Acoustical Physics, Vol 45, No. 2, 1999, pp. 151-157 Translated from Akusticheskii Zhurnal, Vol. 45, No. 2, 1999, pp. 183-189.

Original Russian Text Copyright © 1999 by Vakhnerko.

Increase of Nonlinear Effect in a Medium with Microstructure
V. A. Vakhnenko

Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine,
ul. B. Khmel’nitskogo 63B, Kiev, 252054 Ukraine
e-mail: vakhnenko@bitp.kiev.ua
Received May 17, 1995

Abstract—An averaged set of hydrodynamic equations in the Lagrangian and Eulerian coordinates is obtained
for the description of long nonlinear waves in a structured medium. The nature of the long-wave effect is dif-
ferent at different scale levels. At the microscopic level, the behavior of the medium is governed by the laws of
thermodynamics, while at the macroscopic level it manifests itself as a wave motion for the average character-
istics. An evolutionary equation allowing for weak structure-caused nonlinearity is obtained. It is shown that
the medium structure gives rise to an increase in the nonlinear effects that accompany the propagation of long

waves.

INTRODUCTION

Many natural media have natural internal structure.
Recent experimental studies have demonstrated that
internal structure of a medium affects wave motion [1-7].
The presence of inhomogeneities makes the problem
more complex, and, at the same time, it manifests itself
in a more general form in the propagation of nonlinear
waves. For example, such phenomena as (a) soliton-
like properties of the P-wave [8] and (b) the increase of
nonlinear effects in structured media as compared to
homogeneous ones [3-7] can be considered as nonlin-
ear manifestations of wave processes in natural media.

Models of various degree of complexity are used to
describe the wave processes in heterogeneous media. It
is a common idea that perturbations with the wave-
length A significantly exceeding the size of the struc-
tural inhomogeneities €' propagate in the medium as in
a homogeneous one. The known idealization of a real
medium with the help of a homogeneous one within the
framework of mechanics of continuum was quite suc-
cessful in the case of the description of wave processes
(e.g., [9-11]). In terms of acoustics, it is possible to
take into account the structure of a medium within the
framework of models of homogeneous media with cer-
tain dispersion—dissipation properties [12, 13]. Contin-
uum models are also used for the description of nonlin-
ear waves [14—17]. At this level, media are simulated
within the framework of elastic, viscoelastic, and elas-
toplastic homogeneous media [15. 18]. In these cases,
the medium structure is taken into account indirectly
through kinetic parameters (relaxation time, viscosity
coefficients, etc.) [5, 6, 9, 14-18].

A model of interpenetrating continua developed for the
description of dynamic behavior of multicomponent
media is substantiated using the methods of classical
mechanics of continua [19] and staastical physics [20].
The fundamental assumption in the theory of mix-

tures [14] coincides with the assumption underlying
the model of interpenetrating continua [19}. Namely, it
is assumed that each microscopic volume dv contains
particles of each component. Equations of motion writ-
ten for each component include the terms describing
the mass, force, and thermal interactions between com-
ponents. The problem becomes more complex because.
in the general case, it is necessary to use experimental
data in order to establish theoretical relationships
between microscopic parameters at the level of compo-
nent interaction. A review and methods of application
of various models to the description of wave processes
in mixtures are presented in the book by Rajagopal and
Tao [14].

All mentioned models use the formalism of
mechanics of continuous media. They are based on the
principle of local action and the generalization of
mechanics’ laws valid for a mass point to a continuous
medium [10].

When we change from integral conservation equa-
tions to differential equations, we rely on the existence
of a differentially small microscopic volume dv. On the
one hand, this volume is so small that laws of mechan-
ics of a point mass can be extended to the whole micro-
scopic volume. But on the other hand, though a micro-
scopic volume is small in comparison with the whole
volume occupied by the medium, it contains a great
number of structural elements of the medium, and in
this sense it may be considered as a macroscopic one.
Thus, the transition to differential conservation equa-
tions is based on the assumption of smallness of the
microstructure scale €' in comparison with the charac-
teristic macroscopic scale of flow A. In this case, the
passage to the limit €/A — O must be performed.
A compression of the volume dvto a point is correct in
the general case for continuous functions [10, 14]. This
means that all points within a differentially small vol-
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ume are equivalent. Therefore, the equivalence of
points within a microscopic volume implies that wave
field characteristics averaged over dv must be used.
Hence, it is assumed that equations of motion can be
written for average characteristics, such as density,
mass velocity, and pressure, which are assigned to each
component separately. It is necessary to note that the
size of components is not included in these models
explicitly.

Application of models of continuous media to the
description of dynamic wave processes in a structured
medium has certain fundamental difficulties [1, 2, 6, 18].
In this paper, the medium structure is taken into
account at the macroscopic level. We reject the assump-
tion that a differentially small volume dv contains all
medium components, though we consider long-wave
approximations, when the wavelength A far exceeds the
characteristic length of the medium structure €'. As it is
assumed, a single component of a structured medium is
simulated by a homogeneous medium (a differentially
small volume dv is much smaller than the characteristic
size of a singie component). A rigorous mathematical
analysis by the method of asymptotic averaging
[21-23] shows that the medium structure directly
affects the nonlinear wave processes even in the case of
perturbations with the wavelength much greater than
the size of inhomogeneities. The mathematical formu-
lation of this statement means that the set of averaged
equations is not expressed in averaged characteristics
(pressure, mass velocity, and specific volume) and con-
tains the terms with the characteristic size of single
components.

This study is devoted to the analysis of weak nonlin-
earity related to the medium structure in the case of
propagation of long-wave perturbations. An asymptotic
averaged model [24— 30] 1s used to describe the wave
processes in media with microstructure. It is shown that
long-wave propagation can be described only at the
acoustic level, with the help of dispersion—dissipation
properties of a medium, and only in this case the
dynamic behavior of a medium can be simulated in
terms of homogeneous relaxation [26, 30]. At the same
time, a long wave of finite amplitude responds to the
structure of a medium in such way that the behavior of
structured medium cannot be simulated by a homoge-
neous medium. An important result predicted by this
model is an increase of nonlinear effect in the propaga-
tion of a wave of finite amplitude in a medium with
microstructure, even if single components of the
medium are described by a linear law.

A SET OF AVERAGED EQUATIONS

Elementary inhomogeneous media which give an
opportunity to analyze the structure effect are media
with a regular structure. Propagation laws of long-wave
perturbations are studied for a periodic medium under
the condition of equality of both pressure and mass
velocity-at the boundary of neighboring components. It

is assumed that an element of the medium microstruc-
ture € is large enough to allow the application of the
laws of classical mechanics of continuous media. The
medium is barotropic. We assume that periodically
variable properties are such properties of an unper-
turbed medium as the specific volume V = p~! and the
sound velocity c¢ (although this assumption turns out to
be unimportant for the final result in the case of long
waves). We use a hydrodynamic approach and consider
media without tangential stress. This restriction is jus-
tified in the case of simulation of nonlinear waves in
water-saturated soil, bubble media, aerosols, etc. The
consideration may be extended to solids in the case of
investigation of powerful loads under the conditions
when it is possible to ignore the strength and plastic
properties of material [31].

In the Lagrangian coordinates (m is the mass spatial
coordinate), equations of plane one-dimensional
motion for each element of a medium with regular
structure have the form

oV du _ du  dp _
3 Y wtan Y ()

Common notations are used here. The conditions of
matching are the equality of mass velocities and the
equality of pressures at the component boundaries.
Equations of state are known for each component:

dp = czdp. (2)

One of the ways to study such an inhomogeneous
medium is the method of asymptotic averaging of equa-
tions with fast-oscillating coefficients [21-23]. The
main idea of the asymptotic method consists in the
application of the method of multiple scales in combi-
nation with the method of spatial averaging. The small
parameter of the problem is € = €'/A. According to this
method, the mass spatial coordinate m is divided into
two independent coordinates: the slow coordinate s and
the fast coordinate &. In this case

_a_ = 0 +8_I_Q..
om ~ Os &’

The slow coordinate s corresponds to the global
change of wave field and is constant within the whole
period, while the fast variable & follows the field varia-
tions within the period of the structure. The dependent
functions p, u, and V are represented in the form of
power series expansions in the structure period &, for
example,

m = s+¢g&, (3)

p(m, 1) = p Vs, 1,8) +ep (5,1, &)

2 @ 4)
+ep (s, ,E)+....

The functions p', 4, and V¥ are considered as single-
periodic in &.

Let us prove that p© = pOs, 1), p'¥ = p!(s, 1), and
u® = 4O, 1) do not depend on the fast variable &. After
Vol. 45 1999

ACOUSTICAL PHYSICS No. 2



INCREASE OF NONLINEAR EFFECT IN A MEDIUM WITH MICROSTRUCTURE 153

substitution of expressions (3) and (4) in the initial
equations of motion (1), we have

A ou'® . 80(8 y® _ ou'® 3 au(l))
o0& ot ds o0&
vy ou au? _

+s( " o5 8&_)+"'_0’

+ +

3t T 95 T oE

+£'( + +ap”’)+ =0
ot ds a§ )

According to the general theory of the asymptotic
method, the coefficients at different powers of € must
be equal to zero independently of each other. Thus, in

l a (@ du (V)]
the order O(g™') we have ~2— 8& =0and — 8&,
p = pOs, t) and u® = w9, r) do not depend on E_,
These properties can be expressed in the form
(U®) = u® and (p'®) = p®. The following expressions
must be valid in the order O(¢%):

—lap(O) (au(o) ap‘o) ap(l))

av“’)_au‘m_au“) _ 0

dt ds € 7 )
a”(o) ap(o) ap(l) _

TR TR

Now, we apply the procedure of averaging, which is
possible only in the Lagrangian mass coordinates, since
the period in this case does not depend on wave motion.

We have (-) = ﬁ)(-)dé by definition. Here we use the

0 5 On0 1 5
normalization condition Jod& = 1. Since p'V and u(V

) (1
92\ _gand{ 2L =0,
9g 3

After the integration of equations (2) and (5) with
respect to the structure period ¢, we have, on the one

hand, an averaged set of equations {24-30]

vy au® 0u'® 9p?
o 9s ~ O Tor T s

(0)y~
d<V(0)> — <(V 2)>dp, (7)
C

P
SE § = 0 as the result
of subtraction of the second equation (6) from the sec-
ond equation of set (5). This means that p'» does not
depend on & as well. In contrast to the quantities #©,
P, and pV, the quantity V¥ is a function of &. Below,

are periodic, we obtained <

=0, (6

and, on the other hand, we obtain —%—
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we restrict ourselves to the zero-order approximation
and omit the upper index 0.

The averaged set of equations (6) and (7) is an inte-
gro-differential set, and, in the general case, it cannot
be reduced to the averaged characteristics p, u, and (V).

Equations (6) and (7) are derived for a strictly peri-
odic medium. However, it is possible to demonstrate
that equations (6) and (7) are also valid for media with
a quasi-periodic structure. The pressure p and the mass
velocity u are constant within the whole structure
period. A structural element moves as a whole (u =
const). At the scale &, the load is so slow that there is
enough time for the pressure balance to be established
in the microscopic volume, the internal structure
changes, and the mechanical equilibrium takes place
(p = const). Therefore, the effect is homogeneous
(waveless) over the entire period of the medium struc-
ture. At this hierarchical level, the medium behavior is
governed only by thermodynamic laws.

At the macroscopic level, the medium behavior is
described by the laws of wave dynamics (6) for the aver-
age characteristics u, p, and (V). However, the medium
structure affects the wave motion, and this is caused by the
following mechanisms. According to equation (7), the
variation in the average specific volume (V) does not cor-
respond to the variation in the specific volume for a homo-
geneous medium in the process of loading. Thus, a change
in the internal structure causes some variation in the aver-
age specific volume (V), and finally, the medium structure
manifests itself at the macroscopic level s as a wave
motion despite the fact that equations of motion (6) are
written for the average quantities u, p, and (V).

From the mathematical point of view, in the zero-order
approximation in g, the period length is infinitely small
(¢ —= 0). This means that the positions of single compo-
nents within the period are insignificant. The set of equa-
tions (6) and (7) does not change, if the positions of layers
in the unit cell are changed, or the layers are broken into
smaller parts. Therefore, equations (6) and (7) describe the
behavior of any quasi-periodic (statistically inhomoge-
neous) medium, which has the same mass contents of
components at the level of microstructure independently
of the position of the substance in the cell volume.

This asymptotic averaged model justifies the one-
velocity continuum models. In particular, the well-
known model developed by Lyakhov for multicompo-
nent media [17] received its rigorous mathematical jus-
tification [27, 29, 30].

A technique for the numerical solution of the set of
equations is described in our previous papers [24-26].
In this technique, the step of integration is limited by
the length of wave perturbation rather than the structure
period. The main initial problem of computation is
related to the smallness of the step of integration. This
problem was solved successfully. Thus, the set of aver-
aged equations can be solved at large distances within
reasonable processor time. We developed a package of
computer codes for solving this set of equations.
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A SET OF EQUATIONS
IN THE EULERIAN COORDINATES

It is convenient for many problems to represent
equations (6) in the Eulertan coordinates. It is possible
to express the averaged equations of motion (6) in
terms of these independent variables by virtue of the
fact that they involve the average characteristics u, p,
and (V). We note that a direct application of the asymp-
totic method of averaging to equattons in the Eulerian
coordinates is improper, since the size of microstruc-
tures is not constant.

Let us determine transformations between the inde-
pendent variables in the Eulerian coordinates (x, tz) and
the Lagrangian coordinates (s, ¢) [26, 30]

tE——- L. (8)

It is important that the velocity u does not change
within the period, and therefore, we can deal with an
average trajectory of a particle. The averaged Eulerian
coordinate x for an individual particle (its trajectory)
changes with time

x=x(x, 1),

(%i:) = u(s,t). 9

R}

This relationship is the definition of slow Eulerian
coordinate x. Moreover, x changes with varying s, i.e.,
it is necessary to represent transformation (8) in the dif-
ferential form:

dx=Ads + udt, tp=1. (10)

From physical considerations, it is clear that the posi-
tion of a particle is determined unambiguously by the
particle itself and time. Mathematically, this means that
dx in expression (10) is an exact differential. Therefore,
we obtain the condition

24 _ du
dt ds’
This condition is satisfied at A = {V'), because it passes
into continuity equation (6).

Thus, we obtained a transformation between the
Lagrangian and Eulerian coordinates

dx={(V)ds +udt, tg=t. an

In this case, partial derivatives change according to for-
mulas

d 0 d 0 0

— = (V)=—~, = = — +u=—.

- V5% 5Tt
Equations of motion (6) in the Eulerian coordinates
take the form (the index E is omitted)

—1 -1
a<avt> .‘“auﬁz‘? =0, %_Ltt+ug_:+<v>g_§=o.(12)

It is convenient to determine the fast Eulerian coor-
dinate { as

(flé) =P
95/, p(&)
We note that the averaged density p in the Eule-

rian coordinates is the quantity commonly used for
density [26], '

(13)

—l _1 9@ e
<V>—£w&)d&—£v Sodh =5

It is this quantity that is determined experimentally. At
the same time, the average values of p and u in both
coordinate systems coincide.

The averaged equations of motion in the Lagrangian as
well as Eulerian coordinates are analogous in their form to
the equations for a homogeneous medium in the corre-
sponding coordinates. Only equations of state (2) and (7)
are noticeably different. The medium structure is repre-
sented by egluation (7). As it will be demonstrated below,
the term (V?/c?) introduces additional nonlinearity.

NONLINEAR EFFECTS IN A MEDIUM
WITH MICROSTRUCTURE

Introduction of the effective average sound velocity
according to the formula

2

\2;
2, 2
(V™)

leads us to a conventional form of the set of equations.

However, c¢.; is not an averaged characteristic, i.e.,

(14)

Ceff =

2 . . -
ce # (2. It is evident, that the medium structure
eff

makes a certain contribution to nonlinearity. Even if
sound velocity in each component is independent of
pressure (c # f{(p)), the quantity c. is a function of pres-
sure in the general case.

At the same time, at the acoustic level the set of
equations is reduced to the averaged characteristics u,
p, and (V), because (V¥/c*), # fip) and the fields of
pressure and mass velocity coincide in the periodic and
homogeneous media if the properties are matched by
the conditions [24-26]

(Vyo=Vy, (VY= (Valcdy. (15)

In our previous paper [30], we demonstrated that
acoustic waves propagate in the same way as in a
homogeneous medium, even if relaxation processes
take place in the medium components.

Normalization to the average specific volume (V) and
the initial effective sound velocity c.4 provides an oppor-
tunity to compare the results obtained for various media.

In contrast to acoustic waves, nonlinear waves with
even longer wavelengths respond to the internal struc-
Vol. 45 1999
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ture of the medium. It will be shown that nonlinear
effects in these media become stronger in comparison
with those in homogeneous media. Now, we consider
an evolutionary equation with weak nonlinearity and
compare the nonlinear coefficients of these media.

We obtain the evolutionary equation in the Eulerian
coordinates with allowance for a weak nonlinearity.
First of all, we note that the mass velocity u is related
to the pressure p by the formula [25]

= j JVIcDdp.

The functional dependence of the average specific vol-
ume on the pressure increment p' = p — pg in the second
order of magnitude, O(p), are presented in the form of
a series

(16)

d<v>

(V) (p) = (V)o+

2
P =Py dp

P =Do

Then, the set of equations (7) and (12) can be repre-
sented in the form

du [V\ap 1d° 3
Vo + < > T2 Fe=o
0 - dp P =Do
ou ap' _
= <V)°$ = 0.
The relationship u%——i— = %— was used in the deriva-

tion of the first equation. This relationship is valid to the
adopted accuracy of O(p'?) and follows from expression
(16). The evolutionary equation for a single variable
takes the form

AN
c*lodr

Below, we omit the index O denoting the unperturbed
state. Let us treat the waves propagating in one direc-
tion. With the adopted accuracy, we have

_«/(V/C 8 d

(Vye ot B_x 25%
(e.g., see Section 93 in [32]). Therefore, after factoriza-
tion of expression (17) we obtain an evolutionary equa-
tion in the Eulerian coordinates,

2 42
ap

2

1d2<v>;
"2 dp ot

‘P Po

= 0.(17)

zazp'
(V)o—S
0 ox”

=372 4
W, W L[\ LW o
at effax +2<V>< CZZ> dpz 14 ax = 0.

The nonlinear coefficient o, conditioned by the
medium structure can be represented in the following
form for the case ¢ # fip):

(18)
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=312 2

1 1% d (V)  d(u+ce)
=~(V){ — =
“=3! >< CZZ> dp’ dp

3 -312
of3g”
c C

and it is always true that o, > 0. In the case of a homo-

geneous medium, we have 3—; =0and o, yon = V/c [32].

Media with the quantity V/c? being constant within
the period present a special case. Under the effect of
wave perturbation, they behave as homogeneous
media. Single structural elements respond to pressure
variations in such way that the relative structure does
not change, i.e., the ratio V(&, p)/V(E, p,) does not
depend on &. The effective sound velocity is an average

.. 2 . .
characteristic, c.q = /{c¢"), in this case. Therefore, the
whole set of equations can be expressed in the average

variables p, u,(V), and c.g= (cz) . In the case of such
media, inhomogeneities do not introduce additional
nonlinearity. In terms of the propagation of wave per-
turbations, such media behave as homogeneous ones.

Let us take a medium where sound velocity in each
component is independent of pressure (¢ # fip)) as an
example and demonstrate that, in the general case, the
structure of the medium gives rise to additional nonlin-
earity. We consider the ratio of nonlinear coefficients
for a structured medium and a homogeneous medium
and assume that these media are matched according to
conditions (14) and (15). In the space of dimensionless
normalized variables, this implies that, for the media
under comparison, we have (V),=1and (V3/c?), =1 at
p = py. Therefore, we obtain

=),

o, VAV
p hom C C

This inequality is the Cauchy-Schwartz inequality
(see formulas (4.6-60) and (15.2-3) and Section 14.2-6
in [33]). Taking into account the fact that V = 0 and
V/c? 2 0, we prove expression (19):

(19)

<v><V/c>—de§j dg_j 2(3_)4,1&

Janee{1)eC) J‘)
U K

—oo
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Now we have only to determine the conditions at which
the equality sign is valid. For this purpose, we use the
vector form of the Cauchy-Schwartz inequality (see
formula (14.2-5) in [33]):

I(a, b)|” < (a, a)(b,b).

The equality sign is realized if and only if the vectors
a and b are linearly related: a = kb (k = const). In
our case, this means that

ViV “/ 1%8%
=l = = const.
c“\¢ c’c

Here, the equality sign is realized if and only if V/c* =
const. Such a structured medium was considered
above. In the case of all other media with microstruc-
ture with the quantity V/c? varying within the period,
the inequality is true. We arrive at the result that o, in a
structured medium is always greater than o, ., in a
homogeneous medium.

Thus, a rigorous consideration of the medium struc-
ture reveals nonlinear effects directly conditioned by
the inhomogeneity. It is shown that, in the general case,
the medium structure introduces additional nonlinear-
ity. In our previous papers [27, 30] we used this effect
to develop the mathematical foundations for a new
method of diagnostics. According to this method, the
properties of a multicomponent medium can be deter-
mined with the help of long nonlinear waves propagat-
ing in it. The nature of the long-wave interaction is dif-
ferent at different scales. The behavior of the medium
at the microscopic level is governed by thermodynamic
laws, while at the macroscopic level, it manifests itself
as a wave motion for the average characteristics.
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