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a b s t r a c t

In this paper we suggest the transformation between the equations for a perfect gas and the equations

describing in one-velocity approach the two-phase medium with any volume occupied by the

incompressible phase. It is proved that the motion of a two-phase medium in the transformed

coordinate system is similar with certain accuracy to that of a perfect gas. It means that the solutions

obtained for perfect gas can be used to solve wave problems for media with incompressible component.

There is no necessity directly to solve the problem for medium with incompressible component, and it

is only sufficient to transform the known solution of the similar problem for a homogeneous medium.

Thus, the solutions of many hydrodynamic problems for multi-component media with incompressible

phase can be obtained without solving the original set of equations. The scope for the suggested

transformation is demonstrated by reference to the strong explosion in a two-phase medium.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The paper deals with a comparison between the motion of a
perfect gas and that of a two-phase medium with any volume
occupied by the incompressible condensed component. Tradition-
ally, it is regarded that in heterogeneous media with wavelength
appreciably exceeding the size of the structural heterogeneities,
the perturbations propagate in the same way as in homogeneous
media [1,2]. In the framework of continuum mechanics [3] the
idealization of a real medium as homogeneous has enabled
considerable success for describing the wave processes (see
Ref. [2] and references therein). It is known [1,2,4,5] that in
one-velocity approach at low volume portion of the condensed
phase e, the motion of a two-phase medium is similar to the
motion of a gas. For describing the motion of two-phase medium
without restriction on a value of the volume portion e, it is
necessary to introduce this value e as additional variable in the
system of the hydrodynamic equations in contrast to the usual
gas-dynamic equations. In approaches of other authors [6,7] such
an extended system of equations have been treated by solving it
separately for each particular e.

We focus our attention on transformation between the system
of three equations for a perfect gas and that for a two-phase
medium with any volume occupied by the condensed phase. It

shall allow one to apply the known solutions for perfect gas in
order to solve the wave problems in two-component medium
without solving the original system of equations.

Recently for planar motions only, we obtained the transforma-
tion between the systems of equations describing both these
media in Eulerian coordinates [8,9]. In these papers it was shown
that the motion of a two-component medium in the transformed
coordinates is identical to the motion of a perfect gas. However,
the transformation obtained in [8,9] reveals significant restriction,
namely, for cylindrical and spherical symmetries the time varies
not identically at all points in space.

2. System of equations in Lagrangian coordinates

We make the efforts to overcome the above restriction. In
some sense the progress was achieved owing to the stimulating
support of colleagues. One of a concept consists in analyzing the
considered problem in the Lagrangian coordinates (x,t). Let us
consider a two-phase medium consisting of a condensed phase
and a gaseous phase uniformly distributed in a volume. The
incompressible condensed component can occupy an arbitrary
partial-specific volume e. We assume the following: (a) the
condensed phase is incompressible; (b) the gas obeys the state
equation for a perfect gas; (c) the partial pressure of the
condensed phase is negligibly small; (d) the velocities of the
condensed phase and gaseous phase equal each other. The con-
servation laws for mass, momentum, and energy give us the
following system of the equations for the one-dimensional
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motions in the Lagrangian coordinates [3,10]:
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Here u is the specific volume. The parameter n that determines the
symmetry of the two-phase flow is equal to 1, 2 and 3 correspond-
ingly for planar, cylindrical and spherical symmetries. The rest of
the notations are conventional ones. Index 0 relates the variables
to the unperturbed medium state. Note that the Eulerian space
coordinate r¼ rðx,tÞ is a dependent variable. Within the accepted
assumptions the state equation for the two-phase medium is
conveniently written in the form [4,7,11]

E¼
puð1�eÞ
g�1

: ð2Þ

Since the state equation (2) contains value of the volume portion
as additional value

e¼ e0
u0

u
: ð3Þ

Eq. (2) does not coincides with state equation for a perfect gas
with a certain effective adiabatic parameter g. Considering the
adiabatic flow g to be constant, the equation for energy can be
reduced to the form [10]:
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Thus, the closed system of the equations consists of first three
equations of (1) and (3), (4).

Since the Eulerian space coordinate r¼ rðx,tÞ is a dependent
variable, we write this dependence through the Lagrangian
independent coordinates ðx,tÞ

dr¼
xn�1

rn�1

u
u0

dxþudt: ð5Þ

We now show that for stationary motions as well as, with
certain accuracy, for self-similar flows, one can find new variables
in which all Eqs. (1), (3)–(4) coincide with equations for a perfect
gas and are explicitly independent on e.

The following physical backgrounds provide a basis for
eliminating the volume portion e from (1)–(4). Indeed, if the
condensed phase does not vary its volume (condition (a)) and
does not contribute into partial pressure (condition (c)) and
moves along the paths of the compressible gaseous phase (con-
dition (d)), then we can assume that eliminating of the volume
occupied by the condensed phase e should substantially simplify
the mathematical description of motion.

3. Similarity of stationary flows

We need to reduce the system of Eqs. (1)–(4) to the system of
equations describing the motion of a perfect gas (hereafter the
notations for gas have primes)
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For the latter system (6) the relation between the Eulerian
space coordinate and the Lagrangian coordinates is as follows:

dr0 ¼
x0

r0

� �n�1
u0

u00
dx0 þu0 dt0: ð7Þ

One of the key requirement: the time should be equivalently
running in all systems of coordinates t¼ t¼ t0.

The perturbations in incompressible component propagate
with infinite velocity. Hence, the volume occupied by incompres-
sible phase can be eliminated, then the connection between the
equation (4) and the last equation (6) has the form

u0 ¼ u�e0u0, ð8Þ

p0 ¼ p: ð9Þ

The relationship (8) indicates that the volume occupied by
incompressible component is eliminated, and all masses of the
medium are distributed over the residual volume of the
compressible component.

Comparing the mass equations with each other, i.e. first
equations from system (1) and system (6), the condition
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should be satisfied.
We need also to make consistent the momentum equations

(i.e. third equation in (1) and third equation in (6)), which after
several reductions can obtain the form (see Appendix A):
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Let us take advantage of key relationship between indepen-
dent variables in the Eulerian coordinates

dr0 ¼ ð1�eÞ drþeu dt ð13Þ

appearing in the transformation for planar motions (n¼ 1) [8,9].
Owing to relation (5) the terms with e collected together in (13)
yield the value edr�eudt ¼ e0 dx. Then the relation (13) has a form
dr0 ¼ dr�e0 dx, that confirms the physical interpretation for (13),
namely, the volume (in planar case (n¼ 1) the distance) occupied
by incompressible phase e0 dx can be eliminated.

The suggestion (13) enable us to assume that the connection
between variables r and r0 for any symmetry could be as follows:

r0n�1dr0 ¼ rn�1dr�e0x
n�1 dx: ð14Þ

Thus we satisfy the important condition, namely, that the value
dr0 is an exact differential. That in turn enable us to rewrite the
relationship (14) in integral form:

r0n ¼ rn�e0x
n: ð15Þ

The connection between mass velocities follows immediately
from (14)

r0n�1u0 ¼ rn�1u: ð16Þ

Substitution of the relation (15) directly into the condition (10)
reduces Eq. (10) to the transformation

x0n ¼ ð1�e0Þx
n: ð17Þ

Trying to transform Eq. (11) into (12) we can obtain new equation
in which in addition to all terms of the equation (12) we have
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unfortunately additional term, namely,
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The additional term (18) vanishes for stationary flows as well as
for any flows with planar symmetry, and possibly for self-similar
motions.

Consequently, the transformation (8), (9), (15)–(17) between
the systems of Eqs. (1)–(4) and (6) is valid at least for stationary
flows, i.e. one can state that for cylindrical (n¼ 2) and spherical
(n¼ 3) symmetries, the stationary motion of the two-phase
medium is completely similar to the stationary motion of gas.

4. Self-similar motions with shock waves

The above-mentioned transformation allows one to use its
advantage for describing the self-similar problems. Let us apply
the method for solving the problem related to the strong explo-
sion stage in a two-phase medium.

Let a finite amount of energy E0 be instantaneously deposited
in an infinitely small volume of a two-phase medium. We restrict
ourselves to distances from the explosion source where the wave
can be considered as strong, i.e. when one can neglect the initial
internal energy of the medium by comparison with E0. We
consider the propagation of the shock wave moving with velocity

D¼
drf

dt
, ð19Þ

where rf is a place of the shock wave front, rf ¼ rf ðtÞ is a function
only of a time. Note that xf ¼ rf .

Let us define new dimensionless variables for equation
systems describing the two-phase flow (1), (3), (4)

P¼ u0p=D2, U ¼ u=D, V ¼ u=u0, m¼ x=xf ,

Z¼ r=xf , w¼ xf =t0D, z¼
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D2
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, ð20Þ

as well as gas (6)
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According to (15) we write
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At strong explosion in a two-phase medium the self-similar
motion is realized, whereas, the derivatives with respect to w are
equal to zero, and z¼ z0 ¼ �n=2 (see, for example, [3,6,7,10]). Then
we can rewrite the systems of equations for the two-phase
medium as follows:
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with boundary conditions at shock wave front
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and for the homogeneous medium (perfect gas) in the form
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with boundary conditions
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2
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:

For example, in Appendix B we prove the last equation in (23).
The transformation (8), (9), (15)–(17) is easy reduced to the

dimensionless form
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It turns out that for self-similar motion with shock wave (in
contrast to the stationary flow), the transformation between
systems (22) and (23) is not succeeded in finding. Anyway for
na1 there is the difference between system (22) and system
appeared from (23) by means of transformation (25). The trans-
formed system contains the additional term U0Z0ððZ0=ZÞn�1

Þ

dðZ=Z0Þn�1=dZ.
Using the point explosion as an example, we estimate the error

introduced by the additional term. The results of the calculations
for strong explosion are demonstrated in Figs. 1–4. We calculate

Fig. 1. The profiles of dimensionless velocity U. The solutions calculated by two

methods equal each other.

Fig. 2. The profiles of dimensionless density R¼ V�1. The curves calculated by two

methods coincide with each other.
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the dimensionless specific volume V, velocity U and pressure P by
two methods. First, the system of Eqs. (23) is directly solved at
some particular values e0. This is the exact solutions U, V, P. For
convenience we use the dimensionless density R¼ V�1 instead of
the dimensionless specific volume V. In Figs. 1–3 the variables U,
R, P are plotted by curves 1, 2, 3. Second, the variables U, R, P are
found by means of the transformation (25) of the solution U0, R0, P0

for perfect gas (24). The obtained then U, R, P are the approximate
solution of the equations system (23). The approximate solutions
are illustrated by curves 20, 30. In Figs. 1–4 the curves 1 relate to
gas (e0 ¼ 0, g¼ 1:4), curves 2, 20 and 3, 30 relate to two-phase
media with e0 ¼ 0:1, g¼ 1:1 and e0 ¼ 0:5, g¼ 1:005, respectively. It
is very important that complete agreement is observed for U, R

calculated by two methods, therefore, in Figs. 1, 2 the curves 20, 30

are not plotted, they are complete coincided with curves 2, 3,
respectively. While for the values P at na1 (see Fig. 3) the
distinction between exact solutions (curves 2, 3) and approximate
solutions (curves 20,30) are largest. We note that for curves 3, 30

the initial volume portion is e0 ¼ 0:5, i.e. one-half of an initial
volume is occupied by incompressible component. At small
g�151 almost all mass of the condensed phase is accumulated
near the front of shock wave (see Fig. 4).

Thus, since for a problem of strong explosion in gas the self-
similar solution is known in forms of the analytical dependencies
[3,10] and the tabulated data [12], one can obtain with certain
accuracy the solution for strong explosion in two-phase medium
with incompressible component. Moreover the solution obtained
in this manner has analytical dependencies on value of volume
portion of incompressible phase e. Hence, the influence of value e
on two-phase flows can be estimated through analytical depen-
dencies. The example of successful applying the analytical trans-
formation for estimating the velocity of shock wave propagation
in two-phase medium is presented in [8,9].

5. Conclusion

We suggest the transformation that enables one to carry over
with certain accuracy (for planar symmetry as well as for
stationary flows the transformation is exact) the known solutions
of gas-dynamic problems to the two-phase media with arbitrary
volume portion of incompressible components. This transforma-
tion is very important from the viewpoint of the study of the
multi-component media. Indeed, this transformation enables one
to obtain the solution of many problems for multi-component
media with incompressible phase, if there is the similar problem
solution for a homogeneous compressible medium. In this case it
is not necessary directly to solve the problem for medium with
incompressible component, and it is sufficiently only to transform
the known solution of the similar problem for a homogeneous
medium. Thus, the solutions of many hydrodynamic problems for
multi-component media with incompressible phase can be
obtained without solving the original system of equations. The
scope for the suggested transformation is demonstrated by
reference to the strong explosion state in a two-phase medium.
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Appendix A

In this appendix we reduce third equation in (1) to Eq. (11) for
adiabatic flow. If the wave propagates in an initial unperturbed
medium, then from (4) we have

pðu�e0u0Þ
g
¼ p0ðu0�e0u0Þ

g: ðA:1Þ

This relation provides us by derivative
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Finally, substituting (A.2) in third equation in (1), we obtain the
relationship (11).

Similarly one can prove that third equation in (6) is reduced to
Eq. (12).

Appendix B

Here we will prove that PðV�e0Þ
gmn ¼ const. Let us consider the

sequence of relations, taking into account (4) and (20),
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n
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Fig. 3. The profiles of dimensionless pressure P. Curves 2 and 3 are the exact

solutions. Curves 20 and 30 are the approximate solutions.

Fig. 4. The distributions of volume portion of incompressible component e in

shock wave.
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