Attenuation of a strong shock wave in a two-phase medium
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It is well known that the rate of attenuation of shock
waves generated by pulsed energy sources in aerosols
and foams is higher than in air,!™® and in bubbly media
it is higher than in water."® Sedov et al,!+? have derived
relations determining the parameters of a shock wave for
thermodynamic equilibrium between the phases® and for
a relaxing medium? from the solution of the problem of the
strong stage of an explosion in a two-phase medium, as-
suming that the volume fraction € of the condensed phase
is small, A solution of the problem in the case of anarbi~
trary content € is given in Refs, 6 and 7, However, in
Ref, 6 an error in the equation for the internal energy of
the medium limits the applicability of the results for large
volume contents of the condensed phase, The results of
Ref, 7, which were obtained by numerical methods, do not
give the explicit dependence of the parameters of the
shock wave on € and cannot be used to investigate the in-
fluence of relaxation processes on its attenuation,

For the analysis of these problems we consider a
strong shock wave in a homogeneous two-phase medium
consisting of a condensed phase and a gaseous phase uni-
formly distributed in a volume with an arbitrary content
of the incompressible condensed component, Within the
framework of the customary assumptions®™® the equation
of state of the two-phase medium is conveniently written
in the form
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where I is a parameter that establishes a relation of the
form (1) in a definite range of variation of the thermo-
dynamic parameters of the mixture; the rest of the nota-
tion is conventional, In the general case I' is a function
of the relaxation of the parameters behind the wave front,
and coincides with the adiabatic exponent y of the gaseous
phase for frozen processes and with the adiabatic expo-
nentI', of the two-phase mixture for thermodynamic equi~
librium,®

In the analysis, for definiteness we consider the pro-
cess of attenuation of a strong shock wave for a constant
T, Letaninstantaneous release of energy E, take place
in the two-phase medium at a plane (v = 1), a line (v =
2), or a point (v = 3), depending on the symmetry of the
problem, Under these assumptions the solution of the
problem is self-similar, i.e,, the variables R = p /p,,

V = u/D, and P = p/p,D? do not depend on the time, in the
region where the internal energy of the medium can be
neglected in comparison with E,, In this case they satisfy
the system of equations?
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withthe boundary conditions V=0 for n =0 and n = 1,
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{Rankine—~Hugoniot conditions for a strong shock wave),

These equations are complemented with the integra]
relation
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where n =r/rf,ando() = v —LHxr + (v - (¥ — 3); D
and ry are the velocity and spatial coordinate of the shock-
wave front, The subscript 0 refers to the parameters
abead of the shock-wave front,

The volume of the incompressible condensed phase
can be eliminated from the equations by means of a trans-
formation, i,e,, a coordinate system can be determined
in which the motion of the two-phase medium is similar
to the motion of an ideal gas, In this coordinate system
the transformed variables R!, V' and P! satisfy the well
known system of equations describing a strong shock wave
in a gas,!1*1® Here the single-valued relationship between
the systems of equations i8 determined by the relations
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The resulting transformation can be usedto draw a
complete analogy, in the primed coordinate system, be-
tween the motion of the two-phase medium and that of an
ideal gas, not only for the case in which € ; is assumed
to be small*! but also in the general case witharbitrary
€, In particular, it is now possible to find RY, V' and P'
from the known results of the self-similar solution of the
problem and tabulated data,'#!%!? and also to use the al-
gebraic relations (5) in order to find the true distribu-
tions of R, V, and P,

v—1 (5)

The influence of the volume fraction € ; of the con-
densed phase on the laws of motion of the shock wave and
the values of the parameters at the shock front can be
established analytically without having to find the distribu-
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1ions of R, V,and P, For this purpose we transform Eq,
) py means of (5):
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ysing dimensional methods ,| we obtain equations for the
rajectory of the shock wave:
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we devote special attention to the integral $, It has
peen shown®® that as I' — 1 the expression [2/T +1)]y tends
10 a finite limit and for T' = 1 its value is equal to (2v)™,
If we calculate ¥ from existing analytical and tabulated
data (6.8., from Ref, 12), we find that in the range of vari-
ation of I' from 1,1 to 1,4 the value of the integral differs
grom its limiting value ¢ (I' = 1) only by 1.4, 2.1, and 2,6%
for planar, cylindrical, and spherical symmetry respec-
tively, With this accuracy the equality (6) can be written
in the form ’

Eo(T - I)=-02(—:?por,'-’ D - &) 9)

Using the relations (3) and (7) ~(9), we obtain the
relationship of the pressure at the shock-wave front to
the distance from the center of symmetry:
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it follows from Eqs, (10) that at a fixed distance from the
center of symmetry the minimum pressure will occur

in 2 medium having the maximum shock compressibility
of the gaseous phase [determined by the expression (I' +
1)/(C —1)] for the minmum volume content &, of the con-
densed phase,

The pressure-attenuation coefficient at the shock-
wave front, defined as the ratio of the pressure Dg in the
pure gas to the pressure p, in the two-phase medium, has
the form )
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Ap analysis of the attenuation coefficients in two limiting
cases - for a frozen temperature of the condensed phase
{I'=v) and for thermodynamic equilibrium between the
phases (I' = Iy; for two-phase media I'; is close to unity) —
indicate the possibility of either decreasing the parameters
of shock waves or increasing them, depending on the vol-
ume fraction of the condensed phase, the thermophysical
properties of the phases, and the completeness of the re-
laxation process,

843 Sov. Phys. Dokl. 28{10), October 1983

As is known, in the general case the parameters of
shock waves from real energy sources for nonrelaxing
media such as a gas are close to the parameters of a
shock wave from a point source in the narrow region
bounded by the distances at which the waves were gen-
erated, but which is still strong, A comparisonof the experi-
mental pressure-attenuation coefficients in the indicated
region for foams® and bubbly media® and also of the nor-
mal stress for soils'® and porous materials'! with the
calculated limiting values leads to the following conclu-
sions:

1) All the experimental attenuation coefficients lie
in the domain bounded by the parameters I' = yand I' =
Ty, indicating appreciable nonequilibrium behind the shock-
wave front in the indicated two-phase media,

2) For €, < 0,7-0.8 (in this case the compressibility
of the condensed phase does not introduce a perceptible
contribution to the compressibility of the medium) the
exponent 8 in the expression p ~rf 8 for a spherical wave
is close to 8 ~ v = 3, and increases with the volume con-
tent of the gas,

Thus, for a correct description of the attenuation of
shock waves in two-phase media (in the case when the
compressibility of the medium is determined by the com~
pressibility of the gaseous component) it is necessary
to allow for the relaxational nature of the energy dissipa-
tion behind the shock-wave front, Allowance for this fact
has made it possible, in particular, to obtain the true pat-
tern of the attenuation of shock waves for gas—liquid
foams® and to show that the observed increase of s in
comparison with the self-similar solution is associated
with relaxational heating of the condensed phase,
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