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Soliton Generation in Semi-Infinite Molecular Chains 

A mechanism for generat,ing solitons in semi-infinite molecular chains by exciting the impurity 
molecules is considered. The generation criteria. of solitons are found and their dependence on 
molecular chain parameters, the input place, and localization degree of initiating excitation. The 
possibility to govern the generation efficiency and solitons velocity by changing the parameters 
of exciting signal is pointed out,. 

PaccMoTpeH Y ~ X ~ I I H ~ M  reIrepar1zrrr CO;IRTOIIOB R I I O J ~ ~ ~ ~ C K O I ~ ~ ~ I I I ~ I X  3io;Ielcy;IripHLix 

COJIATOHOB u IIX ~ ~ B A C L I M O C T ~  OT napa%IeTpon >ronei<y.iripHoB I[enowiki, Mema nozawi I I  
CTeIIeHu ~ O K ~ J H ~ ~ U M M  aIiauuupymIIiero ~ o a 6 y r n ~ e 1 1 ~ ~ 1 .  Y ~ a a a ~ r o  Ha npiiiIuunuanLHym 

cpeficmohq ~ a w x e ~ ~ ~  iiapanierpon ~oa6yit;;ra10111ero c11rIIa.m. 

UenOYKaX IIyTeM ~oa6y~;neirw1 IIpLIMeCHLIX MOiICIiyn. HattneHbI KpHTepIlLI WIICp~UIiII 

BO3hlOWIlOCTb )'IIpaBulleHMH 3 ~ @ ~ K T U B I I O C T L H )  relIepaI~Wl1 H CKO]lOCTLH, CO.1WTOlIOB 110- 

1. 1ntrodoct.ion 
The perspectives to use the soliton mechariisin of energy and charge transport in trans- 
ferring information in quasi-one-dimensional molecular structures [ 1 to  41 have inten- 
sively been discussed in recent years. Special attention is paid to  the soliton generation 
problem as  i ts  solution makes i t  possible to  control the efficiency of soliton generation, 
its velocity, characteristic size, and amplitude. 

The soliton generation problem has two aspects: 1. to create the necessary initial 
distribution of excitations of the required nature, 2. to  forin a soliton on the basis of 
this distribution. These aspects are intimately related : however, under certain condi- 
tions they can be considered independently and the soliton generation problem can be 
solved stage by stage. Such an approach is possible e.g. in the case when the times 
necessary for creating the initial distribution are sufficiently small YO that  the mecha- 
nisms responsible for the redistribution of excitations between molecules are not able 
to  operate. 

I n  terms of the above-cited treatment i t  has been managed t o  study in some detail 
the second aspect of the problem and to  show that  a soliton is most effectively formed 
using the initial distribution of some optimal size which isgven by the chain parameters 
[ l ,  5, 61. Being quite appreciable by itself the above-cited result proves to  be an argu- 
ment in favour of the impossibility of direct. soliton generation due to light 11, 31 since 
the relative smallness of the optimal size restricts t.he admitted wavelengths of the 
exciting radiation. 

I n  this connection the possible mechanism for soliton generation turns out to  he the 
following: 1. electron, light quantum, or another escitation capture by the impurity 
molecule (chromophore, for example) coupled wit,h the principal chain in a nonresonant 
way; 2. fast excitation transfer to  neighbouring molecules of the principal chain (crea- 
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tion of a localized initial distribution) ; 3. soliton formation using the initial distribution 
obtained in such a way. If along the principal chain one disposes different impurities 
(chromophores), this makes i t  possible to  change the location of the signal input to  the 
principal chain and/or its localization degree (e.g., by changing the frequency and/or 
the exciting light frequency detuning, respectively) and, thus, to  govern the soliton 
generation parameters. 

2. Equations for the Evolution of the Excitation 

I n  solving the soliton generation problem i t  is tempting to  make use of the inverse 
scattering problem for some exactly solvable model. So the problem of soliton genera- 
tion in molecular chains can be reduced to  considering the nonlinear Schrodinger equa- 
tion. However, this is possible only a t  small inertia of the elastic subsystem [7], 

where 1M is the molecule mass, J the resonance excitation transfer constant, w the 
elasticity coefficient. We shall elucidate how such a program can be realized in semi- 
infinite molecular chains exploiting the soliton generation through the impurity con- 
nected with the s-th molecule of the principal chain. 

If one excites the impurity molecule in a certain way the further redistribution of 
this excitation over the chain in the mean field approximation is described by a system 
of equations 

d 
dt 

h - R = - r R ,  

en,,(t = 0) = 0 (n, nh = 1, 2,  3, ... , 00) , R(t = 0) = 1 (2 c) 

and the longitudinal displacements of molecules of the principal chain Bn, in virtue 
of (l), are connected with the values enn by the relation 

Here pnn is the probability of the presence of excitation on the 12-th molecule, R the 
probability of the presence of excitation on the impurity, r the constant of nonreson- 
ant  excitation transfer from the impurity molecule to  a neighbouring one of the basic 
substance, x the interaction constant of an excitation with displacements in the prin- 
cipal chain. Equations (2a) t o  (2 b) are written under the assumption tha t  the reson- 
ance excitation transfer between the impurity and the host molecules and also the prob- 
ability of the thermal excitation to  the impurity are negligibly small. This is justified 
when the difference in the excited state energies of impurity molccules and the basic 
substance is sufficiently great. 
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To realize the procedure cited in the Introduction of distinguishing two problems out 
of the initial one ((2a) to  (2b)) it is necessary t o  require the fulfilment of the  condition 

I'> J. (4) 

Then the problem of creating the initial distribution is solved easily, i.e. at a certain 
time moment to,  such tha t  

h/r < to < h/J  ( 5 )  

the  excitation appears t o  be almost localized on the moleciile neighbouring the im- 
purity, 

e,im(t = t o )  B i i b s S n i  2 (6) 

R(t 2 to)  = 0 . (7)  

aiid the reverse transition of excitation t o  the impurity is impossible 

Resides in this case a t  time t 2 to in (2a) the decoupling 

takes place, where 

9 ~7 4x'IwJ. ('3) 

Thus the  problem of soliton formation on the  basis of the  initial distribution (6) can 
be formulated in terms of the probabi1it.y amplitudes 

where 
t J ( t  - t o ) / h  . 

3. Soliton Formation 

It is convenient t o  consider instead of the problem (10a) t o  ( l o b )  on the  scmi-infinite 
chain the following one : 

. d  
a -- r,  - rtr . . I  - a t  r ,  + 2rn -- 

.- 
rn(z = 0 )  = ( d m  - 8-7L.s) v g / 2  (-a < < 00) (12b) 

on the infinite chain. This is connected with their equivalence, in the sense t h a t  the 
solutions coincide at n 2 1. Let us pass over in (12a) to  (12 b) t o  a continuous descrip- 
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tion rn(t) -. r(n,  t) and generalize, a t  the same time the form of the initial distribution 
assuming that  it can extend over some molecules 

a a 2  

a t  an2 
i - - r ( n ,  t) - - r(n, t) - 2q(n,  t) r2(n ,  t) = 0 . 

’ 0, --co < n < - s + {  - - I ,  

- I ,  -s + + - 1 < n < -s -1- -:-, 
0, - s + - i  < n < s - + ,  (13b) 
1 ,  8 - f  

0, s - + + l  < n < m  
< n < s - -.. -t I , 

- c o < n < m ) .  
So, we have arrived a t  the model of the nonlinear Schrijdinger equation [8]. 

Information on the conditiotis of the formation and the most important physical 
parameters of solitons in such a model is involved in the transition coefficient 
defined from the additional spectral problem [8] corresponding t o  the above model. 
Just  the velocities -4E,, amplitudes 2qj, and sizes (2q,)-l of the exciting solitons 

If such roots do not exist, solitons are not generated and the initial distribution, in 
the long run, is dispersed over the whole chain. 

It can be shown that  in the case concerned (13b), (15) in notations 

[ l = z - - x +  iY 9 (16a) 
g1/2 = G 2 ,  (16b) 
(2s  - 1)/1 = n ( 1 G C )  

has the form 
[ (zz  + Qz)1/2 ctg (22 f G2)1/2 - i z ] 2  -1 G2 exp (2 izA)  = 0 (Im z > 0) . (17) 

The roots of this equation, if they do exist, appear in pairs z f ( A ,  G )  = -F q ( A ,  Q) + 
+ iy,(d, G )  (xi > 0, y, > 0). However, t o  the real physical situation, i.e. solitons in 
a semi-infinite chain (n  2 l), correspond only the roots with negative real part  
z j t - (A,  G ) ,  therefore these will be the subject of our interest. 

Equation (17) generalizes naturally the equations obtained in other papers [B ,  61 
since, apart  from the cases A = 00 and A = 0, i t  allows one to  consider uniquely the 
case of arbitrary A .  I t s  analysis reveals that  a t  each fixed A soliton formation is critical 
with respect to  the parameter G.  So a single soliton is formed in fulfilling the conditions 

Q c r , ~ ( d )  < Q S Gcr,2(A) 

Gcr ,2 (A)  < G 5 Gcr,,(d) , 

X,(d, G )  < %,j(A) , 

(18) 

(19) 

(20) 

two solitons a t  

etc. The soliton velocities appear t o  be bounded, 
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and each pair of values Gcr,,(A) and zCr,](A) (i = 1, 2,3, ...) is defined from the equation 

(& + Gzr)’/* ctg (& + GEr)1/2 = iGcr exp (--izcrA) - iz,, , 

(Gcr > 0, xcr > 0) * 

Gcr,,(O) = zcr,,(O) = (i - 3 (22) 

Gcr,j(d > 1) x (i - f )  ~ t / 2  9 (23 a) 

zcr,,(A > 1) z Ci - f )  =/A * (23 b) 

(21) 

The functions G , , , ( d )  and zCr,](d) decrease monotonically with increasing d so that  

I n  particular, the dependences Gcr,l = GC,1(A) and Zcr.1 = zcr,l(A) are plotted in Fig. 1. 
We note that  a t  A = 0 the threshold valueGcr,l(0) of the parameter G coincides with 

that  quoted in Scott’s paper [6]. A t  A > 1 the threshold value G,,,l(A > 1) of the par- 
ameter G proves to  be smaller than the relevant threshold value 7212 for the infinite 
chain [l, 5, 61. However, in  fact, there is no contradiction since for any G lying in the 
interval G , ,  l ( A )  < G 5 n/2 the value y,(d, G) with increasing d tends to  zero, and for 
G > n/2 to  a certain finite value dependent on the difference G - n/2. The qualitative 
differences in the asymptotic ( A  > 1) behaviour of yl(d, G) as  a function of d for 
G 5 n/2  and G > n/2 can be clearly seen from Fig. 2. 

For each fixed d yl(d, G) is a monotonically increasing function of G,  for example, 
for A = 0 we have 

yi(0, G) * G - Gcr ,1 (0 )  G - Gcr,1(0) S Gcr,1(0) - (24 ) 

Fig. 1 
A -  

Fig. 2 
,,J .-- 

Fig. 1. Dependences of the threshold nonlinearity parameter Gcr,l and the limiting soliton velocity 
Vcr,1 on the inverse anisotropy parameter of the initial distribution A ( v , - ~ , ~  = 4Ja2xCr,~/hL, a is the 
lattice constant, L = la is the initial distribution size) 

Fig. 2. Dependences of the inverse ratio of the characteristic size of the soliton to  that  of the initial 
distribution 2y1 on A a t  different fixed values of the nonlinearit,y parameter G. (1) G = @44, (2) n/2,  
(3) 5 4 8 ,  (4) 3744 
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depends on Cl in a non-monotonic way - a t  small values of G - G , , , ( d )  it increases, 
and a t  large ones it decreases, so that  a t  a certain optimal value G,Bx,l(d) of the par- 
ameter G, the maximum part possible for a given d of the initial distribution is trans- 
formed into a soliton (see Fig. 3). 

It should be noticed that although the absolute efficiency maximum of soliton 
formation for the class of initial conditions under study is close to  unity, i t  does not 
attain unity, i.e. part of excitation necessarily goes into soliton “tails”. This is explain- 
ed by the fact that  even the minimum of the energyfunctional corresponding to a defi- 
nite class of initial conditions normalized t o  one excitation cannot be lower than the 
energy of a single immobile soliton. As a result part of energy should be transferred t o  
higher-energy delocalized “tail”. If the given initial distribution provides no minimum 
of such a functional, the initial energy escess makes it possible t o  presume the forma- 
tion of two and more solitons, since because of the binding energy loss the energy of 
the multisoliton state is always higher than that  of single solitons. I n  the analysis of 
the initial distribution eiiergy as  a function of G the non-monotonic character of the 
G-dependent single-soliton formation efficiency also becomes clear. At small Cl the 
initial cncrgy is positive and therefore solitons (bound states) cannot arise, the soliton 
formation efficiency equals zero. With increasingG the initial energy becomes ncgative 
and attains rapidly its minimum value which induces the conditions for soliton forma- 
tion (18). Then the formation efficiency rapidly increases and reaches the maximum. 
Finally with further increase in the parameter G the initial energy increases slowly 
remaining negative. Therefore, the conditions (19) for the formation of several solitons 
are satisfied and the single-soliton formation efficiency decreases. The above-cited 
non-monotonic behaviour of the initial energy as a function of the parameter G is 
due to  a competition between dispersion and binding energies in the initial distribli- 
tion. 

Besides the relationship between the initial distribution energy and the energies 
of one-, two-soliton, ete., states the result of the initial distribution evolution can essen- 

-. .- 
I 1 

1 ,  

_ -  

Fig. 3. Dependences of the soliton formation effi- 
ciency D, on the nonlinearity parameter at 
different fixed values of A. (1) d 0, (2) 0.4, 
(3) 1.0, (4) 2.0, (5) 12, (6) 00 
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Fig. 4 Fig. 5 
Fig. 4. Dependences of the soliton formation efficiency D, on the inverse anisotropy parameter A at  
different fixed values of the nonlinearity parameter G. (1) G = ]hn/4,  ( 2 )  4 2 ,  (3) 5n/8, (4) 3 4 4 ,  
(5) 31/2n/4 
Fig. 5. Dependences of soliton velocity vl on the inverse anisotropy parameter A at different 
fixed values of the nonlinearity parameter G (vl = 4Ju*z,/hL). (1) G = E z / 4 ,  (2) n/2, (3) 5n/8 
(4) 3n/4, (5) 3V%/4 

tially be determined by the initial state anisotropy caused by the semi-infiniteness of 
the chain. This accounts for the fact that  in the presence of the boundary the energy 
balance involves necessarily the kinetic energy of the evolution product motion deep 
into the chain. Such a motion arises due to  wave reflection from the boundary and mani- 
fests itself with the growth of the parameter A - l .  I t s  physical meaning is evident 
(16c), with decreasing distance between the initial characteristic size of the  initial 
distribution and the chain edge and/or with increasing characteristic size of the initial 
distribution the presence of the boundary should be pronounced. 

Fig. 4 and 5 show how the soliton formation efficiency and also its velocity depend 
on the parameter A .  

Fig. 6. Dependences of soliton velocity v1 on the 
nonlinearity parameter G a t  different fixed values 
of the inverse anisotropy parameter A. (1) A = 0, 
( 2 )  0.4, (3) 1.0, (4) 2.0, (5) 12.0 (numbered from 
the upper curve downward) 
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The relationship between soliton velocity and the parameter B follows from Fig. 6. 
With increasing G the soliton velocity decreases monotonically. If we here take into 
account the disregarded fact that a periodic potential appears on the way of soliton 
motion a t  large nonlinearity constant G [7], Hyman et al.’s result [9] on the possib- 
ility to  localize the exciting soliton at the end of a discrete molecular chain becomes 
clear. 

4. Concluding Remarks 

I n  conclusion let us make some remarks. So to  realize the soliton information transfer 
mechanism i t  seems to  be of major importance to  govern the soliton velocity and the 
efficiency of its generation by changing the input place and the localization degree of the 
exciting signal. One should have, however, in mind that  when the exciting signal input 
is a t  large distances from the chain edge the soliton mechanism for transport can be 
difficult because of the pinning of slow solitons conditioned by the discreteness of the 
chain. 

Attention should also be paid to  the fact of the higher than pointed out ealier 
[5 ,  61 soliton formation efficiency a t  smaller nonlinearity constant (compare curve 2 
with curves 1 and 6 in Fig. 3). 

At  last we should indicate the possibility of some change in the criteria (obtained in 
this paper) of soliton formation with account of energy dissipation. I n  particular, i t  
seems quote plausible that  under certain conditions these criteria will turn out t o  be 
less rigid since the dissipative channel can carry away the initial distribution of energy 
excess, which in absence of dissipation can be spent t o  generate soliton “tails” or soli- 
ton satellites. This interesting problem requires still its final solution. 
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