
Modeling of stress-strain dependences for Berea sandstone under quasistatic loading

Vyacheslav O. Vakhnenko,1,* Oleksiy O. Vakhnenko,2,† James A. TenCate,3,‡ and Thomas J. Shankland3,§

1Institute of Geophysics, Kyïv 01054, Ukraine
2Bogolyubov Institute for Theoretical Physics, Kyïv 03143, Ukraine

3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
�Received 26 February 2007; published 9 November 2007�

In this work, a phenomenological model to describe the complex stress-strain properties of a sandstone
sample under slow loading is presented. We consider a combination of three methods to treat the elastic and
nonlinear behavior observed in stress cycling experiments. The mechanisms to treat interior equilibration
processes in sandstone are termed the standard solid relaxation mechanism, the sticky-spring mechanism, and
the permanent plastic deformation mechanism. With a small number of parameters, the overall model displays
both qualitatively and quantitatively the principal experimental observations of the stress-strain trajectories for
Berea sandstone, in particular, the details of end-point memory under quasistatic loading.
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I. INTRODUCTION

The typical stress-strain dependences for rocks under qua-
sistatic loading measurements point out their essentially non-
linear behavior. Results by Adams and Coker,1 Boitnott,2

Hilbert et al.,3 and Darling et al.4 on repeatable hysteretic
loops in stress-strain curves are well known and can be re-
garded as the classical experiments. Dealing only with mac-
roparameters such as stress and strain while the processes on
a microlevel still remain unknown makes it very difficult to
create a model that adequately describes these properties.
Recent experiments4 showed that the most remarkable stress-
strain properties of rocks are determined by a small volume
of material at grain contacts. However, it is unclear how
interior equilibration processes in rocks under quasistatic
loading can be studied in detail. In the literature, there are a
number of models that qualitatively describe the relation-
ships between macroparameters such stress and strain. First
of all, there are two models, the Hertz-Mindlin model5 and
the Preisach-Mayergoyz model.6,7 However, with these ap-
proaches, there is some difficulty in assigning a set of model
hysteretic elements to real physical processes. While these
approaches can duplicate experimental observations, the in-
correctly formulated connection between the distribution of
auxiliary elements and maximum stress levels leads to their
limited predictive power.

In this paper, we suggest three appropriately formalizing
mechanisms that appear to actually occur in rocks under qua-
sistatic loading: �i� a “standard solid relaxation” mechanism,
�ii� a “sticky-spring” mechanism, and �iii� a “permanent plas-
tic deformation” mechanism. A suitable combination of these
mechanisms enables us to derive some general stress-strain
relations, although without a detailed description of interior
equilibration processes. As a result, we can obtain a phenom-
enological model that allows us to simulate qualitative and
quantitative stress-strain characteristics and to reproduce the
distinctive features typical of the basic experimental obser-
vations by Boitnott,2 Hilbert et al.,3 and Darling et al.4 for
Berea sandstone.

II. ANALYSIS OF EXPERIMENTAL DATA

In order to facilitate analysis of three groups of funda-
mental experimental data for Berea sandstone by Boitnott

�Fig. 1 in Ref. 7�, Hilbert et al. �Fig. 2 in Ref. 7�, and Darling
et al. �Fig. 1 in Ref. 4�, we place them in a common format.
Because in different experiments the origins of strain coor-
dinates were introduced in different ways, it is an advantage
to combine all experimental stress-strain curves in a single
picture. We proceed from the assumption that for all three
experimental curves, the points relating to maximum stress
should be placed somewhere on the longest of the available
unconditioned curves, i.e., on the bottom curve of Fig. 1�c�,
while the origin for the common strain coordinate should be
chosen from Fig. 1�a�, where the starting point of the uncon-
ditioned �bottom� curve is documented. In this terminology,
“unconditioned” refers to an initial curve that starts at zero
stress on a sample that has been undisturbed for a long pe-
riod �of the order of many hours or a day� as is the case in
Fig. 1�a�. In contrast, the curves of Fig. 1�b� are “condi-
tioned,” that is, have undergone multiple stress cycles. In this
case, the starting point is not shown and, except for the final,
highest point, the unconditioned curve is absent. The original
experimental figures have different scales, and in Fig. 1, we
have placed the experimental curves �omitting the scale
numbers for clarity� into common coordinates. In this proce-
dure, Fig. 1�a� preserves its coordinates, while Figs. 1�b� and
1�c� are shifted to include zero strain positions; the strain
shift for Fig. 1�a� is 0, for Fig. 1�b� is 0.000 42, and for Fig.
1�c� is 0.000 97.

It is pertinent to note that this approach for introducing
common coordinates is not ideal inasmuch as it essentially
treats the actual position of the initial �unconditioned� curve
as independent of the rate of increase of the applied stress,
which, in general, is not the case. However, experimentally,
such a rate dependence is mainly detectable at high stresses
and, to first �but rather good� approximation, can be ne-
glected without practical consequences within the common
frame of reference.

The first effect that arises within a detailed analysis of
given experimental data as in Fig. 1 is the manifestation of
some internal relaxation process that appears as a character-
istic looplike retardation in strain response upon external
loading and unloading stresses. Indeed, the experiment in-
volving transient stress steps8,9 clearly displays this effect.
Relaxation component in the strain response can also be ob-
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served in other stress-strain dependences for various
sandstones,4 especially for Meule sandstone. In particular,
we see that after the moment when stress becomes constant,
strain still changes for some time. Recently, several theoret-
ical approaches have been developed to model time depen-
dence in sandstone behavior near the high frequency vibra-
tional resonance10–13 as well as dispersion and absorption of
sound in microinhomogeneous materials;14 nevertheless,
none of them seems to apply to the present case of compara-
tively slow loading. Hence, we will describe the relaxation
features of sandstones in alternative terms of a phenomeno-
logical standard solid relaxation mechanism arising from a
nonlinear generalization15 of well-established relaxation
modeling in the framework of a standard linear solid.16

Second, stress cycling gives rise to hysteresis loops in
stress-strain curves. Observing the experimental dependences
from Ref. 4 �particularly Fig. 1 in Ref. 4� reveals that oppo-
site sides of each loop are not entirely stuck together even at
infinitely slow loading, that is, the loops persist independent
of loading time. Hence, there must be specific irreversible
interior changes responsible for loop formation, i.e., ones
that cannot be attributed simply to relaxation. We presume
that some sort of friction has to be involved in any mecha-
nism responsible for this effect. Therefore, we are forced to
take into account a second mechanism, referred to here as a
sticky-spring mechanism, for describing this aspect of sand-
stone stress-strain properties.

Finally, the whole conception would be incomplete with-
out including a third mechanism called here permanent plas-
tic deformation. This third mechanism is needed to explain
the observation that unconditioned and conditioned experi-
mental curves differ from each other due to a permanent
deformation, that is, a strain offset.

The next section provides a comprehensive treatment of
these three mechanisms in order to model the interior pro-
cesses that arise in rock samples under quasistatic compres-
sion.

III. MODEL APPROACHES

This paper treats uniaxial compression of a rock sample
restricted to quasistatic loading. As a consequence, the equa-
tion of motion for the bulk of the sample can be written
using a single spatial coordinate

�ü = ��/�x �1�

and can be simplified by putting the left-hand-side �inertial�
term to zero. As usual, this approximation is valid when the
wave propagation time �L=L /c �where L is the sample
length and c is sound velocity� is sufficiently less than the
loading time ��=� / �̇, i.e., �L���. Here, stress � relates to
strain ���u /�x through both elastic and anelastic mecha-
nisms, which are obtained beforehand from analysis of ex-
perimental data. Moreover, in this �slow loading� approxima-
tion, the stress turns out to be uniform along a sample and is
determined by the absolute value of external loading, which
plays the role of an external governing parameter. For the
latter reason, we assign both � and � to be positive quantities
as they are usually regarded in quasistatic compression ex-
periments.

The fact that for interpretation of quasistatic experiments
it is sufficient to operate directly with the stress-strain rela-
tion provides a good basis for understanding the main
mechanisms of anelasticity and elasticity, especially nonlin-
ear ones, as well as to formalize and verify them. As men-
tioned previously, we consider separately three mechanisms
to account for interior processes in a rock sample under qua-
sistatic loading: �i� the standard solid relaxation mechanism,
�ii� the sticky-spring mechanism, and �iii� the permanent
plastic deformation mechanism.

A. Standard solid relaxation mechanism

The first part �r of the total strain � to be considered is
associated with a relaxation mechanism caused by an interior

FIG. 1. Experimental results for Berea sandstone: �a� Boitnott
�Ref. 2�, �b� Hilbert et al. �Ref. 3�, �c� and Darling et al. �Ref. 4�.
Stress-strain trajectories with their original coordinate meshes are
placed within common coordinates. The systematic strain shifts
caused by the apparatus adjustments are 0 for the data of Boitnott,
0.000 42 for the data of Hilbert et al., and 0.000 97 for the data of
Darling et al.
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equilibration process. We use the superscript index r to dis-
tinguish �r from other contributions to �. According to the
analysis of experimental curves in Sec. II, �r may depend on
time not only implicitly through the governing stress � but
also explicitly through relaxation. Thus, in general, strain can
have different values at the same stress. However, the main
hypothesis, which will be confirmed a posteriori, consists in
assuming that strain also responds to stress variation in time
or, more precisely, to the time derivative �̇.

The most general linear theory taking into account all of
the above-mentioned effects �i.e., explicit strain relaxation in
time as well as implicit time dependence through both � and
�̇� is readily derived from the Zener phenomenological
model of a standard linear solid,16

��̇r + �r =
�

MR
+

�̇�

MU
. �2�

The theory deals with three material parameters: a relaxation
time � and two elastic moduli, relaxed MR and unrelaxed
MU. Considering the quasistatic loading, we restrict our de-
scription to the condition �L��. Its main result is that
steady-state strain response �i.e., response at t /��1� to a
periodically oscillating stress �=�a cos��t+	� can exhibit
two different regimes, namely, a relaxed �r=� /MR at low
frequencies ���1 and an unrelaxed �r=� /MU at high fre-
quencies ���1.

Unfortunately, another basic result,

�r =
�0

MR

t

t0
− �0

MU − MR

MUMR

�

t0
, �3�

describing the steady-state strain response �i.e., response at
t /��1� to a stress growing linearly with time �= ��0 / t0�t is
usually misinterpreted due to neglect of the small second
term. Meanwhile, similar “small” terms can play crucial
roles in a complete understanding of quasistatic loading ex-
periments and should be accurately taken into account. It is
remarkable that the steady-state strain response �Eq. �3�� re-
veals two contributions that are distinct in origin. The first
term contains the elastic contribution � /MR usually mea-
sured under infinitesimally slow loading, whereas the second
term yields the regular anelastic shift proportional to the dif-
ference MU−MR, to �, and to the loading rate �0 / t0. In con-
trast, the instantaneous strain response �i.e., response at
t /��1� on the same stress �= ��0 / t0�t exhibits only the elas-
tic contribution � /MU and is characterized by the unrelaxed
elastic modulus MU:

�r =
�0

MU

t

t0
. �4�

As for a possible physical background for modeling the
standard linear solid, researchers often appealed to a hidden
interior relaxation process.17,18 Its main distinguishing fea-
ture consists of allowing the equilibrium state to shift lin-
early subject to an external influence, in particular, subject to
applied external pressure and its time derivative.18

In order to extend the basic ideas of a standard linear solid
and its physical justification, a more general theory to de-
scribe the additional effects of nonlinear elasticity was devel-

oped several years ago.15 The appropriate dynamic state
equation becomes

�
d

dt
��r − � f

r���� + �r − �e
r��� = 0. �5�

The suggested relation between strain �r, stress �, and their
time derivatives �̇r and �̇ is distinguished to include nonlin-
earities by means of two essentially nonlinear functions
�e

r���, and � f
r���. These functions are responsible for a true

thermodynamic equilibrium state at infinitely slow loading
and for a frozen pseudoequilibrium state at infinitely fast
loading, respectively. Both slow and fast terms are under-
stood in relation to the typical time � characterizing hidden
internal relaxation processes. Formally speaking, the curve
�e

r =�e
r��� could be thought as the state equation in the limit

of instantaneous relaxation �→0, whereas the curve
� f

r =� f
r��� is the state equation in the limit of no relaxation

�→
.
It is necessary to note that, just as for the linear theory, the

interior equilibration processes need not be specified con-
cretely in the derivation of Eq. �5�, but the macroscopic char-
acteristics �e

r���, � f
r���, and � in this approach are chosen to

be a satisfactory combination for the overall model descrip-
tion. Of course, the macroscopic parameters involved, as
well as the particular forms of functional dependences �e

r���
and � f

r��� themselves, should be selected to match known
experimental results.

We term the model incorporated in the dynamical state
equation �Eq. �5�� as the standard solid relaxation mechanism
in view of its generic property of interconnection of two
different nonlinear elastic state equations mediated through
the hidden interior relaxation processes, similar to the inter-
connection of two linear state equations in the theory of stan-
dard linear solid. In what follows, the equilibrium state func-
tion �e

r��� is determined by the ordinary formula

�e
r��� = �Ee����−1� , �6�

and the stress-dependent Young’s modulus Ee��� is written
according to the empirical relationship

Ee��� = Ee
+ + �Ee

− − Ee
+�exp�− D�� �7�

obtained as approximations that fit a number of experiments
�see, e.g., Ref. 19 and references therein�. The constants Ee

−,
Ee

+, and D are selected via numerical trials, and their values
are close to the those listed in Ref. 19. For completeness, we
define the frozen state function by the approximation

� f
r��� = a�e

r��� , �8�

where the factor a is a constant lying within the interval
0�a�1. For example, in the linear theory, a relationship
such as Eq. �8� finds its justification in stating that the ratio
of the equilibrium sound velocity to the frozen one is inde-
pendent of stress. When the time dependence of loading
�=��t� �i.e., the stress protocol� is known, Eq. �5� can be
solved. As a rule, we use an initial condition in the form
�r�t=0�=�e

r(��t=0�).
Figures 2 and 3 illustrate the relaxation mechanism. The

stress protocols for Figs. 2 and 3 qualitatively correspond to
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the loading in works by Boitnott �see Fig. 1 in Ref. 7� and
Hilbert et al. �see Fig. 2 in Ref. 7� accordingly. The constants
in the state equations �Eqs. �5�–�8�� are taken to be the same
for both pictures. The best correspondence with experiments
was obtained for a relaxation time � of 18 s; the other con-
stants are Ee

−=1.5 GPa, Ee
+=32 GPa, D=0.05 MPa−1, and

a=0.7. Modeling Boitnott’s experiments leads to almost
ideal results. In contrast, Hilbert’s experiment cannot be ad-
equately described by the sole relaxation mechanism, inas-
much as it does not close the small loops through the stress-
strain cusps for any assignment of constants in the state
equations. Thus, the relaxation mechanism by itself does not
explain end-point memory.

B. Sticky-spring mechanism

In order to develop a means to explain the end-point
memory of the stress-strain curves mentioned above, it helps
examining the stress-strain curves for Meule sandstone in the
work by Darling et al.4 For this purpose, we select only
important parts of the data of Darling et al. and depict them

qualitatively in Fig. 4. Points corresponding to each other in
the stress protocol picture �Fig. 4�b�� and stress-strain picture
�Fig. 4�a�� are marked by the same capital letters and are
unprimed and primed, respectively. In the time intervals AB,
CD, and EF, stress is constant. The fact that the points A�,
C�, and E� do not coincide with the respective points B�, D�,
and F� can be explained by relaxation alone. However, re-
laxation by itself should inevitably lead the experimentally
distinct points D� and F� �and even B�� to coincide. To re-
solve this problem and understand the discrepancy, it is nec-
essary to include an additional mechanism. We call this ad-
ditional process the sticky-spring mechanism and, for the
sake of convenience, formulate it separately from the other
mechanisms.

A prototype system to illustrate this mechanism is given
in Fig. 5. The system consists of a closed cylinder containing
a cork plug. The quantity of gas in the closed end is fixed,
and its pressure pi supplies the elastic restoring force. In
addition, there is friction between cork and tube walls. We
treat this friction as independent of cork velocity. Such fric-
tion arises in thermodynamical systems when the interior
equilibration process is slow in comparison with the typical
time of loading.15

In terms of the cork-tube device, the maximum frictional
force is taken to be proportional to the threshold pressure pt
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FIG. 2. Modeling the Boitnott experiment �Ref. 2� using only
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�a positive value� that must be overcome by external pressure
p against an internal pi �or vice versa� in order for the cork to
be pushed from one position into another. If we assume the
cork to be massless, its displacement � along the tube as a
function of time t obeys the following first-order differential
equation:

d�

dt
= �ṗ�„�−�p� − �…

d�−�p�
dp

ṗ + �− ṗ�„� − �+�p�…

�
d�+�p�

dp
ṗ , �9�

in which the functions

�−�p� � �m�p − pt�, �+�p� � �m�p + pt� �10�

are determined by

�m�p� = l0 −
p0l0

p
. �11�

Here, �z� is the Heaviside step function, p0l0 is a constant
characterizing the quantity of gas in a working volume of the
cylinder, and l0 is a length that fixes the working point of the
cork-tube nonlinear device. Thus, l0−� is simply the running
position of the cork with respect to the back of the tube.

Some aspects of the sticky-spring mechanism are pre-
sented in Fig. 6, which illustrates the dependence of cork
displacement � on external pressure p. For this purpose, Eq.
�9� has been numerically integrated from the initial condition
��t=0�=0 using the pressure protocol given in Fig. 6�b�. The
essential feature of the stickyspring mechanism consists in
producing a stripe-like continuum of stationary states be-
tween the curves �=�−�p� and �=�+�p� as in Fig. 6. Only in
the limit of very small threshold pressure pt→ +0 do these
curves come together and give rise to a single curve �
=�m�p�. This medial curve turns out to bisect the stripe and
can be thought as the equilibrium curve of the process in the
limiting case of pt→ +0. Another essential part of this

mechanism is its elastic component manifested through the
inclination of stripe �−�p�����+�p� with respect to the p
axis.

Summarizing the principal features of the sticky-spring
mechanism �Eqs. �9� and �10�� as applied to sandstones, we
postulate the stress-strain relation to be

d�s

dt
= ��̇�„�−��� − �s

…

d�−

d�
�̇ + �− �̇�„�s − �+���…

d�+

d�
�̇ .

�12�

Here, the partial strain �s is associated with the sticky-spring
contribution to the total strain �, while the functions �−���
and �+��� are determined via the medial equilibrium state
function �m

s ��� and two positive threshold stresses �+ and �−

as follows:

�−��� � �m
s �� − �−�, �+��� � �m

s �� + �+� . �13�

We note that no restrictions are imposed on the threshold
values �− and �+ that are responsible for the friction. In
principle, they can be functions of stress �.

For the function �m
s ���, we assume

�m
s ��� = �e

r��� . �14�

In accord with thermodynamic principles, Eq. �14� thus re-
quires that the final position of a truly equilibrium state be
independent of the origin of the internal processes that led to
this equilibrium.

Within the Preisach-Mayergoyz �PM� approach,6 the
qualitative distribution �s�Pc , Po� for the sticky-spring
mechanism can be written as

�s�Pc,Po� = As�Pc,Po���Pc − �+���+ + �− − Pc���Po�

+ „Pc − ��+ + �−�…�„Pc − Po − ��+ + �−�…� ,

�15�

where notations are taken from Ref. 6.
Because the sticky-spring mechanism employs fewer ad-

justable parameters �constants� than do PM models, we use
this mechanism to describe quasistatic loading in rocks. Fur-
thermore, if we consider possible physical interpretations of
the sticky-spring effects, it seems plausible that they capture
the most essential features in opening-closing of sticky mi-
crocracks.

In Sec. IV, we show that, in the proper combination, the
standard solid relaxation mechanism and the sticky-spring
mechanism enable us to model relaxation steps on the con-
ditioned curves under a fixed load �Fig. 4� and the effect of
end-point memory, respectively. However, to include the un-
conditioned portion of the curves, we must invoke a mecha-
nism that takes plastic deformation into account.

C. Permanent plastic deformation mechanism

We note that the permanent plastic deformation mecha-
nism can, in principle, be treated within the relaxation
mechanism, provided we include an additional set of relax-
ation parameters. However, because the permanent plastic
deformation mechanism is responsible for the difference be-
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tween the unconditioned and conditioned states, we prefer to
separately extract it as an appropriately adjusted relaxation
mechanism.

Taking into account the intuitively understandable fea-
tures of permanent plastic deformation, we postulate that un-
der compression, i.e., during increasing initial loading
�̇�0, the sample, on one hand, must contract with a perma-
nent plastic contribution �p to total strain to obey a linear
Hooke-like law �p=� /Ep �where the appropriate Young’s
modulus Ep is presumed to be stress independent�. On the
other hand, it must simultaneously experience interior irre-
versible deformations. Conversely, when external loading de-
creases, �̇�0, the plastic component �p must remain fixed.
To formalize the statements above, the state equation for the
permanent plastic deformation mechanism can be described
as

d�p

dt
=

��̇���/Ep − �p��̇
Ep

. �16�

According to this mechanism, once a peak loading is
achieved, the possible store of plastic deformation in the
rock sample becomes saturated. Thereafter, when loading
less than the peak stress, the permanent plastic deformation
mechanism does not appear as subsequent cycles. Through
the Heaviside function, only an unconditioned curve mani-
fests permanent plastic deformation; on conditioned curves,
it does not contribute.

Similar to the sticky-spring mechanism, the distribution in
the PM space �see Fig. 2�a� in Ref. 6� for permanent plastic
deformation mechanism can be obtained from

�p�Pc,Po� = Ap�Pc,Po���Po� . �17�

It is necessary to note that the sticky-spring mechanism and
the permanent plastic deformation mechanism can be consid-
ered as independent of each other, as are individual elements
in PM space.

The separation of the sticky-spring mechanism and the
permanent plastic deformation mechanism can have a physi-
cal interpretation. In the experimental results,2–4 each incre-
ment of stress �starting at zero stress� beyond the previous
highest stress produces irreversible changes in the rock fabric
as crack surfaces slide and asperities are crushed. The per-
manent plastic mechanism is a means of incorporating these
irreversible changes. In a regime where stress cycles at
stresses less than the maximum previously achieved, the
sticky-spring mechanism is applied. It may be that the PM
approach can cover the whole stress range, yet there is utility
in the present approach where damaging stresses are sepa-
rated from a regime in which stress cycles are associated
with reversible changes in the rock.

It is interesting to observe that Belinskiy has experimen-
tally revealed the pure permanent plastic deformation under
collision of steel balls in chain with plumbum layers.20

IV. SIMULATION OF STRESS-STRAIN RELATIONS

In the previous section, we have suggested three mecha-
nisms by which interior interaction processes in sandstones
are assumed to take place. Because the physical origins of
these processes have not been well established, we use a
phenomenological approach in which they are not concretely
defined. In computing the counterparts of the available ex-
perimental data, the processes modeled by both the standard
solid relaxation and the sticky-spring mechanisms can be
treated using only a minimal number of phenomenological
parameters, i.e., the number adopted in Secs. III A and III B.
However, when describing more precise experiments, the
suggested models have the potential to be modified by ex-
tending the number of relaxation and sticky-spring pro-
cesses.

Taking into account all three developed mechanisms
�standard solid relaxation, sticky-spring, and permanent plas-
tic deformation�, we rely upon the minimum number of pro-
cesses, i.e., only a single process for each mechanism. For
loading by a given stress protocol, we can solve Eqs. �5�,
�12�, and �16�, with the initial conditions �r�t=0�=�s�t=0�
=�p�t=0�=0 and find the total strain � as a linear combina-
tion of partial strains:

� = b��r + �p� + �1 − b���s + �p� . �18�

Here, the constant b is bounded inside the interval
0�b�1. Clearly, at b=1, we have the relaxation mecha-
nism with permanent plastic deformation only, while at
b=0, we retain only the sticky-spring mechanism plus per-
manent plastic deformation. Choosing relation �18� as a lin-
ear combination and keeping in mind definition �14�, we are
able to tune the single parameter b to obtain a physical con-
dition such that the true equilibrium state is independent of
any type of interior relaxation process.

If the stress is fixed at one moment, then the relaxation
mechanism moves the whole system to some new equilib-
rium during a characteristic relaxation time. Owing to the
sticky-spring mechanism plus the permanent plastic defor-
mation mechanism, there can be several equilibrium states at
the same stress. The ambiguity of equilibrium state depen-
dence on stress can be found in Ref. 14.

The best fits of the calculated results as applied to all
three groups of experiments on Berea sandstone2–4 �see also
Fig. 1� were obtained with the parameters listed in Table I.
Note that these parameters are applied when we consider the
combination of all three mechanisms, in contrast to the pa-

TABLE I. Fitting parameters.

�
�s�

Ee
−

�GPa�
Ee

+

�GPa�
D

�MPa−1�
�−

�MPa�
�+

�MPa�
Ep

�GPa� a b

3 5 23 0.03 4 4 70 0.2 0.8
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rameters applied in Sec. III A for Figs. 2 and 3 when only the
relaxation mechanism was analyzed.

Results of the numerical simulation are presented in Figs.
7 and 8. Comparing the calculated curves �Fig. 8� with ex-
perimental data �Fig. 1�, we observe an acceptable coinci-
dence of these results both qualitatively and quantitatively.
First, we find the small loops in curve b of Fig. 8 that models
the experiment of Hilbert et al.3 These loops are closed at the
cusps. Unfortunately, in experimental curves for Berea sand-
stone, it is difficult to reveal the features that are present in
Meule sandstone �Fig. 1 in Ref. 4�, i.e., to precisely observe
the steps caused by sample relaxation under fixed load, e.g.,
in Fig. 4. This difficulty could be explained by the excep-
tional smallness of typical relaxation times for Berea sand-
stone as compared with typical times in the experimental
stress protocol. For this reason, Berea sandstone features re-
lated to relaxation under fixed load are simply not seen in our
theoretical curve c of Fig. 8 that models the experiment of
Darling et al.4 However, the relaxation mechanism cannot be
completely removed because it plays an important role in
describing end-point memory as manifested by the small

loops on the theoretical curve b in Fig. 8, which reproduces
the experiment of Hilbert et al.3 On one hand, it is precisely
the effect of small but finite relaxation time that enables one
to close a small loop through a cusp �curve b in Fig. 8 once
again�. On the other hand, the relaxation provides the means
to produce the small loops in the modeling.

V. CONCLUSION

This paper suggests a phenomenological model to de-
scribe the stress-strain properties of Berea sandstone under
quasistatic loading. Analysis of experimental observations
has demonstrated the need to invoke several mechanisms
that are responsible for interior equilibration processes in
sandstone: the standard solid relaxation mechanism, the
sticky-spring mechanism, and the permanent plastic defor-
mation mechanism. To justify these mechanisms, we have
used an approach in which the interior processes in a sample
are not explicitly defined, which drastically simplifies the
mathematical description. Only by properly combining all
three mechanisms are we able to obtain acceptable models.
Moreover, it was shown that the first two �the relaxation and
sticky-spring mechanisms� can each be restricted to one pro-
cess for each mechanism. The resulting treatment reproduces
extremely complex stress-strain trajectories with only nine
adjustable parameters. However, if it is required to describe
other, more precise experiments, then the model can be prop-
erly modified because it is possible to invoke a number of
relaxation times for the standard solid relaxation mechanism
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and friction parameters for the sticky-spring mechanism. As
for the permanent plastic deformation mechanism, we pres-
ently do not know how it could be generalized to include
more than one phenomenological parameter.

Because of the proposed treatment of quasistatic stress-
strain relations, it becomes possible to produce an adequate
and self-consistent simulation that both qualitatively and
quantitatively describes the principal features of experimen-
tal data by Boitnott,2 Hilbert et al.,3 and Darling et al.4 for
Berea sandstone. The model correctly reproduces both the

large loops and, equally importantly, the small loops in
stress-strain trajectories �end-point memory effect�.
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