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Abstract

The computer modelling of the propagation of weak nonlinear waves in a
discrete medium is carried out. The structured medium is considered to be a
massif of three sizes spheres. The separated spheres interact each other
according to the Hertz law. The spectral analysis of the wave perturbation has
shown that this model medium possesses the nonlinear properties. The
nonlinearity is caused by both the nonlinear contacts of the discrete elements
and the redistribution of the energy between different scale elements. Under
the wave propagation, the relative part of the high frequencies in wave
increases.

INTRODUCTION

Nonlinear elastic response appears to place it in a broader class of geological
materials. The extensive literature on experimental studies of the nonlinear
behaviour of different rocks is reviewed in [1]. Nonlinear response may
manifest itself in a variety of manners, such as a nonlinear stress strain
relations, nonlinear attenuation, harmonic generation and resonant peak shift
[2-5]. Furthermore, rocks exhibit another unusual elastic properties that are
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beyond classical elastic behaviour: hysteresis and discrete memory in quasi-
static deformation [6], slow dynamics [7-8]. All these non-classic properties
result from the availability the mesoscopic structure. For example, the
sandstone is the complicated hierarchic aggregate of constrained grains [9]. At
the same time, the developed theoretical models of rocks [1] describe only
some feature of dynamic and quasi-static behaviour of ones but not all. The
classical model, created using the continual approach, is successful only for
studying nonlinear wave propagations [10]. The discrete model called the
Preisach-Mayergosz Space Model [11] quite good describes the static and
dynamic nonlinearity, hysteresis and discrete memory. Nevertheless this model
remains a phenomenological description, which does not contain the physical
mechanisms of nonlinear response. More advanced model is one proposed by
Guier R.A. and Johnson P.A. in [12], which considers the rock as a system of
rigid particles bonded together by elastically soft amorphous material called
“bond system”. In this report we suggest to consider the bond system as a
lower level of hierarchy in comparison with the first level of rigid particles,
therefore it consists of rigid particles with smaller sizes. Within this model we
have carried out the computer simulation of the nonlinear wave propagation
and the evolution of wave spectrum.

MATHEMATICAL MODEL

We consider a structured geophysical material to be a discrete hierarchic
system. The rigid particles (blocks) at all levels have the spherical forms that
enable us to save a great computer resource. This idealization is not principal
because we will restrict our consideration by studying only the nonlinear wave
propagation. The particles interact each other by the Hertzian contact law,
while attraction between the blocks is neglected. We restrict our modelling to
three levels of the hierarchy, i.e. we consider the massif of blocks, which is
formed by three ensembles of particles with the identical sizes inside each
ensemble. The interaction force between blocks depends on the nature of
surfaces of these blocks as well as on the closing of the block centres. For i-th
and j-th blocks the value of closing of blocks J;; is calculated as

Oij :2r—\/ Z(xik —x‘j)2 ,

k=12

where xik, x'} are coordinates of the centres of i-th and j-th blocks. The force

F;; can be expanded in the force Fj

ij acting along the line connecting two block
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centres and the force Fﬁ , Which is directed perpendicular to this line. The force
Fi? depends on the value o;; nonlinearly

Ej =Cydinjj,
where C, is a constant, which in accordance with Hertz law is defined by

relation
-1/2

__2E i 1f]
QDY

here E is Young’s module, v is Poisson’s ratio, a=3/2, n;;is the unit vector

directed along the line between block centres. The tangent force Fﬁ depends on

a relative shift in the direction perpendicular to the vector n; and is calculated
as

dF,JS ~

dt

if Fijs < CyFjf'. Otherwise, F; is calculated as

CSwij ) (1)

ck F“ (2)
I

In Egs. (1) and (12) the value wj;is the relative velocity of blocks i and j
slippage:

wij = Vi = v~y ((vi =V ng) +(2r = &) [y X (0 X @j)],
where v; and @ are the linear and the angle velocity of block i, respectively;
constant Cg is the friction coefficient.

A motion of i-th block is given by the system of differential equations

d?x;
M=z - 2 Fi (3)
J
d2o;
o _%Mij’ *

here x;,®;, m;, I; are the radius-vector, the angle coordinate, the mass and the
inertia moment of the block I; Mj;is the force moment acting on the block i

from block j. The summarizing is carried out over all blocks j, which contact

on block i. We consider 2D problem, since there is the limited computer
resource. System of equations (1) - (4) is solved numerically using the Verlet
algorithm [13, 14].
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At the initial time, blocks are randomly located in the rectangular aria
0<xy<L;, 0<x, <L,. Filled in such manner the block massif is not

compact packed, therefore it was initially consolidated. The packed massif
contained 6720 particles is the subject for investigation of the nonlinear wave
propagation. The system is set in motion by the piston driving at the initial
time with the velocity V, and coordinate x; =0 in x; direction. Defining the

periodic conditions on boundaries X, =0 and X, =L,, the massif is not

subjected to sided walls, therefore nonlinear wave can be considered to be
plane. Taking into account that the motion of particles has a plain symmetry,
we can calculate the averaged velocity as the velocity of a speculative surface,
which moves in such a way that impulse fluxes from left side and right side on
this surface are equal each other. This is the same as an infinitesimal flat plane
would move together with the discrete medium. The calculation was stopped
before the rarefaction wave formed in the right end of the massif reaches the
last testing surface. In this way, we exclude any affect of the free boundary.
The distribution of mass velocities over the particles as well as the location of
tested surfaces is presented in Fig.1.

25 50 75 100 125 150 X1

Fig.1. Velocity field V (x;, X,) at the moment t =0.03 sec. Dark colour
presents larger velocity.

Figure 2 shows the time dependences of the averaged velocity at four different
distances on coordinate origin. Spectra of these signals are presented in Fig.3.
It is seen that spectra at various distances x; differ from each other: a part of

high frequencies in spectrum rises along the distance x;. It is necessary to note
that the same feature has the spectrum of the wave under propagation in Borea
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Fig.2. Averaged velocity dependences of time: (1) x; =23.2cm;

(2)x; =46.4cm; (3)x; =69.7cm; (4) X; =92.8cm.

sandstone measured in experiments [10]. Thus, this model medium possesses
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Fig.3. Spectra of signals presented on Fig.2: (a) x; =23.2¢cm; (b) x; =46.4cm;
(€) x; =69.7 cm; (d) x; =92.8cm.
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a nonlinearity; and when appropriate parameters of the discrete medium are
chosen, this model can be used to describe nonlinear wave propagation in rock.

CONCLUSION

We propose to consider rocks as discrete hierarchic organized system with the
nonlinear interactions between elements of structure. The bond system is
treated as the lower level of the hierarchic system. We have made the first step
in modelling nonlinear response of rocks, being in the frames of this approach:
we have studied the evolution the spectrum of wave, which propagates in
model medium formed by the massif of spheres with different sizes. We have
found that the spectrum of propagating wave shifts in the region of high
frequencies like in laboratory experiments with sandstone. Thus, this model
medium possesses nonlinearity and can be used to describe nonlinear wave
propagation in rock. The study of dynamics of a discrete system for describing
of hysteresis and discrete memory as well as slow dynamics, taking into
account both repulsion and attraction as well as the nonspherical forms of the
particles is in progress.

ACKNOWLEDGEMENT
The research was supported in part by STCU, project No 1747.

REFERENCES

1. L.A. Ostrovsky and P.A. Johnson, “Dynamic nonlinear elasticity in geomaterials”, Rivista del
nuovo cimento, 24, No.7, 1-46 (2001)

2. K. Winkler, A. Nur and M. Gladwin, “Friction and seismic attenuation in rocks”, Nature, 277,
528-531 (1979)

3. V.N. Bakulin and A.G. Protosenya, “Nonlinear effects in travel of elastic waves through rocks”,
Transactions (Doklady) of the USSR Academy of Science. Earth Sciences Section, 263, 314-316
(1981)

4. P.A. Johnson, T.J. Shankland, R.J. O’Connel and J.N. Albright “Nonlinear generation of elastic
waves in crystalline rock”, J. Geophys. Res., 92, 3597-3602 (1987)

5. J.A. TenCate, K.A. Van Den Abeele, T.J. Shankland “Laboratory study of linear and nonlinear
elastic pulse propagation in sandstone”, J. Acoust. Soc. Am., 100, No.3, 1383-1391 (1996)

6. R.A. Gueyer, K.R. McCall, G.N. Boitnott, L.B. Hilbert and T.J. Plona, “Quantitative use of
Preisach-Maergoyz space to find static and dynamic elastic moduli in rock”, J. Geophys. Res., 102,
5281-5293 (1997)

7. JA. TenCate, T.J Shankland, “Slow dynamics in the nonlinear elastic response of Berea
sandstone”, Geoph. Res. Lett., 23, No. 21, 3019-3022 (1996)

8. R.A. Gueyer, P.A. Johnson, “Hysteresis, energy landscape and slow dynamics: a survey of the
elastic properties of rocks”, Journal of Materials Processing and Manufacturing Science, 9, July, 14-26.
(2000)

9. B. Zinszner, P.A. Johnson, and P.N.J. Rasolofosaon, “Influence of change in physical state on
elastic nonlinear response in rock: effects of confining pressure and saturation” J. Geoph. Res., 102,
8105-8120 (1997)

3578



10. P.A. Johnson, K.R. McCall, “Observation and implications of nonlinear wave response in rock”,
Geoph. Res. Let., 21, No.3, 165-168 (1994)

11. K.R. McCall and P.A. Johnson, “Hysteresis, energy landscape and slow dynamics: a survey of the
elastic properties of rocks”, Journal of Materials Processing and Manufacturing Science, 9, July, 14-26
(2000)

12. P.A. Johnson, K.R. McCall, “Observation and implications of nonlinear wave response in rock”,
Geoph. Res. Let., 21, No.3, 165-168 (1994)

13. H.C. Andersen, “Molecular dynamics simulation at constant pressure and/or temperature”, J.
Chem. Res., 72, No.4, 2384-2393 (1980)

14. M.P. Allen and D.J. Tildesley, Computer simulation of liquids. (Claredon Press, Oxford, 1987)

3579



3580



