarly to other precedents
[25,26] remains arbitrary for the time being.

In what follows we equalize the summation function to
unity: k ¼ 1, inasmuch as that does not lead to the any loss
of generality.

3. Evolution equations for the prototype field variables

We call the quantities FþðnÞ; F�ðnÞ;GþðnÞ;G�ðnÞ and TðnÞ
to be the prototype field variables. According to the zero-
curvature equation (2.1) and the expressions (2.2) and
(2.3)–(2.10) for the spectral MðnjzÞ and evolution BðnjzÞ
matrices the evolution of these variables is described by
the following collection of semidiscrete nonlinear equations

d
ds

ln½FþðnÞ� ¼ Gþðnþ 1Þ �GþðnÞ � TðnÞ� abFþðnþ1ÞF�ðnÞ

�Gþðnþ 1ÞG�ðnÞ þabFþðnÞF�ðn�1Þ þGþðnÞG�ðn�1Þ
þ cðnÞ; ð3:1Þ

d
ds

ln½F�ðnÞ� ¼G�ðnÞ�G�ðn�1ÞþTðnÞþabFþðnÞF�ðn�1Þ

þGþðnÞG�ðn�1Þ�abFþðnþ1ÞF�ðnÞ�Gþðnþ1ÞG�ðnÞ
� cðnþ1Þ; ð3:2Þ

d
ds

ln 1�TðnÞþGþðnÞ�G�ðnÞ½ � ¼GþðnÞ�Gþðnþ1ÞþG�ðnÞ

�G�ðn�1Þ�abFþðnþ1ÞF�ðnÞ�Gþðnþ1ÞG�ðnÞ
þabFþðnÞF�ðn�1ÞþGþðnÞG�ðn�1Þ; ð3:3Þ

d
ds

ln 1þTðnÞ�GþðnÞ�G�ðnÞ½ � ¼GþðnÞ�Gþðnþ1Þ�G�ðnÞ

þG�ðn�1Þ�abFþðnþ1ÞF�ðnÞ�Gþðnþ1ÞG�ðnÞ
þabFþðnÞF�ðn�1ÞþGþðnÞG�ðn�1Þ; ð3:4Þ

d
ds

ln 1�TðnÞ�GþðnÞþG�ðnÞ½ � ¼Gþðnþ1Þ�GþðnÞ

þG�ðn�1Þ�G�ðnÞ�abFþðnþ1ÞF�ðnÞ�Gþðnþ1ÞG�ðnÞ
þabFþðnÞF�ðn�1ÞþGþðnÞG�ðn�1Þ: ð3:5Þ

The present concise form (3.1)–(3.5) of evolution equations
has been acquired due to the use of some lowest local con-
servation laws dictated by the matrix structures (2.2) and
(2.3) of the spectral and evolution matrices MðnjzÞ and
BðnjzÞ. Evidently, each of three last Eqs. (3.3)–(3.5) has
the form of a local conservation law, while the sum of first
two Eqs. (3.1) and (3.2) yields one more local conservation
law. To say plainly we have exploited the system integra-
bility in order to simplify its notation.

Anyway, according to the very method of their con-
struction the obtained Eqs. (3.1)–(3.5) are said to possess
the zero-curvature representation (2.1) with the spectral
and evolution matrices MðnjzÞ and BðnjzÞ given by formulas
(2.2) and (2.3), respectively, where the constraint (2.4) im-
posed onto the fitting parameters a and b as well as the
expressions (2.5)–(2.10) for the constituent parts of evolu-
tion matrix BðnjzÞ have been taken into account. This prop-
erty proves to be the key indication on an integrability [24]
of the system under consideration (3.1)–(3.5).

The given system (3.1)–(3.5) can be treated as the first
system from an infinite hierarchy associated with the
adopted form (2.2) of a spectral matrix and induced by
an infinite set of evolution matrices characterized by the
properly chosen dependencies on spectral parameter z.
This assertion is in lines with the existence of an infinite
hierarchy of local conservation laws, whose densities
are determined exclusively by the structure of spectral ma-
trix MðnjzÞ. Except of already announced densities
ln½1 � TðnÞ þ GþðnÞ � G�ðnÞ�; ln½1 þ TðnÞ � GþðnÞ � G�ðnÞ�;
ln½1� TðnÞ�GþðnÞ þG�ðnÞ�; ln½FþðnÞF�ðnÞ� we present here
the second lowest local densities

q�2 ðnÞ ¼ TðnÞ þ abFþðnÞF�ðn� 1Þ þ GþðnÞG�ðn� 1Þ; ð3:6Þ
qþ2 ðnÞ ¼ TðnÞ þ abFþðnþ 1ÞF�ðnÞ þ Gþðnþ 1ÞG�ðnÞ ð3:7Þ

having been found by the direct technique [19], generaliz-
ing that of Konno, Sanuki, Ichikawa and Wadati [27,28] to
the case of essentially multicomponent integrable systems.

4. Symmetric parametrization of field variables

The question how to fix the sampling function cðnÞ is
tantamount to the problem of imposing an additional con-
straint onto the five prototype field variables, so that only
four of them to be truly independent. In general, there ex-
ists a number of variants in selection one of admissible
additional constraints [20]. However, we prefer the way
allowing to define the sampling function cðnÞ through
some redundant quantity qðnjn� 1Þ and to exclude both
of them simultaneously from further consideration.

The approach assumes the following parametrization

FþðnÞ¼ Fþ exp þxþðnÞ�yþðnÞþqðnjn�1Þ
� �

; ð4:1Þ
F�ðnÞ¼ F� exp �x�ðnÞþy�ðnÞ�qðnþ1jnÞ½ �; ð4:2Þ
GþðnÞ¼1�exp þx�ðnÞþy�ðnÞ�yþðnÞ

� �
cosh½xþðnÞ�; ð4:3Þ

TðnÞ¼1�exp �yþðnÞþy�ðnÞ
� �

cosh½xþðnÞþx�ðnÞ�; ð4:4Þ
G�ðnÞ¼1�exp �xþðnÞ�yþðnÞþy�ðnÞ

� �
cosh½x�ðnÞ�; ð4:5Þ

where _Fþ ¼ 0 ¼ _F�.
The equations of motion for the new field variables

xþðnÞ; yþðnÞ and x�ðnÞ; y�ðnÞ read as follows

_xþðnÞ¼Gþðnþ1Þ�GþðnÞ; ð4:6Þ
_yþðnÞ¼TðnÞþabFþðnþ1ÞF�ðnÞþGþðnþ1ÞG�ðnÞ�abFþF�; ð4:7Þ
_x�ðnÞ¼G�ðn�1Þ�G�ðnÞ; ð4:8Þ
_y�ðnÞ¼TðnÞþabFþðnÞF�ðn�1ÞþGþðnÞG�ðn�1Þ�abFþF�: ð4:9Þ

These equations are seen to be essentially selfconsistent.
As for the variable qðnjn� 1Þ it serves mainly for the
definition of sampling function cðnÞ by means of equation

_qðnjn� 1Þ ¼ cðnÞ þ abFþðnÞF�ðn� 1Þ þ GþðnÞG�ðn� 1Þ
� abFþF�: ð4:10Þ

Nevertheless, namely the proper choice of this definition
(4.10) ensures the correct frame of reference for the true
field variables xþðnÞ; yþðnÞ and x�ðnÞ; y�ðnÞ due to the pres-
ence of last term �abFþF� in the right-hand sides of Eqs.
(4.7) and (4.9) for _yþðnÞ and _y�ðnÞ.

The structure of Eqs. (4.7), (4.9) and (4.10) prompts us
to adopt FþF� ¼ 1 without the loss of generality.

In order to avoid unnecessary complications when
dealing with zero-curvature formulation (2.1) of reduced
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system (4.6)–(4.9) it is reasonable to equalize the redun-
dant variable qðnjn� 1Þ to zero. As a result both the
spectral and evolution matrices MðnjzÞ and BðnjzÞ will be
strictly defined inasmuch as qðnjn� 1Þ ¼ 0 and

cðnÞ ¼ abFþF� � abFþðnÞF�ðn� 1Þ � GþðnÞG�ðn� 1Þ:
ð4:11Þ

The obtained four-wave system (4.6)–(4.9) can be
understood as a nonlinear vibrational system given on
some two-leg infinite ladder lattice, where indices � and
þ mark the sites respectively on the left and right legs
respectively, while the unit cells are numbered by the run-
ning integer n. In view of modern technological capabilities
to synthetize a wide variety of low-dimensional regular
nanostructures [29–33], there is a good reason to expect
that our four-wave system (4.6)–(4.9) could be adopted
as a reliable model for the propagation of pulse-like non-
linear oscillations on a properly chosen ladder lattice.

The possibility to regulate the adjustable coupling
parameter ab without the loss of system integrability as-
sumes the existence of several qualitatively distinct re-
gimes of nonlinear dynamics and the opportunity of
switching over between them. The most evident and sim-
ple step to corroborate the above statement is to perform
the comprehensive linear analysis of the system under
study (4.6)–(4.9) with ab serving as an arbitrary real gov-
erning parameter.

In what follows we restrict ourselves only to the case of
linear consideration.

5. Dispersion equation for the low-amplitude
excitations and the general principles of its analysis

Assuming the coupling parameter ab to be the real one
let us obtain the dispersion equation for the low-amplitude
excitations in shortened semidiscrete nonlinear system
(4.6)–(4.9). In so doing we linearize the system of our
interest (4.6)–(4.9) by expanding its left-hand-side terms
near the values xþðnÞ ¼ 0; yþðnÞ ¼ 0 and x�ðnÞ ¼ 0;
y�ðnÞ ¼ 0 and use the standard plane-wave ansätze

xþðnÞ ¼ xþ expði,n� iXsÞ; ð5:1Þ
yþðnÞ ¼ yþ expði,n� iXsÞ; ð5:2Þ
x�ðnÞ ¼ x� expði,n� iXsÞ; ð5:3Þ
y�ðnÞ ¼ y� expði,n� iXsÞ: ð5:4Þ
Then the spectrum of linearized system

_xþðnÞ=k � yþðnþ 1Þ � y�ðnþ 1Þ � x�ðnþ 1Þ � yþðnÞ
þ y�ðnÞ þ x�ðnÞ; ð5:5Þ

_yþðnÞ=k � yþðnÞ � y�ðnÞ
þ ab xþðnþ 1Þ � yþðnþ 1Þ � x�ðnÞ þ y�ðnÞ

� �
; ð5:6Þ

_x�ðnÞ=k � yþðn� 1Þ � y�ðn� 1Þ þ xþðn� 1Þ � yþðnÞ
þ y�ðnÞ � xþðnÞ; ð5:7Þ

_y�ðnÞ=k�yþðnÞ�y�ðnÞ
þab xþðnÞ�yþðnÞ�x�ðn�1Þþy�ðn�1Þ

� �
; ð5:8Þ

will be determined by the following quartic dispersion
equation
X4 � 2ab sinð,ÞX3 � 2½1� cosð,Þ�X2

þ 2ab½1� 2 cosð,Þ�½1� cosð,Þ�X2

þ 8ab sinð,Þ½1� cosð,Þ�X� 4ab½1� cosð,Þ�2 ¼ 0: ð5:9Þ

To examine this Eq. (5.9) on the character of its roots it
is appropriate to make the substitution

X ¼ 2k sinð,=2Þ: ð5:10Þ

As a consequence we come to the quartic auxiliary disper-
sion equation

k4 þ að,jabÞk3 þ bð,jabÞk2 þ cð,jabÞkþ dð,jabÞ ¼ 0;

ð5:11Þ

where

að,jabÞ ¼ �2ab cosð,=2Þ; ð5:12Þ
bð,jabÞ ¼ �1þ 3ab� 4ab cos2ð,=2Þ; ð5:13Þ
cð,jabÞ ¼ þ4ab cosð,=2Þ; ð5:14Þ
dð,jabÞ ¼ �ab: ð5:15Þ

Its discriminant [34,35] Dð,jabÞ is given by formula
[34,36,37]

Dð,jabÞ ¼ a2ð,jabÞb2ð,jabÞc2ð,jabÞ � 4a3ð,jabÞc3ð,jabÞ

� 4b3ð,jabÞc2ð,jabÞ þ 18að,jabÞbð,jabÞc3ð,jabÞ

� 27c4ð,jabÞ þ 256d3ð,jabÞ

� 4a2ð,jabÞb3ð,jabÞdð,jabÞ

þ 18a3ð,jabÞbð,jabÞcð,jabÞdð,jabÞ

þ 16b4ð,jabÞdð,jabÞ

� 80að,jabÞb2ð,jabÞcð,jabÞdð,jabÞ

� 6a2ð,jabÞc2ð,jabÞdð,jabÞ

þ 144bð,jabÞc2ð,jabÞdð,jabÞ

� 27a4ð,jabÞd2ð,jabÞ

þ 144a2ð,jabÞbð,jabÞd2ð,jabÞ

� 128b2ð,jabÞd2ð,jabÞ

� 192að,jabÞcð,jabÞd2ð,jabÞ: ð5:16Þ

In the regions of negative discriminant Dð,jabÞ < 0 the
theory of quartic equations [34–36] predicts two real roots
and two complex roots. However, in the regions of positive
discriminant Dð,jabÞ > 0 the situation turns out to be
ambiguous until we invoke two seminvariants Hð,jabÞ
and Qð,jabÞ given by formulas [36,37]

Hð,jabÞ ¼ 8bð,jabÞ � 3a2ð,jabÞ; ð5:17Þ
Qð,jabÞ ¼ 3a4ð,jabÞ � 16a2ð,jabÞbð,jabÞ
þ 16að,jabÞcð,jabÞ þ 16b2ð,jabÞ � 64dð,jabÞ ð5:18Þ

and determine their signs. Precisely at Dð,jabÞ > 0 the
general theory [34–37] predicts four real roots provided
Hð,jabÞ < 0 and Qð,jabÞ > 0 or four complex roots pro-
vided either Hð,jabÞ > 0 or Qð,jabÞ < 0.
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6. Structure of low-amplitude dispersion law as the
function of adjustable coupling parameter ab

In as much as the quantities Dð,jabÞ;Hð,jabÞ and
Qð,jabÞ depend only on two parameters , and ab it is con-
venient to use the plane of these parameters in order to
visualize the regions where signs of Dð,jabÞ;Hð,jabÞ and
Qð,jabÞ remain fixed. Fig. 1 shows such regions found by
the computer simulation. Each region is marked by three
vertically arranged signs (column of three signs) so that
the upper sign is related to Dð,jabÞ, the middle sign is re-
lated to Hð,jabÞ and the lower sign is related to Qð,jabÞ.
N.B. The caudal-fin like region (although being unlabeled
due to the lack of space) is understood as marked by
colðþ � þÞ signature.

At , ¼ 0 and , ¼ �p the results presented on Fig. 1 per-
mit the direct analytical interpretation based on the simple
specific expressions

Dð0jabÞ ¼ 16abð2ab� 1Þ2½17ðabÞ3 þ 33ðabÞ2 � 12ab� 1�;
ð6:1Þ

Hð0jabÞ ¼ �4½ðabþ 1Þ2 þ 2ðabÞ2 þ 1�; ð6:2Þ

Qð0jabÞ ¼ 16½3ðabÞ4 þ 4ðabÞ3 � 3ðabÞ2 þ 6abþ 1� ð6:3Þ

and

Dð�pjabÞ ¼ �16ab½ðab� 1Þ2 þ 8ðabÞ2�; ð6:4Þ
Hð�pjabÞ ¼ 8ð3ab� 1Þ; ð6:5Þ
Qð�pjabÞ ¼ 16½ðab� 1Þ2 þ 8ðabÞ2� ð6:6Þ

following from the general ones (5.12)–(5.18).
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Fig. 1. Subdivision into the regions with fixed signs of Dð,jabÞ (upper
sign), Hð,jabÞ (middle sign), Qð,jabÞ (lower sign) in the plane of wave
vector , and adjustable coupling parameter ab. The curves Dð,jabÞ ¼ 0
are marked by the solid lines. The curves Hð,jabÞ ¼ 0 are marked by the
dot-and-dash lines. The curves Qð,jabÞ ¼ 0 are marked by the dotted
lines. The caudal-fin region should be understood as marked by
colðþ � þÞ signature. The regions with colðþ � þÞ signature correspond
to four stable branches in dispersion law. All other regions correspond to
two stable branches in dispersion law.
Thus at , ¼ 0 the formula (6.1) for Dð0jabÞ ensures that
all six roots of equation Dð0jabÞ ¼ 0 must be purely real. To
wit we have

ðabÞ1 ’ �2:2441; ð6:7Þ
ðabÞ2 ’ �0:0703; ð6:8Þ
ðabÞ3 ¼ 0; ð6:9Þ
ðabÞ4 ’ 0:3731; ð6:10Þ
ðabÞ5 ¼ 0:5; ð6:11Þ
ðabÞ6 ¼ 0:5; ð6:12Þ

where the roots ðabÞ3; ðabÞ5; ðabÞ6 are selfevident, while
the roots ðabÞ1; ðabÞ2; ðabÞ4 are obtainable from the cubic
equation whose discriminant [34,36] is proved to be posi-
tive. As for the quantity Hð0jabÞ (formula (6.2)) it is seen to
be essentially negative. At last the quartic equation
Qð0jabÞ ¼ 0 (see formula (6.3) for Qð0jabÞ) must possess
two real negative roots, since its discriminant is negative
and Qð0jab P 0Þ > 0 while the parameter ab must be
purely real by definition.

The consideration of formulas (6.4)–(6.6) for Dð�pjabÞ;
Hð�pjabÞ and Qð�pjabÞ related to , ¼ �p yields
Dð�pjab>0Þ<0;Dð�pjab<0Þ>0, and Hð�pjab>1=3Þ>0;
Hð�pjab<1=3Þ<0, whereas Qð�pjabÞ>0 for all real ab.

Examining the analytical data contained in previous
three paragraphs we clearly observe their one-to-one
reproductions on the lines , ¼ 0 and , ¼ �p of Fig. 1.

According to the commonly accepted graphical treat-
ment of a dispersion law [38–40] we shall be interested
with the real-valued solutions k�j ð,jabÞ ¼ kjð,jabÞ of auxil-
iary dispersion equation (5.11) at the real-valued wave
vector , spanning the first Brillouin zone �p 6 , 6 þp.
Thus juxtaposing the signatures of all regions pictured on
Fig. 1 with the early listed criteria on the character of roots
we can readily conclude that the regions marked by
colðþ � þÞ signature should produce the four-branch aux-
iliary dispersion law, while in the other regions the auxil-
iary dispersion law should be the two-branch one. The
same statement concerns also the actual dispersion law,
i.e. dispersion law given in terms of cyclic eigenfrequencies
Xjð,jabÞ ¼ 2kjð,jabÞ sinð,=2Þ, except of the merging point
, ¼ 0 where Xjð, ¼ 0jabÞ � 0. Here the integer j denotes
the ordinal number of eigenmode of the low-amplitude
excitations and serves as the branch number in their dis-
persion law.

Fig. 2 demonstrates the typical metamorphoses in the
actual low-amplitude dispersion law as the adjustable cou-
pling parameter ab grows from the values smaller than
ðabÞ1 to the values larger than ðabÞ5 � ðabÞ6. As we have
expected the most crucial qualitative rearrangements in
the dispersion law are seen to happen when the value of
coupling parameter ab passes through any root ðabÞk of
equation Dð0jabÞ ¼ 0 or through the value ðabÞ� ’ 0:3557
being the ordinate for each of two symmetric cusp points
on the line Dð,jabÞ ¼ 0 (see the caudal-fin region on
Fig. 1). In this respect the points ðabÞk (with
k ¼ 1;2;3;4;5;6) and ðabÞ� can be referred to as the critical
ones. Meanwhile, when the coupling parameter ab varies
between any two distinct neighboring critical points, the
changes in a structure of dispersion law are proved to be
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solely quantitative rather than qualitative in complete
agreement with the criteria evaluating the character of
admissible roots of quartic auxiliary dispersion equation
(5.11).

Considering the dispersion curves on each subfigure of
Fig. 2 we observe that some of them have the dead-end
points with respect to wave vector ,. Nonetheless each
dead-end point is seen to be shared by two distinct
branches. As a consequence the combination of such joint
branches can be treated as the unique loop-like branch or
the unique folding branch. Here we would like to point
out on a certain similarity between the low-amplitude
oscillations in our semidiscrete system (4.6)–(4.9) and
the oscillations in beam-plasma system where the loop-
like structure of dispersion law is known to be rather typ-
ical [39,40]. Regarding the linearized version (5.5)–(5.8) of
reduced integrable system (4.6)–(4.9) the Fig. 1 prompts us
that the loop-like structure of a dispersion law must
inevitably emerge once the coupling parameter ab enters
into one of the following two intervals:

ðabÞ4 < ab < ðabÞ5 � ðabÞ6; ð6:13Þ
ðabÞ5 � ðabÞ6 < ab <1; ð6:14Þ

where the critical points ðabÞk are given by formulas (6.7)–
(6.12). As for the folding branch structure of a dispersion
law it must be prescribed to the interval

ðabÞ� < ab < ðabÞ4; ð6:15Þ

where ðabÞ� ’ 0:3557 as we already know. The peculiari-
ties concerning the loop-like and folding-like dispersion
curves are clearly seen on a respective subfigures of Fig. 2.

It is worth noticing that at large values jabj 	 1 of
adjustable coupling parameter ab the high amplitude
curve (which we shall denote as Xað,jabÞ) of a dispersion
law can be estimated analytically in rather wide interval
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of wave vectors. Indeed the calculation based on the auxil-
iary dispersion equation (5.11) and on the relationship
(5.10) between k and X yields the approximate formula

Xað,jabÞ � 2ab sinð,Þ; ð6:16Þ

with the accuracy controlled by the inequality

4jabj cos2ð,=2Þ 	 3: ð6:17Þ

Fig. 3 clearly illustrates that the wave vector interval of
accurate reproduction of high amplitude curve by sinusoid
(6.16) is increased as the strength jabj of adjustable cou-
pling parameter ab grows.

From the standpoint of stability analysis any interval of
wave vectors supporting four real-valued branches of
quartic dispersion relation (5.9) should be treated as an
interval of stability while any interval of wave vectors sup-
porting two real-valued branches of quartic dispersion
relation (5.9) should be considered as an interval of insta-
bility. Here due to the spatial discreteness of our linear sys-
tem (5.5)–(5.8) it seems impossible to apply the Sturrock
rules [38,39] and to qualify each particular instability
either as convective or absolute one.

For us however it is more important the mere mani-
festation of instability rather than the strict identification
of its type. Here we bear in mind the effect of spontane-
ous symmetry breaking as it is understood in the theory
of fields [21,22]. Having been applied to our consider-
ation it requires the existence of two stable branches
(instead of four ones) in low-amplitude dispersion law
taken at , ¼ 0. According to our calculations the sponta-
neous symmetry breaking may occur provided the
adjustable coupling parameter ab belongs to one of two
windows

ðabÞ1 < ab < ðabÞ2; ð6:18Þ
ðabÞ3 < ab < ðabÞ4; ð6:19Þ
or is equal to the value ðabÞ5 � ðabÞ6. In this situation we
do not exclude the possibility of introducing the shifted
field variables taking into account the broken symmetry
in the relevant nonlinear system (4.6)–(4.9).

In any event the predisposition to instability is not the
only property of considered linearized system (5.5)–(5.8),
since it can be canceled by the proper choice of adjustable
coupling parameter ab. Precisely at

�1 < ab < ðabÞ1 ð6:20Þ

or at

ðabÞ2 < ab < ðabÞ3 ð6:21Þ

all four branches of low-amplitude excitations are stable
for all wave vectors �p 6 , 6 þp thus ensuring the good
background for the stable solutions of semidiscrete nonlin-
ear system of interest (4.6)–(4.9) already in terms of early
adopted field variables xþðnÞ; yþðnÞ and x�ðnÞ; y�ðnÞ.

7. Alternative version of the four-wave system as the
generalization of nonlinear self-dual network model

In this section we will try to elucidate the feasible phys-
ical meaning of reduced four-wave system (4.6)–(4.9). In
so doing we abandon its symmetric parametrization
(4.1)–(4.5) bearing in mind the possibility to use another
closed set of true field variables. For instance we can rely
upon the variables Fþðnþ 1ÞF�ðnÞ;GþðnÞ;G�ðnÞ; TðnÞ which
are completely insensitive to the choice of the sampling
function cðnÞ.

The later case might be essentially improved by aban-
doning the awkward composite variable Fþðnþ 1ÞF�ðnÞ in
favor of variable wðnÞ that arises from the constraint

d
ds

ln
FþðnÞF�ðnÞ

½1� TðnÞ�2 � ½GþðnÞ � G�ðnÞ�2
¼ 0; ð7:1Þ
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due to the following parametrization

FþðnÞ ¼ 1� TðnÞ � GþðnÞ þ G�ðnÞ½ �Fþ exp½þwðnÞ�; ð7:2Þ
F�ðnÞ ¼ 1� TðnÞ þ GþðnÞ � G�ðnÞ½ �F� exp½�wðnÞ�: ð7:3Þ
Here _Fþ ¼ 0 ¼ _F�. The adopted constraint (7.1) fixates the
sampling function cðnÞ by the expression

cðnÞ ¼ c þ GþðnÞ þ G�ðn� 1Þ; ð7:4Þ
where the summation parameter c could be thought as an
arbitrary function of time s.

Taking into account the above findings (7.2)–(7.4) let us
rearrange the general integrable system (3.1)–(3.5) into
the following reduced form

d
ds

ln
1�TðnÞþGþðnÞ�G�ðnÞ
1þTðnÞ�GþðnÞ�G�ðnÞ

¼2G�ðnÞ�2G�ðn�1Þ; ð7:5Þ

d
ds

ln
1�TðnÞ�GþðnÞþG�ðnÞ
1þTðnÞ�GþðnÞ�G�ðnÞ

¼2Gþðnþ1Þ�2GþðnÞ; ð7:6Þ

d
ds

ln ½1�TðnÞ�2�½GþðnÞ�G�ðnÞ�2
n o

¼2abFþðnÞF�ðn�1Þ�2abFþðnþ1ÞF�ðnÞ
þ2GþðnÞG�ðn�1Þ�2Gþðnþ1ÞG�ðnÞ; ð7:7Þ

_wðnÞ¼GþðnÞþG�ðnÞ�TðnÞ; ð7:8Þ
where the expressions for FþðnÞ and F�ðnÞ are given by the
adopted parametrization formulas (7.2) and (7.3) respec-
tively, while the quantities GþðnÞ;G�ðnÞ and TðnÞ;wðnÞ
should be treated as the field variables. In obtained Eqs.
(7.5)–(7.8) we have assumed the parameter c to be of zero
value insofar as even at c – 0 the system equations can be
readily transformed into their present form (7.5)–(7.8) by a
proper coordinate independent shift of field variable wðnÞ.

Similarly to the case with symmetric parametrization
we can adopt FþF� ¼ 1 in the third Eq. (7.7) without the
loss of generality.

At ab ¼ 0 the last Eq. (7.8) becomes redundant inas-
much as the first three ones (7.5)–(7.7) do not contain
the variable wðnÞ at all. Simultaneously the third Eq. (7.7)
loses its independence (i.e. it can be obtained by the proper
combination of the first two ones (7.5) and (7.6)). As a con-
sequence the so-called natural constraint

DðnÞ 1þ T2ðnÞ � G2
þðnÞ � G2

�ðnÞ
h i

¼ EðnÞ½TðnÞ � GþðnÞG�ðnÞ� ð7:9Þ
turns out to be valid, where DðnÞ and EðnÞ are some time-
independent parameters. Assuming the uniformity of
space these parameters must be taken also as independent
on the space variable: DðnÞ ¼ D and EðnÞ ¼ E. In the case
when quantities GþðnÞ;G�ðnÞ and TðnÞ are adopted as van-
ishing at both spatial infinities jnj ! 1 the single construc-
tive variant to satisfy the natural constraint (7.9) is to
admit that D � 0 and E – 0. As a result we have

TðnÞ ¼ GþðnÞG�ðnÞ: ð7:10Þ

Thus at ab ¼ 0 only two equations

_GþðnÞ
1� G2

þðnÞ
¼ G�ðnÞ � G�ðn� 1Þ; ð7:11Þ

_G�ðnÞ
1� G2

�ðnÞ
¼ Gþðnþ 1Þ � GþðnÞ ð7:12Þ

remain significant.
Provided GþðnÞ being identified with the dimensionless
current IðnÞ and G�ðnÞwith the dimensionless voltage VðnÞ,
these two coupled equations (7.11) and (7.12) manifest
themselves as the nonlinear ladder network system of
self-dual type consisting of current-dependent inductors
and voltage-dependent capacitors with nth inductance
LðIðnÞÞ and nth capacitance CðVðnÞÞ characterizing by the
following nonlinearities

LðIðnÞÞ ¼ artanh½IðnÞ�
IðnÞ ð7:13Þ

and

CðVðnÞÞ ¼ artanh½VðnÞ�
VðnÞ : ð7:14Þ

The equivalent electric circuit scheme of this truncated
system (7.11) and (7.12) happens to be formally the
same as that constructed by Hirota and Suzuki [41]
or that analytically investigated by Hirota [42] or at last
that considered numerically by Daikoku, Mizushima,
and Tamama [43] and analytically by Hirota and Sat-
suma [44]. Having been based upon the same electric
scheme the listed classical models are distinguished
by the particular dependencies of inductance LðIðnÞÞ
and capacitance CðVðnÞÞ on their arguments thus giving
rise to distinct physical backgrounds. For example, a
proper choice of these dependencies allow one to mod-
el the systems [43,44] originated from the Volterra
competition equations [45]. The self-duality of obtained
truncated system (7.11) and (7.12) is closely linked
with the self-duality of Hirota one [42] and it is sup-
ported by the one-to-one correspondence between
these systems through the formal substitutions
GþðnÞ ¼ iIðnÞ;G�ðnÞ ¼ iVðnÞ and the inversion of time
s! �s.

At an arbitrary value of adjustable coupling parameter
ab the integrable four-wave lattice system (7.5)–(7.8) can
be interpreted as an nontrivial extension of nonlinear
self-dual network system specified by two coupled lattice
subsystems of principally distinct origins. In order to sub-
stantiate this statement it is reasonable to introduce the
modified field variables gþðnÞ; tðnÞ; g�ðnÞ instead of the for-
mer ones GþðnÞ; TðnÞ;G�ðnÞ. The respective transformation
formulas are as follows

GþðnÞ ¼ gþðnÞ þ ½1� gþðnÞ�tðnÞ; ð7:15Þ
TðnÞ ¼ ½1� gþðnÞg�ðnÞ�tðnÞ þ gþðnÞg�ðnÞ; ð7:16Þ
G�ðnÞ ¼ g�ðnÞ þ ½1� g�ðnÞ�tðnÞ: ð7:17Þ

These formulas (7.15)–(7.17) in particular yield

1�TðnÞþGþðnÞ�G�ðnÞ¼ ½1þgþðnÞ�½1� tðnÞ�½1�g�ðnÞ�; ð7:18Þ
1þTðnÞ�GþðnÞ�G�ðnÞ¼ ½1�gþðnÞ�½1� tðnÞ�½1�g�ðnÞ�; ð7:19Þ
1�TðnÞ�GþðnÞþG�ðnÞ¼ ½1�gþðnÞ�½1� tðnÞ�½1þg�ðnÞ� ð7:20Þ

and

FþðnÞ¼ ½1�gþðnÞ�½1� tðnÞ�½1þg�ðnÞ�Fþ exp½þwðnÞ�; ð7:21Þ
F�ðnÞ¼ ½1þgþðnÞ�½1� tðnÞ�½1�g�ðnÞ�F� exp½�wðnÞ�: ð7:22Þ

As a result the integrable system of our interest (7.5)–(7.8)
is presentable as two coupled nonlinear lattice subsystems
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_gþðnÞ
1� g2

þðnÞ
¼ G�ðnÞ � G�ðn� 1Þ; ð7:23Þ

_g�ðnÞ
1� g2

�ðnÞ
¼ Gþðnþ 1Þ � GþðnÞ ð7:24Þ

and

_tðnÞ
1� tðnÞ ¼ abFþðnþ 1ÞF�ðnÞ � abFþðnÞF�ðn� 1Þ

þ Gþðnþ 1ÞG�ðnÞ � GþðnÞG�ðn� 1Þ
� Gþðnþ 1Þg�ðnÞ þ gþðnÞG�ðn� 1Þ
þ GþðnÞg�ðnÞ � gþðnÞG�ðnÞ; ð7:25Þ
_wðnÞ ¼ GþðnÞ þ G�ðnÞ � TðnÞ ð7:26Þ

where the variables gþðnÞ and g�ðnÞ are responsible for a
sort of nonlinear self-dual network subsystem (Eqs.
(7.23) and (7.24)), while the variables tðnÞ and wðnÞ are re-
lated to some nonlinear vibrational lattice subsystem (Eqs.
(7.25) and (7.26)) forced by the self-dual one.

The consideration of low-amplitude excitations in the
above reduced system (7.23)–(7.26) gives rise to the same
quartic dispersion equation as that (5.9) inherent in the
symmetrically reduced system (4.6)–(4.9). Thus the results
concerning the low-amplitude spectrum (Sections 5 and 6)
are applicable to both of proposed reductions (4.6)–(4.9)
and (7.23)–(7.26) on an equal footing.
8. Conclusion

Considering the nondegenerate 3� 3 matrices we have
selected a properly truncated Laurent-type form of the
spectral and evolution matrices to be mutually consistent
in the framework of matrix-valued semidiscrete zero-cur-
vature equation and have isolated early unknown basic
integrable nonlinear evolution system on quasionedimen-
sional lattice.

When choosing the fixation of sampling function one
can come to distinct reductions of basic semidiscrete sys-
tem and as a consequence to distinct parametrizations of
prototype field amplitudes. In this paper we have pre-
sented two possible paramertizations, each one supporting
a sort of reduced four-wave integrable system.

The integrable system (either the reduced or the basic
one) is characterized by two parameters (one of which
we have normalized to unity) responsible for the interfield
couplings of principally distinct origins. The variation of
adjustable coupling parameters should lead to several re-
gimes in system behavior with nontrivial dynamics. This
statement find its natural confirmation already on the
stage of low-amplitude plane-wave excitations whose dis-
persion law turns out to be essentially dependent on the
magnitude and sign of adjustable coupling parameter pro-
vided other coupling parameter is fixed. Thus depending
on the value of adjustable coupling parameter the reduced
four-wave system can exhibit at least six qualitatively dis-
tinct realizations of its low-amplitude dispersion law dis-
tinguished by the number of stable branches as well as
by the graphic (smooth, folding-like or loop-like) structure
of available branches.
In some windows of adjustable coupling parameter we
observe the clear resemblance between the obtained dis-
persion curves and those typical of the beam-plasma oscil-
lations in hydrodynamic plasma [39,40].

On the other hand there are all reasons to believe that
the intervals of adjustable coupling parameter ensuring
only two stable branches of low-amplitude dispersion
law in the long wave limit , ¼ 0 may predetermine the
windows of spontaneous symmetry breaking in the non-
linear system under study.

There are also windows of adjustable coupling parame-
ter where all branches of low-amplitude oscillations re-
main stable within the whole Brillouin zone.

Inspecting the list of already known semidiscrete non-
linear integrable systems one can reveal a considerable
structural analogy between the alternative version of four
wave nonlinear ladder system (7.23)–(7.26) and the two-
wave nonlinear ladder network system considered in de-
tails by Hirota [42]. In this connection the perspective of
applicability for the proposed four-wave ladder system in
either of its two considered forms (4.6)–(4.9) or (7.23)–
(7.26) appears to be rather promising due in parts to its
potentially rich dynamics and practically inexhaustible
constructive variativity of nonlinear electric circuits, in
particular the nonlinear electric transmission lines with
ladder-like network configurations [8].
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