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D I A G N O S I S  OF T H E  P R O P E R T I E S  

OF A S T R U C T U R I Z E D  M E D I U M  

BY L O N G  N O N L I N E A R  W A V E S  

V. A. Vakhnenko UDC 532.59:517.19 

It was traditionally believed that long-wave processes in inhomogeneous media can be simulated within 
the framework of a homogeneous medium. It is known [1-3] that, at the acoustic level, the structure of a 
medium for long waves can be taken into account by means of disperse-dissipative properties of a homogeneous 
medium. At the same time, the evolution of finite-amplitude long waves is directly affected by the medium 
structure, as is shown by a rigorous mathematical analysis using asymptotic averaging [4-6l. 

This paper proves that the effect of the structure on nonlinear long-wave perturbations is so significant 
that one can predict the properties of the medium from the features of evolution of the wave field. 

1. A s y m p t o t i c  A v e r a g e d  M o d e l .  Media with regular structures are elementary inhomogeneous 
media for which the effect of the structure can be analyzed. The mechanism of propagation of long-wave 
perturbations is studied for a periodic medium with equalization of stresses and mass velocities on the 
boundaries of adjacent components. It is assumed that the microstructural element of the medium is sufficiently 
large that the laws of classical continuum mechanics can be applied to it. The medium is barotropic. We 
consider media in a hydrodynamic approximation ignoring shear stresses. The specific volume V = p-1 and 
the sound velocity c are considered periodically varying properties of undisturbed media. 

One method of the averaged description of media of regular structure is that of asymptotic averaging 
[7, 8]. It is used to simulate long waves in compressible media [4]. Taking into account the well-known results 
for the case of plane symmetry [4-6], we derive an averaged system of equations for one-dimensional motion 
of arbitrary symmetry. 

The assumed equations of one-dimensional unsteady motion are the equations of motion for each 
individual component in Lagrangian variables: 

Or u V Or Ou / r x u - l O p  
- Vo' u = + Vo [ 7 )  0-7 = 0. (1.1) 

One can use the continuity equation in alternative form: 

OV _ cgr~-lu 
0t - v V ~  ~-~ = 0 .  (1.2) 

We use standard notation. The matching conditions are the equality of mass velocities and the equality of 
pressures at the boundaries of the components. For each component the equations of state are known: 

d.  = c2dp. (1.3) 

It is convenient to use dimensionless variables [9], in which case the resulting dimensionless equations do not 
differ in form from the assumed equations. Therefore, we shall assume that Eqs. (1.1)-(1.3) are written in 
dimensionless variables. 

An averaged system of equations for media with a periodic structure can be derived analytically. In 
the case of cylindrical (v = 2) and spherical (v = 3) symmetries the layers have the corresponding symmetry. 
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It turns out (as will be seen below) that the restriction caused by the periodical properties of the medium 
can be eliminated. 

Following the asymptotic averaging technique [7, 8], the spatial coordinate m = lV/Vo is split into slow 
s and fast ~ independent variables: 

m = s + ~ ,  0 0 e_ 1 0 
a m  = 0--; + 

The dimensionless structural period e = ~/A (the ratio of the structural period ~ to the wavelength A) 
is a small parameter. The solutions for r, p, u, and V are sought as series in powers of ~: 

~v(m, t) = (v)(0)(~,  t, ~) + ~(~v)(1)(s, t, ~) + ~2(rv)(2)(s, t, ~) + . . .  , 

v ( m , 0  = v(~ + ~v(~)(s ,t ,~)  + ~2v(2)(s,t ,~) + . . .  

The functions f(i)(~) are considered singly-periodic with respect to ~. 
Following the procedure described thoroughly for the case of plane symmetry in [5] in an approximation 

of the order of O(~-1), we obtain 

oplo) o. i ) ( r ~ ) ( ~  - O, = O, = (1 .4)  
O~ o~ 0~ 

Therefore, the mass velocity u (~ the pressure p(0), and the Eulerian coordinate (r~') (~ are independent of 
the fast variable ~. 

By way of example, we write the equation of momentum in an approximation of the order of O(e~ 

Ou(o) 
--~: v(rv~ O) OP(~ = O. (1.5) at + v(r~)(~ O ) Op(~) + " " O~ +"(r")(~ 0~ 

We now apply the averaging procedure, which is only possible in Lagrangian mass coordinates, since in this 
1 

case the period is independent of wave motion. By definition, (.) = / ( . ) d ~ .  Here we use the normalization 
0 

1 

condi t ion /d~  
0 

= 1. On the one hand, we have one of the desired equations 

Ou (~ v(r~)(0) Og(~ ) 
O--t- + = 0, (1.6) 

since (Op(D/O~) = 0 in view of the periodicity of p(1) with respect to ~. On the other hand, we obtain 
Op(1)/O~ = 0 by subtracting Eq. (1.6) from Eq. (1.5). Therefore, p(1) is also independent of ~. 

The remaining averaged equations are written in a similar way: 

O(r")(o) 
Os - (V(~ u(~ = Or(~ 

Ot ' 

Equation (1.2) has the form 

I(V(~ d a(vr176 /p- 

(1.7) 

(1.8) 

O(V(~ vc~(rV-1)(~176 
Ot as = o. (1.9) 

The nondependence of the variables on the fast coordinate in (1.4) means that u (~ = (u(~ p(0) = 
(p(0)), and r (~ = (r(~ Unlike these values, the specific volume Y(~ is a function of ~. System (1.6)-(1.9) 
is intergo-differential. Further we restrict ourselves to a zero approximation with respect to ~ and omit the 
superscript 0. 
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Equations (1.6)-(1.9) are derived for a rigorously periodic medium. However, one can show that for 
media with a quasi-periodic structure these equations are also valid. Indeed, the pressure p and the mass 
velocity u are constant over the entire period of the structure. On the large scale of s, the effect of perturbations 
is manifested itself in wave motion of the medium, while on the microscale of ~ the effect is uniform (wave-free) 
throughout the structural period of the medium. 

The behavior of the medium at the microlevel obeys thermodynamic laws only. At the macrolevel, the 
behavior is described by laws of wave dynamics (1.6) and (1.7) for the mean characteristics r, u, p, and (V). 
From a mathematical viewpoint in a zeroth approximation for e the period size is infinitesimal (e --* 0). This 
implies that the location of individual components in the period is of no significance. System (1.6)-(1.9) is 
invariant if the arrangement of the layers in the unit cell is changed or if the layers are split. Therefore, Eqs. 
(1.6)-(1.9) describe the behavior of any quasi-periodic (statistically inhomogeneous) medium that has the 
same mass content of components at the microstructure level irrespective of the location of the substance in 
the cell volume. 

In nonlinear waves, the individual components are variously compressed. The structure of the medium 
changes, and this eventually results in a change in the averaged characteristics of the medium that differs 
from the change in the characteristics of a homogeneous medium under the same loading. This is the effect of 
the medium structure on the wave motion, although the equations of motion (1.6) and (1.7) are written for 
the averaged r, u, p, and (V). 

As was noted in [5, 6], the structure affects the propagation of nonlinear long waves. The occurrence 
of nonlinear effects is due to the presence of the term (V2/c 2) in equation of state (1.8). Introduction of the 
effective mean speed of sound by the formula 

/ ~ V 2 ~ - i  
5 =  (1.10) 

reduces the system to the traditional form. It is obvious that 5 is not a mean characteristic, i.e., 6 2 # (c2). The 
structure of the medium makes a certain contribution to nonlinearity. Indeed, 5 is a function of pressure in the 
general case, although for each component the speed of sound can be independent of pressure [c # f(p)]. At 
the same time in the acoustic approximation, as was mentioned in [5, 6], the pressure- and mass-velocity fields 
in periodic and homogeneous media coincide under certain conditions of matching of the medium's properties. 

There are media in which V/c 2 does not change throughout the period. Under the action of wave 
perturbations, they behave as homogeneous media. The individual elements of the structure respond to the 
pressure change so that the relative structure remains constant, i.e., the ratio V(~, p)/V(( ,  p0) is independent 
of ~. The averaged values (V) and  (V2/c 2) can be written as (V) = V/c 2 (c 2) and  (U2/c 2) -- (V/c2)2(c2). The 
effective speed of sound (1.10) in this case is a mean characteristic: 5 2 = (c2), and, hence, the entire system 

of equations is representable in the mean variables u, p, (V), and 5 = ~ ( - ~ .  For such media, their structure 
does not manifest itself in nonlinear wave motion. 
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2. Diagnosis  of  a M e d i u m  by  Long  N o n l i n e a r  Waves.  The influence of the medium's structure 
on the wave field uf long-wave nonlinear perturbations is proved in [5, 6]. However, the question arises of 
whether the information contained in the wave field is sufficient to restore the structure of the medium. Thc 
answcr to this question turns out to be positive. Let us describe the method of determining the structure of 
the medium from the laws of motion of finite-amplitude pressure waves. 

Let us prove that the effect of the structure on nonlinear long-wave perturbations is so great that 
the evolution of the field enables one to determine the properties of the medium, namely, the dependence of 
V/c 2 on the fast variable, i.e., the distribution of the value V/c 2 on the period of the structured medium. We 
consider plane waves. Unlike in [5, 6], the requirement of agreement of speeds of sound in all components is 
not imposed. 

An important circumstance should be noted. Since in the asymptotic averaged model the structural 
period ~' is infinitesimal with respect to the wavelength A, the location of the structural elements in the 
period cannot be determined exactly in the proposed diagnosis method. Thus, two structures that differ in 
the functional dependence of V/c 2 on ~ (for example, as in Fig. 1) affect wave motion in the same way. 
Consequently, these two media cannot be distinguished by long waves. Bearing in mind this constraint, we 
shall further assume for definiteness that the dependence of V/c 2 on the fast Eulerian coordinate ( is a 
decreasing integrable one-to-one function on the segment ( E [0, 1], and beyond the segment it is zero. The 
variable ( is determined by the relation (0~/0()t  = p(~). The relation is analogous to the ratio between the 
commonly used Eulerian coordinate x and the Lagrangian mass coordinate m (cgm/cgx)t = p. 

Let us use the known fact from the probability theory [10]. The distribution function f (x)  (single- 
O~ 

integrable positive function) is expressed in terms of its central moments an = ] x"f(x)dx by means valued 

of inverse Fourier transform: 

f (x)  = F - l [  s a . i  " q" ".=o ~..] (x). (2.1) 

Let us consider the chain of transformations 
1 

o 

1 

( c ~ / pal( 
o 

OO 

= (v )  d(Vlc2) \c2J ed(Vl  = 
~ O O  ~ O O  

i.e., the central moment of tbe dependence of ( on V/c 2 is expressed in terms of (V(V/c2)"). Finally, we find 
a function that is inverse to the desired one: 

(n + 1)[(V) i"q" . (2.2) 

The coefficients (V(Vc-2) ") (n = 2, 3, . . . )  for this formula are easily calculated if the functional dependence 
of (V) on p or (V2/c 2) of p is known. They are sequentially determined from the recursive relation 

d(V(Vc-b") 
= -(n + l)(V(Vc-2)n+i), (2.3) 

dp 

which follows directly from the equation of state; (2.3) is the basic relation used in the new diagnosis method 
in which the properties of individual elements of a structurized medium are determined by means of nonlinear 
long waves. 

The proposed method involves finding the coefficients (V(Vc-2) n) of the power series, which can be 
determined from the laws of evolution of wave fields. The advantages of the diagnosis using wave action are 
particularly evident for media of complicated structure, including the environment. 
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The functional dependence of (V) on p can be determined in experiments on shock-wave propagation. 
As a result, tke shock-wave velocity in the Lagrangian mass coordinates D = ds/dt (D, kg/sec) and(or) the 
mass velocity ut, and also the pressure pl behind the shock wave are found. The quantity (VI) is calculated 
from the relations at shock discontinuity 

D = ~ / ( p ,  - p o ) / ( ( V o )  - ( V , ) ) ,  u ,  - uo  = ~ / ( p ,  - p o ) ( ( V o )  - ( V , ) ) ,  

which follow from the averaged equations. Measuring shock-wave parameters for different pressures pl we 
obtain the dependence (V) = (V)(p). Then the recursive relation (2.3)is used to find (V(Vc-2) n) for n/> 1. 

A self-similar rarefaction wave can be considered as a unique tool for determining the coefficients 
(V(Vc-Z)n). The self-similarity of motion of a rarefaction wave, as follows from (2.5) in [6], gives the 
propagation velocities ds/dt of individual parts of the wave profile at different pressures. This determines 
uniquely the dependence (V2/c 2) -- (V2/c2)(p), and the dependences of (V(Vc-2) n) for n >/2 are found from 
(2.3). We have the most accurate values of the coefficients at pressures at which the rarefaction-wave profile 
has the greatest inflection (see Fig. 1 in [6]), i.e., the perturbation is considerably affected by the structure. 
Therefore, in this pressure range the structure of the medium can be determined most exactly. 

3. A p p r o x i m a t i o n  of  t h e  M e d i u m  to be Diagnosed  by a L a y e r e d  M e d i u m .  Diagnosis of 
the properties of a structurized medium by long nonlinear waves is concerned with determining the values 
of (V(Vc-2) n) from experimental results. Naturally, the question arises of the accuracy of description of the 
structure of the medium by restricted series (2.2). Let us show that the partial sum of series (2.2) approximates 
the desired function ~ = ~(V/c 2) by a step function, i.e., the initial medium will be approximated by a layered 
one .  

We write a sequence of identities for an arbitrary integrable function: 

1 2 ~ r f ( - x ) = F t F t j , x , , , q , j , x  , [  f~'r ~l( ~]/ ~ = F  = 
"n=0 = " 

Here we used the well-known relations for the Fourier transform [11] and (2.1). Therefore, the arbitrary 
integrable function is representable as a series: 

oo 
f ( - x ) =  ~_, ~-. 5(")(z). (3.1) 

n-~0 

Let us consider the step function f l (x)  comprising N steps 

{ ~01, . . .  0 < :r ~ bl,  

f l (x)  = ~02, . . .  bl < x ~< b2, 
: "..  

~ON, ... bN_ 1 < z <~ bN. 

Using this function, we approximate the unknown function f(x). It is obvious that, increasing the number of 
steps N and selecting the values of qai and bi, one can approximate any integrable function f(x) by the step 
function fl  (x). It is convenient to use the form 

f , ( - x )  = ~ , [O(x+bl )  - O(x)l+~2[O(x+b2) - O(x+b,)]+. . .+qON[O(x+bN) -- O(x+bN-1)]. (3.2) 

We expand the Heaviside formula O(x + b) in its Taylor series expansion in the vicinity of point x: 

+ b) = e ( z )  + e(")(x) .  
n=l  

Equating functions (3.1) and (3.2) and assuming that the number of steps in the function fl(x) is infinitely 
great, we obtain 

oo t,n-t- 1 oo 

52 E 
b~ +' 

.=0 .=0 u 1)! 
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~(")(x) + . . . .  ~ -~v ~(")(x). (3.3) + ~ g  
(n + 1)! 

2 N - I  
This relation shows that if one uses the partial sum ~ (a,,/n!)~(")(z) on the right-hand side of series (3.3) 

and N first terms from the left-hand side, the desired function f ( z )  is approximated by the step function 
f l ( z ) ,  the number of steps being equal to N. In other words, if it is required to simulate the structure of the 
medium by means of N periodically repeated layers, one should know 2N - 1 moments of a , ,  i.e., the values 
of 

For convenience we expand (3.3). For this, we multiply it by x n and integrate over the entire x axis. We 
obtain a nonlinear system of equations with respect to unknowns b], b2,. . . ,  b/v, and ~2 ,~3 , . . .  ,~/v (~i = 1 
by virtue of normalization) 

~olbi + ~2(b2 - bl) + r - b2) + . . .  + r - bN- l )  -~ Otl, 

~lb 2 + ~2(b 2 - b 2) + ~3(b~ - b22) + . . .  + ~/v(b~v - b~,_l) = 2a2, (3.4) 

~ol b2N-, + ~2( b~W-1_ ol,2N-,,--)_t_~3L o 3`r2N-, -- b21q-1) +. �9 . + ~ g(  b2N g - '  -- b ~ - l l  ) = ( 2N  - 1)~2/v-1. 

If now hi is the partition of (V/c2)i,  . and ~i the partition of ~i, we obtain a system of equations for 
determining the structure of the medium. Solution of this system of equations provides information on the 
properties of the medium, i.e., V/c  2 in the period of the structure is found as a step function. 

Note a particular case of a periodic medium for which the value of V/c  2 is constant at the period. The 
propagation of long nonlinear waves in this medium, as was mentioned above, does not differ from that in a 
homogeneous medium. The same result follows from system (3.4). Indeed, for a homogeneous medium, the 

moments or, = / x n - ] d x  = 1In. Therefore, only unities are on the right-hand side of the system. Evidently, 
- - O O  

the solution of the system is of the form bl = b2 . . . . .  bg = 1 and ~1 = 1 (any ~i for i /> 2), and it 
corresponds to a layered medium for which V/c  2 ~ f(~); in particular, this medium can be homogeneous. 

By way of example, Fig. 2 presents the calculation results for a layered medium that describes the 
preassigned medium V/c  2 = 0.2+0.8(1 -~)2 most adequately. This implies that 2 N - 1  averaged characteristics 
(V (Vc-2 )  ") correspond to N layers in the medium diagnosed and in the layered medium. 

Thus, based on an asymptotic averaged model for a structurized medium, a new method for diagnosing 
the properties of the medium by long nonlinear waves is proposed. 
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