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ASYMPTOTIC JUSTIFICATION
OF THE LYAKHOV MODEL
FOR MULTICOMPONENT MEDIA

V. A. Vakhnenko, V. A. Danilenko, and V. V. Kulich UDC 532.59:517.19

The Lyakhov model for multicomponent media, whose rigorous mathematical justification is
obtained using an asymptotic averaging technique is considered. It is shown that the nature of
long-wave action differs at different scale levels. At the microlevel the behavior of the medium
obeys thermodynamic laws, while at the macrolevel it manifests itself as wave motion for average
characteristics.

The Lyakhov model has been used for several decades to describe wave processes in explosions in the
ground and pcrous multicomponent media {1-3]. But the fact that the model uses the equations of motion of
a homogeneous medium without rigorous proof necessitates its justification.

The Lyakhov Model. For definiteness, let us analyze the Lyakhov model [3] using as an example
water-saturated ground containing three components: air (z = 1), water (i = 2), and solid matter (i = 3). The
components are considered barotropic. We consider only long-wave disturbances, i.e., the characteristic size of
the microstructure ¢’ is considered small compared with the wavelength A. In this model it is assumed a priori
that one average pressure py, one velocity up, and one specific volume vy, are achieved in each macrovolume.
The equations of motion of the ground are written as for a homogeneous medium. In a Lagrangian system of
coordinates (/,¢) for one-dimensional motion they are written as
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where r is the Eulerian space coordinate; v = 1, 2, or 3 for plane, cylindrical, or spherical symmetry

respectively; subscript 0 denotes the initial state.
Equations (1) are supplemented by the equations of state [3]
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Here a;, pip = vi’ol, and c¢;g are the volume concentration, density, and sound speed of the ith component with
the initial pressure pg; 7; is the adiabatic exponent in the equation of state of the ith component; n is the
coefficient of volume viscosity of the ground.

System (1)—(4) describes the evolution of long-wave disturbances in multicomponent media in a
hydrodynamic approximation. Equation of state (2) follows from semi-empirical considerations of the medium
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and the properties of its components (3]. The solid matter and the liquid are described by the Tate equilibrium
equation, and the gaseous component, by a dynamic equation of state that takes into account the strain rate
of the ground. Following (3], at the initial moment of loading the gas is incompressible. This means that the
frozen sound speed cy; of the gaseous component in the ground is an infinite quantaty:

cf1 = oo. (5)
The low-frequency sound speed in the gaseous component ¢ is equal to the sound speed in air.
Asymptotic Averaged Model. There is a class of mathematically rigorous asymptotic methods for
averaged description of materials of a regular microstructure, including the asymptotic averaging technique
(4, 5. It is used to simulate long waves in compressible media [6]. In contrast to the well-known results for the
plane case [6-9], we derive an averaged system of equations for one-dimensional motions cf any symmetry.
The basic hydrodynamic equations for unsteady one-dimensional motions of the medium should be

written in the Lagrange variables. In this system the microstructure does not change with wave motions. The
initial equations are the equations of motion for an individual component:
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The continuity equation can be written in alternative form:
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Each component in an elementary cell of the inedium is considered relaxing and is described by the
dynamic equation of state (8, 9]

dp = c;2dp — 17 Yp = pe)dt, (8)

were cy is the frozen sound speed; 7, is the characteristic relaxation time of an element of the medium. The
equilibrium density p. is related to pressure by the equilibrium equation of state
P
pe = PO =/ce"2dp,
Po
where ¢, is the equilibrium sound speed.
For a rigorous mathematical derivation of the averaged system of equations let us assume that the
medium is layered and has a periodic structure. Naturally, in the case of cylindrical and spherical symmetries,
the layers have the appropriate symmetry.

We consider long-wave disturbances and impose the conditions of consistency of mass velocities and
stresses at the layer interfaces:

w=0, [p]=0. (9)

It is convenient to use dimensionless variables [10], for which the resulting dimensionless equations will
not differ in form from the initial equations. Therefore, we consider relations (6) and (7) to be written in
dimensionless variables.

According to the asymptotic averaging technique [4, 5], the spatial mass coordinate m = 1"/vg
decomposes into slow (s) and fast () independent variables:
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The dimensionless period of the structure € = €'/ is a small parameter. The solutions r*, p, u, and v
are sought in the form of series in powers of ¢:

Fimat) = (1) O(s,1,6) + ()W (s, £,6) + ()P (s 1,8 + .
v(m,t) = v%(s,t,6) + 6v(1)(s,t,§) + 620(2)(5, t,€)=....

177



The functions v({¢) are considered i-periodic in €.
Following the procedure described in detail for the plane case in [9], for the order o(¢™!) we obtain
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Consequently, the mass velocity ul®, pressure p(®), and Eulerian coordinate (r*)(®) are independent of
the fast variable €.

For the order o(¢?) we have
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Since (9p(1)/0¢) = 0 in view of the periodicity of p() with respect to £, averaging over a period in the
Lagrangian mass coordinates (-) = [d¢, we have one of the desired equations:
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On the other hand, we obtain 9p()/d¢ = 0 by subtracting Eq. (12) from (11). Therefore, p() is also
independent of £.

One can easily write the remaining equations in averaged form:
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Equality (7) has the form
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Unlike the quantities u(®), p(®, p(1) and r(®) the specific volume v(%) is a function of €. System (13)-
(15) 1s integrodifferential. Below, we shall restrict ourselves to a zeroth approximation with respect to ¢ and
omit the superscript 0.

It should be noted that the load at the level of the medium’s microstructure is wave-free, since pressure
and mass velocity are independent of ¢. The behavior of the medium at this level obeys only thermodynamic
laws. At the macrolevel, the state of the medium is described by the laws of wave dynamics for average
characteristics. At this level of hierarchy, Eqs. of motion (13) and (15) remain unchanged if one changes the
arrangement of the layers in an elementary cell or splits them. Thus, relations (13)—(15) describe identically
the behavior of any quasi-periodic (statistically nonuniform) medium that has the same mass content of
components at the microstructure level regardless of the matter location in the cell. '

Comparison of the Models. Let us compare Eqgs. (1) and (2) of the Lyakhov model with the
averaged Eqgs. (13)—(15). In the general case, an elementary cell can contain a set of many layers of different

components. In a layered medium the specific volume distribution v = v({) in an elementary cell is a step
function and hence

1 3
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where B; is the size of the component in a period in the scale of the fast variable. The quantity B; is the mass
content of the component and a structural characterisiic that does not change with wave motions.

178



In the Lyakhov model for a specific volume, formula (3.3) from (3] is valid:
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One can easily see that there is a relationship between «; and f;:
VLo
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Hence it follows that in the asymptotic averaged model the specific volume (16) averaged over the structure
period is the specific volume (17) defined by Lyakhov as
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In averaged Eqgs. (13) and (15) the pressure p and the mass velocity u remain unchanged over the
structure period. Consequently, Eqgs. of motion (1) coincide with (13) and (15). In this case, s = {¥ /vy should
hold. Thus, the assumption that in the Lyakhov model the pressure p; and the mass velocity uy are average

quantities has received a rigorous proof. Now the subscript L in (1)-(4) can be omitted.

Let us compare Egs. of state (2) and (14). We write (14) in a form that is convenient for comparison:
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The left-hand sides of (2) and (19) coincide. Compare the coeflicients of dp/dt. The dependence o(p)
can be written with allowance for (18) as
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The Lyakhov model uses a definite relationship between the pressure and sound speed components
given by the Tate equation. In the asymptotic model this dependence remains arbitrary. If we now use the
relation

oi i ! .
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and take into account the condition of air incompressibility (5), the coefficients of dp/dt in (2) and (19)
coincide.

Let us simplify ¢ in (4) using (18):
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The dependence pe; = pe1(v1) is the equilibrium equation of state of the air in the ground, i.e., the
equation of state of free air. Finally the second term on the right-hand side of (2) becomes
(p — per)ea/n.

Now we can easily show that the right terms in (2) and (19) coincide, if we assume that only the
gaseous component relaxes, i.e.,

Cfl # Cel, sz = Ce2, Cf3 = Ce3, (21)
and there is a unique relationship between the relaxation time 7,7 and 7
2
v
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Equations (2) and (19) coincide if conditions (5) and (20)-(22) are fulfilled.
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Conclusion. The asymptotic averaged model (13)-(15) describes waves in media that can have any
number of relaxing components [arbitrary distributions of v(¢) and 7-({) in an elementary structure cell], with
arbitrary dependences of sound speeds on pressure. A particular case of this model 1s the Lyakhov model, in
which only one (gaseous) component, which is incompressible at the initial moment of loading, relaxes and
the sound speeds are definite functions of pressure. The Lyakhov model is of an asymptotic nature.

This work was partially supported by the International Science Foundation (Grant No. UAE000).

REFERENCES

1. G. M. Lyakhov, “Shock waves in multicomponent media,” [zv. Akad. Nauk SSSR, Mekh. Mashinostr.,
No. 1, 34-56 (1959).

2. G. M. Lyakhov, Fundamentals of Dynamics of Ezplosion Waves in Soils and Rocks [in Russian],
Nedra, Moscow (1974).

3. G. M. Lyakhov, Waves in Grounds and Porous Multicomponent Media [in Russian], Nauka, Moscow
(1984).

4. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media {in Russian|, Nauka,
Moscow (1984).

5. E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, New York, Springer—Verlag
(1980).

6. N. S. Bakhvalov and M. E. Eglit, “Processes in periodic media that cannot be described in terms of
average characteristics,” Dokl. Akad. Nauk SSSR, 268, No. 4, 836-840 (1983).

7. V. A. Vakhnenko, V. A. Danilenko, and V. V. Kulich, “Wave processes in a periodic relaxing medium,”
Dokl. Akad. Nauk Ukr. SSR, No. 4, 93-96 (1991).

8. . V. A. Vakhnenko, V. A. Danilenke, and V. V. Kulich, “Averaged description of shock-wave processes
in periodic media,” Khim. Fiz., 12, No. 3, 383-389 (1993).

9. V. A. Vakhnenko and V. V. Kulich, “Long-wave processes in a periodic medium,” Prikl. Mekh. Tekh.
Fiz., No. 6, 49-56 (1992).

10. N. S. Bakhvalov and M. E. Eglit, “On the propagation velocity of disturbances in microinhomogeneous
elastic media with low shear elasticity,” Dokl. Ross. Akad. Nauk, 323, No. 1, 13-18 (1992).

180



