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Abstract

Explicit travelling-wave solutions of the Camassa–Holm equation are sought. The solutions are characterized by two

parameters. For propagation in the positive x-direction, both periodic and solitary smooth-hump, peakon, cuspon and

inverted-cuspon waves are found. For propagation in the negative x-direction, there are solutions which are just the

mirror image in the x-axis of the aforementioned solutions. Some composite wave solutions of the Degasperis–Procesi

equation are given in an appendix.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The family of equations
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E-m
ut � utxx þ ðbþ 1Þuux ¼ buxuxx þ uuxxx; ð1:1Þ
where b > 1 is a constant, was discussed in [1]. Phase portraits were used to categorize travelling-wave solutions. In [2]

the family was dubbed the �peakon b-family�.
As discussed in [3], the family of Eq. (1.1) contains only two integrable equations, namely the dispersionless

Camassa–Holm equation (CHE) for which b = 2 [4] and the Degasperis–Procesi equation (DPE) for which b = 3 [5].

It has been known for some time that the dispersionless Camassa–Holm equation, namely
ut � utxx þ 3uux ¼ 2uxuxx þ uuxxx; ð1:2Þ
has a weak solution in the form of a single peakon [4]
uðx; tÞ ¼ ve�jx�vtj; ð1:3Þ
779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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where v is a constant, and an N-peakon solution [6] that is just a superposition of peakons, namely
uðx; tÞ ¼
XN
j¼1

pjðtÞe�jx�qjðtÞj; ð1:4Þ
where the pj(t) and qj(t) satisfy a certain associated dynamical system. (A substantial list of references regarding the

properties of the CHE may be found in [7].)

Recently, a classification of travelling-wave solutions of the CHE was given in [7]. However, explicit solutions were

given only for the solitary peakon and periodic peakon waves. Periodic smooth-hump waves and periodic cuspon waves

were investigated numerically in [8].

The aim of the present paper is to present explicit solutions of the CHE for both periodic and solitary smooth-hump,

smooth-well, peakon, inverted-peakon, cuspon and inverted-cuspon waves. We use a technique similar to the one we

presented in [9] for the DPE.

In Section 2, we explain why the technique we used for the DPE in [9] also works for the CHE. In Section 3 we find

explicit solutions for travelling waves and classify them in terms of two parameters. In Section 4 we give our concluding

remarks.
2. An integrated form of Eq. (1.1)

In order to seek travelling-wave solutions to (1.1), it is convenient to introduce a new dependent variable z defined by
z ¼ ðu� vÞ=jvj ð2:1Þ
and to assume that z is an implicit or explicit function of g, where
g ¼ x� vt � x0; ð2:2Þ
v and x0 are arbitrary constants, and v5 0. Then (1.1) becomes
zzggg þ bzgzgg � ðbþ 1Þzzg � bczg ¼ 0; where c :¼ v=jvj ¼ �1. ð2:3Þ
After two integrations (2.3) gives
ðzzgÞ2 ¼ f ðzÞ; ð2:4Þ
where
f ðzÞ :¼ z4 þ 2cz3 þ Az2 þ Bz3�b; ð2:5Þ
and A and B are real constants.

In [9] we showed that, when f(z) is a quartic, (2.4) has two implicit solutions in which z and g are expressed in terms

of a parameter w. For reference, these solutions are summarized in Appendix A.

Note that for b > 1, f(z) is a quartic for b = 2 or b = 3 only. The case b = 3, for which (1.1) is the DPE, was consi-

dered in [9]. Explicit periodic and solitary-wave solutions were found. Because f(z) is also a quartic when b = 2, we can

use a similar technique in order to investigate the CHE.
3. Explicit travelling-wave solutions of the CHE

When b = 2, (2.5) becomes
f ðzÞ :¼ z4 þ 2cz3 þ Az2 þ Bz � ðz� z1Þðz� z2Þðz3 � zÞðz4 � zÞ. ð3:1Þ
For the solutions of (2.4) that we are seeking, z1, z2, z3 and z4 are real constants with z1 6 z2 6 z 6 z3 6 z4 and

z1 + z2 + z3 + z4 = �2c.
From (3.1) it can be seen that one of z1, z2, z3 and z4 is always zero. We let the other three be q, r and s, where s 6

r 6 q and s = �q � r � 2c. The types of solution to (2.4) may be categorized by an appropriate choice of the two param-

eters q and r. In [7,8] the two parameters that were used, namelyM and m in the notation of [7,8], are equivalent to q + c

and r + c respectively.

Note that (2.4) is invariant under the transformation z! �z, c! �c; this corresponds to the transformation

u! �u, v!�v in (2.1). Here we will seek the family of solutions of (2.4) for which v > 0 in (2.2) and so, from here

on in this section, we will assume that c = 1.
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3.1. z4 = 0: Periodic smooth hump with v > 0

Suppose z4 = 0 so that z1 = s, z2 = r and z3 = q. Consider the case z1 < z2 < z3 < 0 so that
�q� r � 2c < r < q < 0. ð3:2Þ
(This is equivalent to the case considered numerically in Section 4.1 of [8].) The solution to (2.4) is a periodic hump

given by (A.1) or (A.4) with r 6 z 6 q and 0 < m < 1; see Fig. 1 for an example given by (A.1).

3.2. z4 = 0: Solitary smooth hump with v > 0

In Section 3.1 consider the limit z1 = z2 so that we have m = 1 and z1 = z2 < z3 < 0. In this case
�c < r < � 2

3
c; q ¼ �2ðr þ cÞ. ð3:3Þ
The solution to (2.4) is a smooth-hump solitary wave given by (A.6) with r < z 6 �2(r + c); see Fig. 2 for an example.

3.3. z4 = 0: Periodic peakon with v > 0

In Section 3.1 consider the limit z3 = z4 so that we have m = 1 and z1 < z2 < z3 = 0. In this case
�c < r < 0; q ¼ 0. ð3:4Þ
The solution to (2.4) is given by (A.3) and has r 6 z 6 0. From this we can construct a weak solution, namely the peri-

odic peakon wave given by
z ¼ zðg � 2jgmÞ; ð2j� 1Þgm 6 g 6 ð2jþ 1Þgm; j ¼ 0;�1;�2; . . . ð3:5Þ
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Fig. 1. Periodic smooth hump with r = �0.7, q = �0.3 and v > 0.

–10 –5 0 5 10
–1

–0.75

–0.5

–0.25

0

Ζ

η

Fig. 2. Solitary smooth hump with r = �0.9, q = �0.2 and v > 0.
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where
zðgÞ :¼ ½z2 � z1tanh
2ðg=2Þ�cosh2ðg=2Þ ¼ �cþ ðr þ cÞ cosh g ð3:6Þ
and
gm :¼ 2tanh�1
ffiffiffiffi
z2
z1

r� �
¼ 2tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�r

r þ 2c

r� �
; ð3:7Þ
see Fig. 3 for an example. The solution given by (3.5)–(3.7) is the spatially periodic solution of the CHE that has been

dubbed a �coshoidal wave� by Boyd [10].

3.4. z4 = 0: Solitary peakon with v > 0

In Section 3.1 consider the limit z1 = z2 and z3 = z4 so that we have z1 = z2 < z3 = 0 and then
r ¼ �c; q ¼ 0. ð3:8Þ
In this case neither (A.3) nor (A.6) is appropriate. Instead we consider (2.4) with f(z) = z2(z + c)2 and note that the

bound solution has �c < z 6 0. On integrating (2.4) and setting z = 0 at g = 0 we obtain the weak solution
z ¼ cðe�jgj � 1Þ; ð3:9Þ
i.e. a solitary peakon with amplitude c; see Fig. 4.

3.5. z3 = 0: Periodic cuspon with v > 0

Suppose z3 = 0 so that z1 = s, z2 = r and z4 = q. First let us consider the case z1 < z2 < 0 < z4 so that
�q� r � 2c < r < 0 < q. ð3:10Þ
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Fig. 3. Periodic peakon with r = �0.9, q = 0 and v > 0.
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Fig. 4. Solitary peakon with r = �1, q = 0 and v > 0.
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(This is equivalent to the case considered numerically in Section 4.2 of [8].) The solution to (2.4) is a periodic cuspon

given by (A.1) or (A.4) with r 6 z 6 0 and 0 < m < 1; see Fig. 5 for an example given by (A.4).

3.6. z3 = 0: Solitary cuspon with v > 0

In Section 3.5 consider the limit z1 = z2 so that we have m = 1 and z1 = z2 < 0 < z4. In this case
r < �c; q ¼ �2ðr þ cÞ. ð3:11Þ
The solution to (2.4) is a solitary cuspon given by (A.6) with r < z 6 0; see Fig. 6 for an example.

3.7. z2 = 0: Periodic inverted cuspon with v > 0

Suppose z2 = 0 so that z1 = s, z3 = r and z4 = q. First let us consider the case z1 < 0 < z3 < z4 so that
�q� r � 2c < 0 < r < q. ð3:12Þ
The solution to (2.4) is a periodic inverted cuspon given by (A.1) or (A.4) with 0 6 z 6 r and 0 < m < 1; see Fig. 7 for an

example given by (A.1).

3.8. z2 = 0: Solitary inverted cuspon with v > 0

In Section 3.7 consider the limit z3 = z4 so that we have m = 1 and z1 < 0 < z3 = z4. In this case
0 < r ¼ q. ð3:13Þ
The solution to (2.4) is a solitary inverted cuspon given by (A.3) with 0 6 z < r; see Fig. 8 for an example.
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Fig. 5. Periodic cuspon with r = �1, q = 0.1 and v > 0.
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Fig. 6. Solitary cuspon with r = �1.3, q = 0.6 and v > 0.
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Fig. 8. Solitary inverted cuspon with r = q = 0.6 and v > 0.
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Fig. 7. Periodic inverted cuspon with r = 0.6, q = 0.7 and v > 0.
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3.9. z1 = 0 and v > 0

In this case z2 + z3 + z4 > 0 and so the condition z2 + z3 + z4 = �2c cannot be satisfied. Hence there are no solutions
with z1 = 0.
4. Concluding remarks

In Sections 3.1–3.8 we have found explicit expressions for eight different travelling-wave solutions to the CHE that

travel in the positive x-direction with speed v, i.e. with v > 0. These solutions depend on two parameters q and r. For

each of the aforementioned solutions expressed with u as the dependent variable, there is a solution for u that is the

mirror image in the x-axis and travels with the same speed but in the opposite direction, i.e. with v < 0. For example,

the mirror image of categories 3.2 and 3.5 respectively are solitary smooth wells with v < 0 and periodic inverted cus-

pons with v < 0.

In Theorem 1 in [7], Lenells categorized travelling-wave solutions to the CHE. His categories (a)–(d) correspond to

our categories 3.1–3.4. His category (e), i.e. periodic cuspons, correspond to our category 3.5, i.e. periodic cuspons

with v > 0, together with the mirror image of our category 3.7, i.e. periodic cuspons with v < 0. His category (f), i.e.

solitary cuspons, correspond to our category 3.6, i.e. solitary cuspons with v > 0, together with the mirror image of

our category 3.8, i.e. solitary cuspons with v < 0. His categories (a 0)–(f 0) are the mirror images of his categories (a)–

(f) respectively.

In [9] we investigated the DPE. As for the CHE, for v > 0 we found explicit expressions for smooth-hump and pea-

kon solitary waves and their periodic equivalents. Unlike the CHE for which we have found cuspon and inverted-cus-
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pon solutions, we showed in [9] that the DPE has inverted loop-like solutions instead. However, it should be noted that

it is possible to construct other explicit solutions for the DPE as composite waves by using the results in [9]. These are

summarized in Appendix B.
Appendix A

As shown in [9], there are two solutions to (2.4) when f(z) is a quartic. These are summarized below.

The first solution is
z ¼ z2 � z1n sn2ðwjmÞ
1� n sn2ðwjmÞ ; g ¼ 1

p
½wz1 þ ðz2 � z1ÞPðn;wjmÞ�; ðA:1Þ
where
m ¼ ðz3 � z2Þðz4 � z1Þ
ðz4 � z2Þðz3 � z1Þ

; n ¼ z3 � z2
z3 � z1

; p ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz4 � z2Þðz3 � z1Þ

p
. ðA:2Þ
In (A.1) sn(wjm) is a Jacobian elliptic function and the notation is as used in [11, Chapter 16]; P(n;wjm) is the elliptic
integral of the third kind and the notation is as used in [11, Section 17.2.15]. When z3 = z4, m = 1 and so (A.1) becomes
z ¼ z2 � z1ntanh
2w

1� ntanh2w
; g ¼ wz3

p
� 2tanh�1ð

ffiffiffi
n

p
tanhwÞ. ðA:3Þ
The second solution is
z ¼ z3 � z4n sn2ðwjmÞ
1� n sn2ðwjmÞ ; g ¼ 1

p
½wz4 � ðz4 � z3ÞPðn;wjmÞ�; ðA:4Þ
where m and p are as in (A.2) but n is given by
n ¼ z3 � z2
z4 � z2

. ðA:5Þ
When z1 = z2, m = 1 and so (A.4) becomes
z ¼ z3 � z4ntanh
2w

1� ntanh2w
; g ¼ wz2

p
þ 2tanh�1ð

ffiffiffi
n

p
tanhwÞ. ðA:6Þ
The solutions (A.1) and (A.4) have the same profile but the former has z = z2 when g = 0 whereas the latter has

z = z3. (A.4) may be obtained from (A.1) by shifting w by K(m), where K(m) is the complete elliptic integral of the first

kind. As indicated in obtaining (A.3) and (A.6) above, (A.1) is the appropriate solution to use when considering the

limit z3 = z4 whereas (A.4) is appropriate when considering the limit z1 = z2.
Appendix B

As a footnote to the analysis of the DPE in [9], we give some explicit composite wave solutions for which v > 0. The

notation here refers to that in [9].

For A < 0 and B = BU, there is a solitary loop-like wave as shown in Fig. 2(a). If the part of the loop for which z < 0

is removed, the remaining parts may be joined to form a solitary inverted cuspon with 0 6 z < zU. For A < 0 and

0 < B < BU, a similar procedure applied to the periodic inverted loop-like waves shown in Fig. 1(a) leads to periodic

inverted cuspons with 0 6 z 6 z3.

If in Fig. 2(a) the part of the loop for which z > 0 is removed, the remaining part may be repeated periodically to give

a periodic cuspon wave with z2 6 z 6 0. If in Fig. 1(a) the part of the loops for which z > 0 is removed, the remaining

parts may be joined to give a periodic cuspon wave with z2 6 z 6 0.

The waves described above have explicit expressions that may be obtained from the ones given in [9]. However, we

note that the DPE has other solutions for which we have not found explicit expressions: for A < 1 and B = BL there is a

solitary cuspon with zL < z 6 0; for A < 0 and BU < B < BL there is a family of periodic cuspons with z2 6 z 6 0; for

0 6 A < 1 and 0 < B < BL there is a family of periodic cuspons with z2 6 z 6 0.
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