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Barotropic periodic relaxing media are modeled by averaged
simultaneous equations of zeroth order in the period of the
structure. Generally, these equations are intergo-differential
and cannot be reduced to equations in averaged characteristics.
In the case of low-frequency perturbations the equation for the
averaged bulk viscosity of such media is deduced and solved to
yield a simple wave-type expression. An evolution equation is
derived with due regard for weak structure-induced
.nonlinearity. It is suggested that the medium structure be
ascertained by means of moderate pressure waves. The averaged
equation in a slowly changing variable is isolated invoking
Fourier series and piecewise constant functions of a special
form. Numerical algorithm was so elaborated that the
integration pitch was not limited by the microstructure size.
The results of calculations of self-simulating rarefaction
waves are presented.

The modern experimental techniques offer a means for studying the
internal structure of a shock-compressed medium. A native medium is
a complex inhomogeneous system with hierarchic size-distribution of
structural elements [1~4]. Macroscopic modeling presumes averaged
description of elements occupying the lower "footsteps of the scale
of ranks" [5,6]. The multitude of phenomena occurring at still
lower hierarchic stages can be modeled within the framework of the
relaxation approach [7].

Propagation of long wavelength perturbations over an inhomo-
geneous medium is studied using a periodic system as an example.
The elements of the microstructure are assumed large to such an
extent that they obey the classical laws of continuum mechanics. In

the Lagrangian frame of reference, one-dimensional motion of a

536

537
structural element is governed by equations

av du du op

— + — =0 . (1)
at am at am
Matching is done by equating the mass velocities and the pressures

at the element boundaries. The relaxation effects are allowed for

by choosing the dynamic equation of state
dp = cg”2dp - t7l(p ~ p,)dt , (2)

substantiated within the thermodynamics of irreversible vﬁoommmmm
[{7]. Here T is the relaxation time, and ¢, and c, are the
equilibrium and frozen sound speeds. The other notation is

conventional. The equilibrium equation of state is assumed known

p
Pe — Pp = .T.“-N% )
Po

where subscript "0" refers to the initial state.

When studying waves propagating over periodic media by
distances far exceeding the structure period, €, the equations of
motion are virtually not amenable to numerical integration. One way

of exploring inhomogeneous media consists in asymptotic averaging
of equations with fast-oscillating coefficients [5,6]. According to
this method, the spatial coordinate is decomposed into two

components, slow s and fast §

a a a
m=s+ e, — = — + gl
ém 8s &

Dependent variables are expanded in a power series in the structure

period, €, e.g.

plm,t) = p'@(s,t,€) + ep'V(s,t,€) + 2p@ (s,t,€) + ...

Functions p{1} are supposed to be single-period with respect to £.

The structure period is invariant only in the Lagrangian frame of
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reference, which permits one to average the above equations of
motion. Integrating the equations which involve e to the zeroth
power, over the structure period, one arrives at the averaged set

[8,9]

a<y 0> 8u (0} au (o mvﬁov
S —— =0, + =0, (3)
at ds at ds
-1
p
dp d
Wo> - <VO> = <Wglre2— + .—Oolmav 1+ | (VO)- 10 >, (4)
dt . dt
Po
1
Here <...> = %H...uam symbolizes averaging over the structure

o]
1

period, where £ is subject to the normalization condition %&m = 1.
o

The asterisk in (4) implies that the d/dt operator is open. In what

follows, we shall restrict our consideration to the zeroth

approximation, and superscript "0" will be omitted.

Pressure p and awwm.<mpooMﬁ< u were proved to be independent of
the fast variable &, which cannot be said about the specific volume
V. The averaged simultaneous equations (3)-(4) are integro-
differential, and in the general case cannot be reduced to averaged
characteristics.

Now we describe one possible way of so reducing an equation
that all the sought-for functions depend only on the slow variable
and time {9,10). The £-dependent functions are expanded (e.g., in
Fourier series) in terms of basis fast-oscillating functions on an
interval equal to the structure period. Invoking equation of state
(2) and relationship pV = 1 facilitates application of the series.
Indeed, equation of state (2) represents the sum of the products of
no more than two functions depending on €. As a result, the initial
equations can be reduced to those in coefficients of series, which

are the functions of s and t. Schematically, these equations can be

539

specified as

o«
oy s = B
(e ~ Pyt M [leg2)y(x ) (p “Po)+ {1 . (pos- Pn)] =0
n=-0
4]
Y (paVendi = 8y » k=0, £1, 42,
n=-0
Here the kth terms are the coefficients of the appropriate
expansions of functions p, p, V, Vo, ¢2, c¢.-2, and T-1
’ e 0

Therefore, the integration step is restricted by the perturbation
wavelength rather than by the structure period. Thus, the main
computational problem associated with the smallness of the integ-
ration step is obviated, and the equations of motion can be solved
over a large region of wave propagation within a reasonable time.

If the results \om computations are to be compared with the
experimental data, the equations are conveniently specified in the
Euler coordinates, in which case the microstructure dimensions are
variable, and hence, the asymptotic averaging technique proves
impractical. Yet, Egs.(3) derived in the zeroth approximation with
respect to € and expressed in terms of averaged characteristics p,
u, and <V>, can be recast in the Euler coordinates. To do this, we
deduce a relationship between independent variables of the Euler

(x,tg) and Lagrangian (s,t) frames of reference

x =x(s,t) , tg=1t. (5)

Of importance is the fact that in the zeroth approximation with
respect to € the particle velocity is constant throughout the
structure period, and hence, it is justifiable to introduce the
notion of an average particle trajectory. Coordinate x of thé

specific particle (i.e. its trajectory) varies with time as

(8x/8t), = uls,t)

Apart from that, s and x vary simultaneously, i.e. transformation

(5: can be specified in the following differential form
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dx = Ads + udt, tg =t (6)

From physical considerations, the particle location is unambigu-

ously determined by the particle itself and time. Mathematically
this implies that dx in (6) is the exact differential, and

therefore

dA/8t = du/ds
This condition is true if A = <V>, since in this case it transforms

to the continuity equation (3).
Thus, the relationship between the Lagrangian and Euler

coordinates reads
dx = <V>ds + udt , tg =1
In the Euler frame of reference Egs.(3) assume the form

a<y>-1t  Ju<y>1 du mc mv
i =0, — +u—+<V>—=0. (7)

Aty 8x dtg ax 8x

Taking the size of an elementary cell in the Euler frame of

reference as X;. and invoking the normalization condition, one

obtains
1 Xy Xy
<> = % V(£)dE = .—<b\max = x,/€ = xn\.%bnx,u p1
0 0 0
Hence, in the Euler frame of reference p = <y>-1 is the mean

density. It is this quantity which is measured experimentally.

Meanwhile, the mean values of p and u are identical in the both

frames of reference.

Now we explore certain “average" properties of acoustic waves
propagating over a periodic relaxing medium. The variables will be

sought for in the form

p=pg*tp ,p=ptp V=Vt V',

where p’, p’, and V' are the increments in pressure, density, and
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specific volume in the acoustic wave. In a linear mvvﬂoxwawnMOS the
set of averaged equations (3)-(4) assumes the form
av’>  8u du ap’

-—=0, T+ &
at as ot e (8)

v ) c. "2 + T, m2d/dt
V> =<V —m8m —  >p
o P
1 + zd/dt S
In many instances, small perturbations of pressure propagate
similarly in periodic and homogeneous media. Now we analyze some of
these instances. In a nonrelaxing periodic medium, equation of

state (4) reduces to
d<V> = —<V,2/c2>dp . (10)

Equations (8),(10) are expressed in terms of averaged characte-
ristics. When Eqs.(8,10) are compared with initial equations for
homogeneous medium, it is apparent that small perturbations of
pressure in periodic and homogeneous nonrelaxing media behave simi-
larly, on average, provided V,2/c? = <WV2/c2>.

In the special case of a periodic medium involving two compo-
nents, one of which relaxes, small averaged perturbations of pres-
sure propagate in the same way as in a homogeneous relaxing medium,
if the consistency conditions, V,2/c,2 = <Vg2/c2>, Vy2/c2 =
WVg2/ce?>, T = 1y, are true [9].

ZOme<mﬁ. propagation of low-amplitude waves in a periodic
medium with a countable number of relaxing components is similar to
that in a homogeneous medium with the same number of independent
relaxation processes. The similarity of small perturbation propaga-
tion over periodic and homogeneous media was verified numerically
[8,9].

In what follows, only nonrelaxing systems will be considered,
and no limitation will be imposed on the perturbation amplitude.

With the effective mean sound speed specified as

& = (<V>2/<V2/c2>)1/2
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the equation of state transforms to

dp = ¢-%dp
The above relationship together with equations of motion (3) (or
(7)) make up a set of equations 1Iin conventional notation. The
effective sound speed, c¢, is different from both the mean velocity

<c> and <c?>172, i.e. for nonrelaxing media, too, these equations

cannot be expressed in terms of averaged characteristic.

P/Pg
10 r
rvu —
{ 5
g 0 20 7
FIGURE 1. ,mmwmuw.yaiwﬂum rarefaction waves: 1 - homogeneous

medium, or ¢ /c, = %mn 2, 3 - periodic media, c¢;/c; = {275 (2
and 5{2 (3). .

Simultaneous equations (3) and (10) are hyperbolic. In the

Lagrangian frame of reference characteristic equations assume the

form

ds/dt = <y2/c2>-1/2 (11)

for these equations, quantities
Iy =u ¢ .T_\N\QNVS% , (12)

referred to as Riemann invariants, remain unchanged under trans-
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formation of the coordinate system.

The medium structure affects the propagation of a simple high-
amplitude wave even in the limit of long wavelength perturbations.
Equations (11), (12) involve nonlinear term <V2/c2> which vamzaw
on the pressure and medium structure.

Now we analyze nonlinearity introduced into the wave motion by
the medium structure and deduce the evolution equation allowing for
a weak noniinearity. To within the second-order terms, the functi-
onal dependence of the mean specific volume on the pressure incre-

’

ment, p’, can be represented by the series

d<v> 1 dxw>
pl 4 - — U.N

<V>(p) = <Vp> +
dp 2 dp?

Then the set of equations (7) can be written as (subscripts "0" and
"E" are omitted)
du Ve ap’ 1 d2<V> 8p’? du ap’

W>— + <=> - - — =0, — +<V>— =0
8x c2 at 2 dp? at at ax

The evolution equation in variable p’ assumes the form

a2p’ V2 82p’ 1 d2<y> g2p‘2
T2 * s =0. (13)
ax? c® 8tz 2 dp2 5t

<V>2

Consider waves propagating unidirectionally. To within the afore-
said accuracy,
<V2/c2>172 g 8 8

—_t — =2 —
V> at 8x ax

Factorization of Eq.(13) yields

<W2/c2>172 g a 1 V2 _ d=v> ap’
_—_— - —|p’ - M <—> —— p'— =0

<V> at  ox c? dp? ax

The nonlinearity factor, o, associated with the periodicity of the

medium (¢ # f(p)) can be specified as
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H E QNQVE:,r@ <u<m|
Xp = = Wr<—>"? = = <W>c—><—>T?
2 o2 dp? dp c* 2

Here o is always > 0O, whence, in particular, it follows that no
rarefaction shock wave can arise. In a homogeneous medium, dc/dp =
0 and o, = V/c. By the way, media in which V/c? remains constant
within the structure period behave in the same way as homogeneous
systems, because & = <c2>1/2 is the averaged characteristic. Hence,
in this case the entire set of equations can be expressed in terms
of averaged variables.

Nonlinearity introduced by term <V2/¢2> is most conveniently
studied in media where the sound speed is pressure~independent. The
role of nonlinearity was revealed by comparing self-simulating
waves propagating over homogeneous and periodic media. The pressure
profiles formed in the periodic two-component medium (k = 0.5;
V,/V, = 2) upon withdrawing a piston at a constant rate, are illus-
trated in Fig.1 as dimensionless dependences of pressure p/p, on
the Lagrangian mass coordinate n = s/t, (py/<Vy>)1/2 (1, is the
characteristic time). To correlate the results obtained for various
media, the variables were normalized to the averaged specific
volume and a small perturbation velocity. In the space of dimen-
sionless variables this implies that at p = p; the pairs of quan-
tities <V> and <V2/c2> for these media are identical. The results
of numerical calculations are inaccurate because of the bend in the
pressure profile at the rarefaction wave ends, for which reason
they are inconsistent with their analytical counterparts.

In the limit of high pressures the slope of the curves tends to
constant <c2>-1/2, In the specific case of media with &-independent
V/c2, the profiles of self-simulating rarefaction wave will exhibit
an extended straight segment, as they do in a homogeneous medium
(curve 1 in Fig.1). Hence, in this respect periodic media are no
different from homogeneous ones. In other periodic media the rare-
faction wave profiles depart from the linear one. The parameters of

the media were so selected that at p 5 w, their averaged characte-

ristics <c2> were the same and curves 2 and 3 had identical slopes.
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At moderate pressures, curves 2 and 3 diverge, which points to an
appreciable effect of inhomogeneities.

So, the medium periodicity generally makes itself evident
during wave propagation. The wave profiles carry much information
about the wave structure. Following the wave evolution permits, to
a certain extent, unraveling the wave structure [10]. However, it
should be remembered that in the long wavelength model the
structure period is infinitely small, and hence, the exact location
of the structural elements on this interval (period) is unknown.
Foy convenience, the V = V(&) function 1is assumed decreasing,
integrable, and one-valued. If the sound velocity is the same all
over the periodic medium and constant, the reciprocal of the
sought~for £(V) function can be derived by applying the inverse

Fourier transform [10]}

2 <yn+t>
£E() = F1 —— ifg™| (V)
M (n + 1)
n=0
Coefficients <V/™> (n = 3,4,...) appearing in the above equation are

easily estimated, provided the p-dependence of <V2> (e.g., in the
self-simulating rarefaction wave) is known. They are calculated by

the recurrent relationship

d<yn+l> <yn+2y
IIMMII.M -(n + HVIMMWI
which stem directly from the equation of state. As noted above, the
mean value of <V> in the Euler frame of reference is inferred from
the density of the smmwcs. Thus, the medium structure is determined
to within the specified accuracy.

Exact mathematical modeling of a native periodic medium
discloses nonlinear effects associated with the medium structure,
which show up during propagation of long high-amplitude waves and

can serve as a diagnostic tool for unraveling the medium structure.



546

REFERENCES

1.

10.

G.M.Lyakhov, Volny v Gruntakh i Poristykh Mnogokomponentnykh
Sredakh (Waves in Grounds and Porous Multi-Component Media},
(Nauka, Moscow, 1982).

V.N.Rodionov, I.A.Sizov, and V.M.Tsvetkov, Osnovy Geomekhaniki
(Fundamentals of Geomechanics), (Nedra, Moscow, 1986). )
M.A.Sadovskii, L.G.Bolkhovitinov, and G.P.Pisarenko, Deformi-
ruemost’ Geofizicheskoi Sredy i Seismicheskili Protsess
(Deformability of the Geophysical Medium and Seismic Process),
(Nauka, Moscow, 1987).

V.A.Danilenko, Doklady AN Ukrainy, No.2, 87 (1992) (in Russi-
an).

N.S.Bakhvalov and G.P.Panasenko, Osrednenie Protsessov Vv
Periodicheskikh Sredakh (Averaging of Processes Occurring in
Periodic Media), (Nauka, Moscow, 1984).

E.Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory,
(Springer, Heidelberg, 1980).

V.A.Vladimirov, V.A.Danilenko, and V.Yu.Korolevich, Nelineinye
Modeli Mnogokomponentnykh Relaksiruyushchikh Sred. Dinamika
Volnovykh Struktur i Kachestvennyi. Analiz. Preprint (Nonlinear
Models of Multi-Component Relaxing Media. Dynamics of Wave
Structures and Qualitative Analysis. Preprint), (Institut
Geofiziki, Kiev, 1990).

V.A.Vakhnenko, V.A.Danilenko, and V.V.Kulich, Doklady AN USSR,
No.4, 93 (1991) (in Russian).

V.A.Vakhnenko, V.A.Danilenko, and V.V.Kulich, Elementy Teorili
Samoorganizatsii I Nelineinykh Volnovykh Protsessov v
Prirodnykh Sredakh so Strukturoi. Preprint (Elements of Self-~
Organization Theory and Nonlinear Wave Processes in Structured
Native Media. Preprint), (Institut Geofiziki, Kiev, 1991)}.
V.A.Vakhnenko and V.V.Kulich, Osrednennye Uravneniya Volnovoi
Dinamiki Periodicheskoi Relaksiruyushchei Sredy. Preprint
(Averaged Equations of Wave Dynamics of a Periodic Relaxing
Medium), (Institut Geofiziki, Kiev, 1991).



