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Abstract

The averaged systems of hydrodynamic equations for a structured medium in the Lagrangian and the Eulerian
coordinates are discussed. In the general case, the equations cannot be reduced to the average hydrodynamic terms.
Under propagation of long waves in media with structure, the non-linear e!ects appear and they are analyzed in the
framework of the asymptotic averaged model. The heterogeneity in a medium structure always increases the non-linear
e!ects for the long-wave perturbations. A new method for diagnostics of the properties of medium components by long
non-linear waves is suggested (inverse problem). The mass contents of components in the media can be determined by this
diagnostic method. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Traditionally, it was considered that in hetero-
geneous media with wavelength appreciably ex-
ceeding the size of the structural heterogeneities,
the perturbations propagate in the same way as in
homogeneous media [1}3]. In the framework of
continuum mechanics [4,5] the known idealization
of a real medium as homogeneous has enabled
considerable success for describing the wave pro-
cesses (see Ref. [3] and references therein). Recent
experiments have shown that it is necessary to take
into account the inner structure of a medium under

propagation of the non-linear wave perturbations
[6}9]. The information contained in the wave "eld
evolution can be used as a tool when we want to
establish the properties of the medium itself as well
as to study the e!ects on various objects. The rigor-
ous mathematical analysis by the method of
asymptotic averaging [10,11] shows that the struc-
ture of the medium a!ects the non-linear wave
processes even for perturbations with a wavelength
j that many times exceeds the size of the heterogen-
eity e [11}14] of the medium. The heterogeneous
medium can be modeled by a homogeneous one in
an acoustic approach only [14]. In this work, using
the previously suggested asymptotic averaged
model of the heterogeneous media, we develop the
further analysis of a weak non-linearity of the me-
dium with the structure [14] under the condition of
the propagation of long wavelength perturbations.
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The e!ect of the increase of non-linearity in the
heterogeneous media in comparison with the ho-
mogeneous media for the long waves is found. It
forms the basis of theoretical fundamentals of a di-
agnostic method to de"ne the properties of hetero-
geneities in a medium by the long waves of "nite
amplitudes.

2. Asymptotic averaged model for structured
medium

In this section we shall present brie#y the asymp-
totic averaged model for structured medium
developed in Refs. [12}14] in order to explain
the e!ect of an increase of the non-linearity in
the case of long waves propagating in such a
medium.

The long non-linear waves have been investi-
gated by using as an example a medium with regu-
lar structure. It is supposed that the microstructure
elements of the medium e are large enough that it is
possible to submit to the laws of classic continuum
mechanics. The analysis is based on the hydro-
dynamic approach. This restriction can be imposed
for the modeling of non-linear waves in water-
saturated soils, bubble media, aerosols, etc. The set
of acceptable media could be extended to solid
media where the powerful loads are studied in the
condition that the strength and plasticity of the
material can be neglected [15]. In the hydro-
dynamic approach we have considered the media
without tangential stresses while there are equali-
ties of the stresses as well as of mass velocities on
boundaries of neighboring components. Also, we
assume that the medium is barothropic. Individual
components of the medium are considered to de-
scribe by the classical equations of hydrodynamics
(Lagrangian mass coordinates)

L<
Lt

!

Lu

Lm
"0,

Lu

Lt
#

Lp

Lm
"0

and state equations

dp"c2do.

The notations are as generally accepted. Condi-
tions for matching are the equality of the mass

velocities and of pressures at boundaries of com-
ponents. In contrast to the previous work [14],
we have restricted ourselves to the consider-
ation by the planar waves in a non-relaxing
medium.

We study here a heterogeneous medium by
a method of the asymptotic averaging [10,11]
which is the combination of a multiscale method
with a space averaging method. According to this
method, the mass space coordinate m can be split
into two independent coordinates: slow one, s, and
fast one, m. Then

m"s#em,
L

Lm
"

L
Ls

#e~1
L
Lm

.

The slow coordinate s corresponds to a global
variation of the wave "eld and it is a constant over
the whole period of the structure of the medium
while the fast one m traces variations of the "eld
within the structure period. The dependent func-
tions are presented in the form of power series over
the structure period e. For example,

p(m, t)"p(0)(s, t, m)#ep(1)(s, t, m)

#e2p(2)(s, t, m)#2 .

Functions p(i), u(i), <(i) are considered as the one-
period functions over m. The period remains con-
stant only in the Lagrangian mass coordinates that
permit averaging. It was shown in Refs. [12}14]
that in the zero approximation by e/j, pressure
p(0) and mass velocity u(0) are constant within
the period (i.e. they do not depend on m) but this
is not correct for the speci"c volume <(0)"<(0)(m).
The independence of a variable on a fast coordinate
m means that u(0)"Su(0)T and p(0)"Sp(0)T.

After integrating over the structure period of the
equations containing the value of zero order of
e only, we obtain the averaged system of equations
[12}14]

LS<(0)T
Lt

!

Lu(0)

Ls
"0,

Lu(0)

Lt
#

Lp(0)

Ls
"0, (1)

dS<(0)T"!S(<(0))2/c2Tdp(0). (2)

We de"ne S ' T,:1
0
( ' ) dm and then normalize such

that :1
0
dm"1. We are restricted hereafter to zero
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approximations, and superscript (0) can be omitted.
Choosing the wavelength j large enough we can
always reduce to zero the e!ect from other approxi-
mation terms.

The averaged system of Eqs. (1), (2) is integro-
di!erential and in the general case is not reduced to
the averaged variables p, u, S<T. Consequently,
the dynamic behavior of a medium cannot be
modeled by means of a homogeneous medium even
for long waves.

It is noted [14] that on the microlevel the action
is statically uniform (waveless) because the pressure
and the mass velocity do not depend on m. On this
level the behavior of the medium adheres to the
thermodynamic laws only. The macrolevel motion
of the medium is described by the wave dynamic
laws for averaged characteristics. On this hierarchic
level Eqs. (1) and (2) do not change their form if, in
an elementary cell, the components are broken
and/or their location is changed. This means that
Eqs. (1) and (2) de"ne the motion of any quasi-
periodic (statistically heterogeneous) medium.
Thus, the asymptotic averaged model describes the
long non-linear wave propagation in the structured
medium.

In general, the individual components have a dif-
ferent compression under the propagation of the
non-linear waves. The change of the averaged spe-
ci"c volume S<T di!ers from the change of speci"c
volume for a homogeneous medium<

)0.
under the

same loading. Consequently, the medium structure
a!ects non-linear wave motion.

Introducing an e!ective average sound velocity
by the formula

c
%&&

"S
S<T2

S<2/c2T
,

(3)

we obtain the traditional representation of the sys-
tem of equations to describe the motion of the
medium. It should be noted that c

%&&
is not an

averaged characteristic, i.e. c2
%&&

OSc2T. Evidently,
the structure of the medium introduces a certain
contribution to the non-linearity. In fact, if even
cOf (p), then in a general case the value c

%&&
is

a function of pressure.
However, the pressure "elds in the periodic and

homogeneous media coincide within the acoustic

waves only, if [13,14]

S<
0
T"<

0 )0.
, S<2

0
/c2

0
T"(<2

0
/c2

0
)
)0.

. (4)

For perturbations with the wavelength j that many
times exceeds sizes of the heterogeneity e, the het-
erogeneous medium can be modeled by a homo-
geneous medium only in the acoustic approach.

To correlate the results obtained for various me-
dia, the variables are normalized to the averaged
speci"c volume S<T and the initial sound velocity
c
%&&

. It is seen that the acoustic waves in such media
propagate in a similar way (see Eq. (4)).

We note that the initial equations of a motion (1)
may be rewritten in the Eulerian system of coordi-
nates. In Ref. [14] we obtained the following trans-
formation between Lagrangian (s, t) and Eulerian
(x, t

E
) coordinates:

dx"S<Tds#udt, t
E
"t. (5)

Then Eq. (1) in the Eulerian coordinate system take
the form (index E is omitted)

LS<T~1

Lt
#

LuS<T~1

Lx
"0,

Lu

Lt
#u

Lu

Lx
#S<T

Lp

Lx
"0. (6)

It is convenient to de"ne the fast Eulerian coor-
dinate f as

A
Lf
LmB

t

"

o8
o(m)

. (7)

It should be noted that the average density o8 in the
Eulerian coordinates is a value usually used for
density. A chain of identities

S<T"P
1

0

<(m) dm"P
1

0

<
o(m)

o8
df"o8 ~1

proves that S<T~1 is the mean density of the me-
dium in the Eulerian coordinates. This value can be
easily determined experimentally. At the same time
the averaged values p and u coincide in both Lag-
rangian and Eulerian systems of coordinates.

Averaged equations of motion in the Lagrangian
and Eulerian coordinates are analogous to equa-
tions for a homogeneous medium in corresponding
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coordinates. State equations di!er essentially.
A structure of the medium appears only in Eq. (2).
The value S<2/c2T introduces an additional non-
linearity.

3. Non-linear e4ects in structured medium

In this section we shall show that the medium
structure always increases the non-linear e!ects un-
der the propagation of long waves. A long wave
with "nite amplitude responds to the structure of
the medium, and the non-linear e!ects in this me-
dium increase in comparison with ones in the ho-
mogeneous medium. In addition to the previous
analysis of the sound velocity in homogeneous and
heterogeneous media (see Eq. (14) in Ref. [14]), we
consider now an evolution equation with non-lin-
ear term and compare the coe$cients of non-lin-
earity in these media.

Let us obtain an evolution equation that takes
into account a weak non-linearity. First of all, we
have to note that mass velocity u is related to the
pressure p by means of [13]

u"P
p

p0

JS<2/c2Tdp. (8)

A functional dependence of an average speci"c
value on the pressure increment p@"p!p

0
with

an accuracy O(p@ 2) can be presented as a series

S<T(p)"S<T
0
#

dS<T
dp K

p/p0

p@

#

1

2

d2S<T
dp2 K

p/p0

p@ 2.

In this case the system of Eq. (6) can be written as

S<T
0

Lu

Lx
#T

<2

c2 U
0

Lp@
Lt

!

1

2

d2S<T
dp2 K

p/p0

Lp@ 2
Lt

"0,

Lu

Lt
#S<T

0

Lp@
Lx

"0.

Hereinafter index 0 is omitted. The relationship
u(Lp@/Lx)"p@(Lu/Lx) follows from Eq. (8) with an
assumed accuracy O(p@ 2), and it was used for deri-
vation of the "rst equation. An evolution equation

for one variable assumes the form

S<T2
L2p@
Lx2

!T
<2

c2 U
L2p@
Lt2

#

1

2

d2S<T
dp2

L2p@2
Lt2

"0. (9)

Now let us consider the waves propagating in one
direction, then with indicated accuracy we can

write (JS<2/c2T/S<T)L/Lt#L/LxP2L/Lx (see, for
example, Section 93 in Ref. [5]). Thus, after factor-
ization of Eq. (9) we get

A
JS<2/c2T

S<T
L
Lt

!

L
LxBp@!

1

2T
<2

c2 U
~1d2S<T

dp2
p@

Lp@
Lx

"0.

A coe$cient of non-linearity b
p

for the structured
medium when the sound velocities in the individual
components are independent of the pressure
cOf (p), can be presented as

b
p
"

1

2
S<TT

<2

c2 U
~3@2d2S<T

dp2
"

d(u#c
%&&

)

dp

"S<TT
<3

c4 UT
<2

c2 U
~3@2

.

For all cases b
p
'0. For a homogeneous medium

with dc/dp"0 we have b
p )0.

"</c.
In certain media the value </c2 does not change

within the period. Individual elements of the struc-
ture respond to the pressure variations so that
a relative structure does not change, i.e. a ratio
<(m, p)/<(m, p

0
) does not depend on m. In this case,

the value c
%&&

"JSc2T derived from Eq. (3), is an
averaged characteristic. Consequently, the system
of equations may be presented in the averaged
variables p, u, S<T, c

%&&
"JSc2T. Heterogeneity

does not introduce additional non-linearity for
these media. Such media behave like homogeneous
media under the action of non-linear wave per-
turbations.

For media when the sound velocity is indepen-
dent of the pressure (cOf(p)) it is possible to show
that a heterogeneity of the medium, in the general
case, introduces additional non-linearity. Let us
consider the ratio of the non-linearity coe$cients
for heterogeneous and homogeneous media. In the
space of dimensionless normalized variables this
implies that at p"p

0
we have S<T

0
"1 as well as

S<2/c2T
0
"1 for compared media.
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Using conditions (3) and (4) we can obtain

b
p

b
p )0.

"S<TT
<3

c4 UT
<2

c2 U
~2

*1. (10)

This inequality is the well-known Cauchy}Schwarz
inequality (formula 15.2}3 in Ref. [16]). By designa-
ting a2,</c2, b2,<2/c2, it is easy to notice that
the equals sign is realized if and only if a2"const.
(see Sections 14.2}6 in Ref. [16]), i.e. when </c2
does not vary within the period. This heterogen-
eous medium has been considered above. For all
other heterogeneous media for which the value
</c2 changes within period, the inequality is realiz-
ed in Eq. (10). So, in a heterogeneous medium b

p
is

always greater than b
p )0.

in a homogeneous me-
dium. Thus, it is proved that, in the general case, the
heterogeneity in a medium structure introduces ad-
ditional non-linearity. This e!ect provided the basis
for a new method of diagnostics to de"ne the prop-
erties of multicomponent media using the propaga-
tion of long non-linear waves in such media.

4. Fundamentals of new diagnostic method

The structure of the medium a!ects the wave
"eld. There are di!erent methods which allow de-
tection of gas bubbles and/or cracks in liquid [17],
concrete [18], and ice covers [19] by means of the
non-linear e!ects.

In the following part, we describe our new diag-
nostic method for the properties of a medium. The
features of the motion of "nite amplitude long
waves and the e!ect of the increase of non-linearity
in the heterogeneous medium in comparison with
homogeneous medium form the basis for the devel-
opment of the theoretical fundamentals of the diag-
nostic method. In this method the properties of
medium heterogeneities are de"ned by long waves
of "nite amplitudes. We shall have shown that the
dependence </c2 on fast Eulerian coordinate f (see
Eq. (7)) is de"ned.

It should be kept in mind that the period of the
medium structure is in"nitely small in the long-
wave model, so it is not always possible to indicate
reliably the location of the structure elements inside
the period. Then, for de"niteness, the </c2"

</c2(f) function is assumed decreasing, integrable,
mutually one-valued function on the section
f3[0, 1] and is equal to zero outside it. Thus, the
wave evolution allows with an inherent accuracy to
de"ne the structure of the medium. In the "nal
result, the mass contents of the particular compo-
nents can be denoted using this method.

It is known from theory of probability that a dis-
tribution function f(x) (any one-valued, integrable,
positive function) can be expressed by its central
moments

a
n
"P

=

~=

xnf(x) dx

by means of the inverse Fourier transform

f (x)"F~1C
=
+
n/0

a
n
in
qn

n!D
if series +=

n/0
Da

n
D(sn/n!) converges absolutely for

some s'0 (see Section 18.3.7 in Ref. [16]). Let us
consider a chain of transformations using Eq. (7)

S<(</c2)nT"P
1

0

<(m)A
<

c2B
n
dm"P

1

0

<A
<

c2B
no
o8

df

"S<TP
=

~=
A
<

c2B
n df
d</c2

d</c2

"nS<TP
=

~=
A
<

c2B
n~1

fd</c2

"nS<Ta
n~1

.

A central moment a
n~1

of the function f"f(</c2)
is expressed by means of S<(</c2)nT. Finally, we
"nd the inverse function

f"F~1C
=
+
n/0

S<(<c~2)n`IT
(n#1)!S<T

inqnD (11)

as desired. The physical value <c~2 is bounded by
some constant M, hence

a
n
"P

=

~=

(</c2)nf d</c2)P
M

0

(</c2)nd</c2

"

Mn`1

n#1
.
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The series +=
n/0

(Da
n
Dsn)/n!)+=

n/0
Mn`1sn/(n#1)!

converge at s(M~1. Consequently, the power
series (11) also converges.

The coe$cients S<(<c~2)nT in Eq. (11) can be
easily calculated if we know the functional depend-
ence S<T(p) or S<2/c2T(p). They can be successively
de"ned by the recurrence relation

dS<(<c~2)nT
dp

"!(n#1)S<(<c~2)n`1T (12)

that follows directly from the state equation. With
mentioned accuracy it is possible to diagnose the
structural properties of the medium.

Application of the suggested method is connec-
ted with the "nding of the coe$cients S<(<c~2)nT
for power series (11). These coe$cients can be
obtained from the features of wave "eld evolu-
tion. The advantages of diagnostics by means
of wave "elds is evident, especially for the media
with complex structures, in particular for natural
media.

A possible way to obtain the functional depend-
ence of S<T on p is to perform an experiment to
de"ne the parameters of shock waves. The shock
wave velocity in Lagrangian mass coordinates
D"ds/dt (dimension [D], kg/s) and/or mass velo-
city u as well as pressure p after shock wave front
can be experimentally measured. The value S<T is
calculated from the relationships on the shock front

D"J(p!p
0
)/(S<

0
T!S<T),

u!u
0
"J(p!p

0
)(S<

0
T!S<T).

These relationships follow from averaged motion
equations [14]. After the measurement of the shock
wave parameters for various pressures p, we can
obtain the dependence S<T"S<T(p). Then the
recurrence formula (12) is applied to obtain
S<(<c~2)nT at n*1 for Eq. (11).

The self-similar rarefaction wave [12] can be
considered as a universal instrument to de"ne the
coe$cients S<(<c~2)nT. Self-similar motion of the
rarefaction wave, as appears from relationship (2.5)
of Ref. [13] ds/dt"S<2/c2T~1@2, gives the propa-
gation velocity ds/dt of separate parts of the wave
pro"le under various pressures. The evolution of
the pro"le of the rarefaction wave makes it possible

to de"ne the dependence S<2/c2T"S<2/c2T(p),
and, consequently, the values S<(<c~2)nT at n*2
which can be found from Eq. (12).

We pointed out a few ways by means of which,
from our point of view, it is possible to "nd the
required dependencies from experiments. Certain
di$culties for the application of this method can be
connected with the following. The experimental
data are always de"ned with some accuracy, and
the application of Eq. (12) will lead to the increase
of the magnitude of error for high-order deriva-
tives. This requires that a limited number of the
terms should be used in series (11). Consequently, it
is necessary to study the accuracy of the reconstruc-
tion of medium structure in the case when we know
only several "rst terms in series (11).

5. Approximation of diagnosed medium by
layer medium

Diagnostics of the structured medium properties
by long non-linear waves is connected with the
de"nition of values S<(<c~2)nT. As indicated
above, there is a problem related to the accuracy of
the description of the structure by "nite series (11).

Now, we shall have shown that the partial sum of
series (11) is a step-function and approximates the
desired function f"f(</c2) with certain accuracy,
namely the diagnosed medium can be approxi-
mated by a layer medium.

Let us write down the chain of the identities for
any integrable function

2pf (!x)"F[F[f (x)](q)](x)

"FC
=
+
n/0

inqn

n!
a
nD

"

=
+
n/0

ina
n

n!
2p(!i)nd(n)(x).

Here we used the known relationships for the
Fourier transform [16]. Hence, any integrable
function can be represented by a series

f (!x)"
=
+
n/0

a
n

n!
d(n)(x). (13)

1110 V.O. Vakhnenko et al. / International Journal of Non-Linear Mechanics 35 (2000) 1105}1113



Consider the step-function f
1
(x) consisting of

N steps:

f
1
(x)"G

u
1
, 0(x)b

1
,

u
2
, b

1
(x)b

2
,

F F

u
N
, b

N~1
(x)b

N
,

where the desired function f (x) will be approxi-
mated. Evidently, by increasing the number of steps
N and choosing the values u

i
, b

i
, any integrable

function f (x) can be approximated by the step-
function f

1
(x). It is convenient to use a notation

f
1
(!x)"u

1
[#(x#b

1
)!#(x)]

#u
2
[#(x#b

2
)!#(x#b

1
)]#2

#u
N
[#(x#b

N
)!#(x#b

N~1
)]. (14)

The Heavyside function #(x#b) can be expanded
into a Taylor series in a neighborhood of point x

#(x#b)"#(x)#
=
+
n/1

bn

n!
#(n)(x).

We equate functions (13) and (14), and consider
that the number of steps for function f

1
(x) is in"-

nitely larger, and in this case we obtain

u
1

=
+
n/0

bn`1
1

(n#1)!
d(n)(x)#u

2

=
+
n/0

bn`1
2

!bn`1
1

(n#1)!
d(n)(x)

#2#u
N

=
+
n/0

bn`1
N

!bn`1
N~1

(n#1)!
d(n)(x)#2

"

=
+
n/0

a
n

n!
d(n)(x). (15)

This relationship shows that when we use the par-
tial sum of series on the right-hand side of Eq. (15)
+2N~1

n/0
(a

n
/n!)d(n)(x) and also N leading terms on the

left-hand side, then the desired function f (x) is ap-
proximated by the step-function f

1
(x) with N steps.

In other words, if it is necessary to restore the
medium structure by means of N periodic repeated
layers, then 2N!1 moments a

n
, i.e. the values

S<(<c~2)nT should be known.
For convenience, we write down relation (15) in

the expanded form. For this purpose, we multiply it
by xn and integrate over x. We obtain the non-
linear system of the equations in the unknowns

b
1
, b

2
,2, b

N
,u

2
, u

3
,2,u

N
(variable u

1
"1 ow-

ing to normalization)

u
1
b
1
#u

2
(b

2
!b

1
)#u

3
(b

3
!b

2
)

#2#u
N
(b

N
!b

N~1
)"a

0
,

u
1
b2
1
#u

2
(b2

2
!b2

1
)#u

3
(b2

3
!b2

2
)

#2#u
N
(b2

N
!b2

N~1
)"2a

1
,

2222222222

u
1
b2N~1
1

#u
2
(b2N~1

2
!b2N~1

1
)

#u
3
(b2N~1

3
!b2N~1

2
)

#2#u
N
(b2N~1

N
!b2N~1

N~1
)

" (2N!1)a
2N~2

. (16)

Now, if b
i

implies the partition of (</c2)
i
, and

u
i

implies the partition of f
i
, we can obtain the

system of Eqs. (16) to de"ne the medium structure.
Solution of these equations gives the information
about the component properties of the medium,
namely, the value </c2 on the structure period
f3[0,1] is found in the form of the step-function.

Let us note the special case of a periodic medium
for which the value </c2 is constant within the
period. This medium, as we already know, does not
di!er from a homogeneous one for the propagation
of the long non-linear waves. The same result fol-
lows from a system (16). Indeed, for homogeneous
media the moments a

n
are equal to a

n
"

S<(<c~2)n`1T/((n#1)S<T)"bn`1/(n#1). Here,
the conditions of normalization S<2/c2T

0
"

(<2/c2)
0
"1, S<T

0
"<

0
"1 have been used as

before. Therefore, the values in the right-hand side
of Eq. (16) are equal to the b,<c~2"const. It is
easy to see that the solution of system is
b
1
"b

2
"2"b

N
"b, u

1
"1 (where u

i
is any

value for i*2). This corresponds to the layer me-
dium, for which </c2Of (f); in particular, this me-
dium can be a homogeneous one.

According to the asymptotic averaged model of
a structured medium the period of the structure is
in"nitely small, and this diagnostic method cannot
give the exact location of the structure elements
inside the period. Hence, using this method, only
the mass contents of the particular components can
be determined.
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Fig. 1. Approximation of the diagnosed medium (dotted curve)
by N-component media.

We present as an example the results of the
calculation to de"ne the structure of layer media
which can properly approximate the diagnosed me-
dium for the case of </c2"0.2#0.8(1!f)2 (see
Fig. 1). In order to approximate the diagnosed
medium by layer periodic medium, which has
N layers within the period, it is necessary to know
2N!1 values S<(<c~2)nT for "nite series (11). If
we regard that the 2N!1 averaged characteristics
S<(<c~2)nT coincide for the diagnosed medium
and for the layer medium, these averaged values at
n)2N!1 can be calculated from known distribu-
tion </c2"0.2#0.8(1!f)2 within the period. At
n'2N!1 the values S<(<c~2)nT for diagnosed
medium and for approximated layer medium are
di!erent. The distributions of </c2 within the peri-
od for diagnosed medium (dotted curve) and for
approximated media with N components are
shown in Fig. 1. So, we have illustrated the accu-
racy of the approximation of the diagnosed
medium by the "nite series (11).

Thus, the new method for the diagnostics of the
medium characteristics by long non-linear waves is
suggested on the basis of the asymptotic averaged
model of structured medium.

6. Conclusions

In conclusion, we have discussed the averaged
systems of hydrodynamic equations in the Lagran-
gian and Eulerian coordinates. These systems are
not expressed in the average hydrodynamic terms
p, u, S<T and, consequently, the dynamic behavior
of a medium cannot be modeled by means of a ho-
mogeneous medium even for long waves, if they are
non-linear. The structure of the medium a!ects the
non-linear wave propagations. The heterogeneity
in a medium structure always introduces additional
nonlinearity in comparison with homogeneous me-
dium. This e!ect enables us to form the theoretical
fundamentals of the new diagnostic method to de-
"ne the characteristics of a heterogeneous medium
using the long waves of "nite amplitudes (inverse
problem). The mass contents of the particular com-
ponents can be denoted by this diagnostic method.
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