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The development of experimental techniques has shown that the internal structure of a 
medium affects wave motion and transport processes. Nonlinear effects start playing an in- 
creasing role with increasing wave amplitude. To the same class belong high-gradient, fast- 
flowing nonequilibrium processes. All these features must be taken into account in the math- 
ematical simulation of waves in real media. 

There exists a class of effects, in which the characteristic size considered L is much 
larger than the size of medium inhomogeneity E (L ~ ~). The drawback of assigning microprop- 
erties of an inhomogeneous medium creates major difficulties for direct solution of these 
problems. Numerical solutions are difficult due to high cost of computer time. One way of 
investigating an inhomogeneous medium is the spatial averaging method. 

The averaged description has an asymptotic nature. There exist different mathematical 
methods of asymptotic averaging of long-wave processes with detailed account of the structure. 
In the present study, for wave modeling in a barotropic periodic medium we use the asymptotic 
averaging method developed for a composite regular structure [I, 2]. Processes in an inhomo- 
geneous medium can be described by equations with fast-oscillating coefficients. For media 
of regular structure the fast-oscillating coefficients are periodic functions. The essence 
of asymptotic averaging consists of applying the multiple scale method [3] in conjuction with 
spatial averaging [4]. The method provides an asymptotically correct approximation to the 
solution. In the general case one obtains a system of integrodifferential equations. Some- 
times the problem can be reduced to the average characteristics of wave fields. At the same 
time, in solving the integrodifferential system one can find a numerical method in which one 
succeeds in selecting a step in the spatial coordinate substantially exceeding the period 
of the structure. 

i. >ystem of Averaged Equations. The asymptotic averaging method can be applied to de- 
scribe processes in a compressible inhomogeneous medium [5]. The equations of motion are 
conveniently written in Lagrangian coordinates. In these variables the structure of the 
periodic compressible medium is nonvarying, making it possible to use the averaging procedure. 

In the general case the coefficients and solutions of the equations, describing pro- 
cesses in inhomogeneous media, have discontinuous values. The equations must then be repre- 
sented in integral form. Under the assumption of smooth coefficients and solutions they are 
equivalent to the differential equation of motion. It was shown in [i, 6] that for insignif- 
icant differences in physical properties of medium inhomogeneity the approximate continuous 
solutions of the system of differential equations formally constructed by means of the asymp- 
totic method satisfy the integral conservation laws with a certain accuracy. This fact indi- 
cates the correctness of using a system of differential equations of motion in an asymptotic 
averaging method. 

The original equations of motion are the equations of a barotropic periodic medium, 
written down for each structural element [7]: 

av a~ _--0, a'~ ' ~p - -0 .  ( 1 . 1 )  
c3t am ~t T 3m 

Here V ~ p-z is the specific volume, u is the mass velocity, p is the density, p is the pres- 
sure, m is the mass variable, and t is time. 
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With the purpose of taking into account internal processes in the inhomogeneous medium 
it is assumed that each component manifests relaxation effects, including the first-order 
dynamic equation of state [8] 

d o = c7 ~ dp - -  (9 - -  P,) ~-1 dt,  ( 1 . 2  ) 

where T is the relaxation time, c e and cf are the equilibrium and frozen sound velocities, 
P 

9e = 9(P) is the equilibrium equation of state, while, more precisely, P,----.o0 + [ c~2dp; 
P0 

and P0, 90 are the pressure and density in an arbitrary equilibrium state. Equation (1.2) 
covers the limiting cases of both the totally frozen and the equilibrium process. It includes 
the description of processes without relaxation with formal replacement of the relaxation 
time �9 = 0 by some nonvanishing quantity and under the condition c e = cf. In the following 
it is assumed that the sound velocity and the relaxation time do not depend on time explicitly, 
but only on pressure and on the individual properties of the medium components. This implies 
that the relaxation process inside the structural elements of the periodic medium leads only 
to momentum exchange without mass exchange. 

We apply the asymptotic averaging method [i] to Eqs. (i.I), (1.2). According to the 
multiple scale method, the spatial variable m is decomposed into slow s and fast ~ inde- 
pendent variables : 

0 0 -:l 0 
rn = s + e~, ~m = 0--7 + e -5~" (1.3a) 

The slow variable corresponds to the global field structure, and the fast - to the local 
structure. The solution p, u, V is sought in the form of power series in the structural 
period ~: 

p(m ,  t ) =  p(s, ~, t ) =  p(~ ~, t ) +  s?(:> (s, ~, t)-+- 
+ ~p(2)(s, ~, t) + ... ( 1 . 3 b )  

A feature of the problem consists of the fact that due to the constant structure of the medium 
in Lagrangian coordinates the functions in the right hand side of series (l.3b) are assumed 
periodic in 6- This leads to simplified equations by means of using the averaging procedure 
over the structural period. 

Following substitution of (1.3) into (i.i) we obtain 

tap(o) ;a,~ (~ a~ (~ a / : ) ]  ~:( 'a.(:> ap(n a /= ) ;  , 

According to the general theory of the asymptotic method, terms with equal powers of E must 
vanish independently of each other. Therefore, the equation with E -I are of the form 8p(~ 
86 = 0, 8u(~ = 0, providing independence of p(0) = p(0)(s, t) and u(0) = u(~ t) on ~. 
Besides, for terms with s ~ one must have 

6V(O) au(O) 5u;l) 0~/o) Op(o) Op(I) 
at as a~ = 0  ~ + a~ ' a~ 

1 

We average over the period ~. By definition /-}= [(.)d~ Due to the periodicity of p(:) 
0 

and u (1) the integrals satisfy <alt (WAS> == 0, <ap(1)/o~> ~6) And since <u(~ = u(~ <p(0)} = p(0), 
t h e n  Op(b/a~ = 0 w h i l e  due  t o  t h e  p e r i o d i c i t y  o f  p { ~ i  t h e  f u n c t i o n  p ( : )  i s  i n d e p e n d e n t  
of 6, Consequently, the averaged equations of motion (i.i) are, within the zeroth order in 
~, [9] 

5 <V(~ au (~ au (~ ap (~ 
at as --0, ~ + ~ = 0 .  (1.4) 
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The quantities V, 9, ~, Ce, cf depend in the general case on the fast variable ~, while the 
last three functional dependences are assumed to be given ahead of time. Following averaging, 
the equation of state (1.2) for the vanishing approximation in s can be written formally as 

dp (~ ~jo) ds (~ 

Po 

, ' d ~ )  v(~176 

(1.5) 

The average system (1.4), (1.5) is obtained, describing within the vanishing approxima- 
tion in c processes in a barotropic, periodic, relaxing medium. The structural characteris- 
tics appear only in Eq. (1.5). 

We note that the asymptotic method was applied earlier for the averaged system of equa- 
tions, describing compressible media with viscosity [5]. In this case the introduction of 
viscosity makes it possible, from a physical point of view, to describe only low-frequency 
perturbations. Besides, the system of averaged equations does not provide the possibility 
of investigating wave motions if none of the components of the periodic medium possesses a 
viscosity. A more complicated method of constructing averaged equations is suggested in [i0], 
where an integrodifferential system with a lag is obtained, not containing a fast variable. 
However, it is indicated there that there exist no reliable methods of solving it. 

2. Analysis of Propagating Pressure Waves. We investigate several averaged properties 
of sound waves in a periodic relaxing medium. We represent the unknown variables in the form 

P = P o  i-P~, 9 = P o +  P1, V ~  Vo+ V1, 

where P0, 00, V0 are the unperturbed equilibrium values of pressure, density, and specific 
volume, while Pz, @i, Vz are their increments in a sound field, with Pz << P0, Pz ~ P0, Vi ~ 
V 0. In what follows we omit the subscript 0, denoting the first term of the asymptotic ex- 
pansion (l.3b). In this case the system (1.4), (1.5) acquires the following form within the 
linear approximation 

at as -~-+ __ =0; (2.1) 

d 
+ TcT2 

/ P t .  (2.2) 
t + ~-dT 

In the two limiting cases of high-frequency (wT ~ i) and low-frequency (~ << i) wave pertur- 
bations the averaged equation of state (2.2) are rewritten, respectively, as 

<i71 > :  --  < ~ > P l -  "~7~ %C~C}--/ [)I' <T~I> : - -  < ~ ~  [)I -~- TV02 c~6', / P I "  

In this case we used the estimate m ~ ~-Zd~/dt, where ~ = p or V. 
possible to interpret the expression 

44 / \ 4 / 

The last equation makes it 

as the averaged bulk viscosity coefficient for low-frequency perturbations. 

For a nonrelaxing periodic medium the equation of state is simplified: 

<v> = _ <V /c2> d p .  ( 2 . 3 )  
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The system (2.1), (2.3) is expressed in terms of averaged characteristics. By comparing it 
with the original equations for a homogeneous medium it follows that the pressure field in 
a homogeneous nonrelaxing medium coincides with the average field in a periodic medium if 
V02/c 2 = <V02/c2>. In the special case of a periodic medium with two components, one of 
which is relaxing, the average pressure perturbation propagates as in a homogeneous relaxing 
medium with the consistency conditions 

2 2  2 2  2 2  o 2  Vol . = < V o / c e > ,  Voic, = = (2.4) 

In the limiting frozen and equilibrium processes the perturbations in a periodic relaxing 
medium behave as they do in some homogeneous nonrelaxing media. 

It is possible to obtain a partial solution of the averaged integrodifferential equations 
without restrictions on the perturbation value for a medium with nonrelaxing components. The 
averaged system of equations for such a periodic medium (2.1), (2~ is hyperbolic. The equa- 
tions of characteristics in a Lagrangia n coordinate system (the massive spatial coordinates) 
are 

dsldt = ~_ (V2~ 2 >-1i2, ( 2 . 5 )  

on their valid Riemann invariants 

J• = u --4- f <V21e2>~/2 @.  (2.6) 

Expression (2.5) is the average perturbation propagation velocity in Lagrangian coordinates, 
depending on pressure and on the structure. 

For a barotropic medium the pressure p and the velocity u in the wave can be expressed 
in the form of a function of each other. Equation (2.5) is then integrated 

s = • + / ( u )  

(f(u) is an arbitrary function of u). The relation given above, along with (2.6) describes 
the average behavior of a simple wave in a periodic barotropic medium. In the special case 
f(u) = 0 the solution is self-similar. 

The structure of the medium directly affects the propagation of a simple wave of sub- 
stantial amplitude even in the long-wave approximation. Equations (2.5), (2.6) contain the 
nonlinear terms <V2/c2>, depending on pressure and on the structure of the medium. Conse- 
quently, the average behavior of the pressure wave cannot now reduce to the behavior in a 
homogeneous medium. 

As an example we show in Fig. 1 the pressure profile in a self-similar dilation wave, 
generated in a periodic medium while advancing a piston with constant velocity~ The ratio of 
initial pressure in the medium P20 to the piston pressure Px0 was taken to be P20/Pl0 = i0. 
The elementary unit cell of the periodic medium was represented by two layers of identical 
size in Lagrangian coordinates with densities P01 = 1.5<p>, P20 = 0.5<p> at pressure Pl0 (<P> 
is the mean density of the medium at this pressure). The sound velocity in both components 
was assumed identical and constant (c = ~.5]/PI01(9>). The mass velocity was consistent with 
the pressure according to (2.6): 

P 

P20 

The dimensionless dependences of the pressure P/Px0 on the Lagrangian mass coordinate q = 

s--V <p(p10)>pa0 (T o is the characteristic time) are shown for various moments of time in 
T o 

Fig. i, where the solid lines are profiles calculated by the numerical-asymptotic method 
(discussed later) for a periodic medium, and being in satisfactory agreement with the dashed 
lines, constructed from the analytic solution for a periodic medium. With the purpose of 
comparison we show by dashed-dotted lines in Fig. 1 the profiles for a homogeneous medium, 
in which 0 = <P>. The deviation of dilatation wave profiles in a periodic medium from a 
linear dependence is caused by its structure. 
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Fig. i 

It is interesting to note that the wave profile contains much information about the struc- 
ture of the medium. In the special case in which the sound velocity in the medium is unique 
and constant, the structure of the medium can be established from the features of the propa- 
gating dilatation wave. In this case it must be understood that in the long-wave model the 
period is infinitely short, and, consequently, the location of structural elements in the 
period cannot be indicated accurately. We therefore select a medium in which the function 
V = V(g) is a nonincreasing integrable one-to-one function. Multiplying both sides of the 
equation of state dV = -V2c-2dp by V n (n is a natural number), following averaging we have 
d(V~+1>/dp ~ --(p~i) c-2(Vn+2> I The equation for the characteristics (2.5) makes it possible 
to find the function <V2>(p). The equation derived provides the remaining <V>, <V3>, <V4>, 
<VS>, ..., <vn> .... 

From probability theory [ii] it is well known that the distribution f(x) (an arbitrary 
single-valued integrable positive function, defined over the whole x-axis) is related to its 

moments ~ : .[ x~/(x) dx by means of the characteristic function x(q) = F[f(x)](q), where 

F[.] is the Fourier transform. Besides, the characteristic function is expressed in terms 
of the moments: 

qn 

n-----I) 

i7(o) 

Taking into account the restrictions on the function V(~), we write <Vn> = n S ~(V)dV. 
0 

Assuming that the function $(V) vanishes outside the segment [0, V(0)], the last expression 
can be related to the central moment of the distribution function f(x) - g(V): 

{ v  '~) = ~ ~ v"-l~ (v) dv = ~+,_~. 

Hence, by the inverse Fourier transform of the characteristic function we finally have 

[ ] ( V ) = F  -~ ~ <v~+1> i~q" (,~ + ~>~ (v). 
n = O  

Thus is derived the inverse function of the required one, and the structure of the medium is 
found with the indicated accuracy. 

3. The Numerical-Asymptotic Method. The equations of motion (1.4) have been written 
down in the averaged characteristics p, u, <V>, depending on the slow variable s and on time 
t. The equation of state (1.5) is an integrodifferential equation withparameters depending on 
both slow and fast variables. The method of searching a solution of the system of equations 
(1.4), (1.5) is not obvious. 

We describe a possible method of reducing the equations to a form in which the required 
functions depend only on the slow variable and on time. All functions depending on ~ are 
represented in the form of Fourier series on a segment corresponding to a period of the 
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structure ( f o r  example, P(~) ----- ~ P h e x p ( 2 n i k ~ ) ) .  
k ~ o o  

The equations of motion remain unchanged. 

They are supplemented by relations for the series coefficients V k and Pk, following from the 
equations of state and pV = i. Both sides of these equations, expressed by Fourier series, 
are multiplied successively by exp (2~ikE) (k = 0, ___i, ~2, +3 .... )! and are determined from the 
period of the structure. As a result of the two equations one forms an infinite chain. The 
same equations are represented by double trigonometric series, which can be represented 
schematically in the form 

(9nV-~)~ = 6oh, k = O, ~ I,  _+_+ 2, . .., 
7 2 ~ - - 0 0  

( 3 . 1 )  

where the k-th terms are the Fourier series coefficients of the corresponding functions p, P0, 
V, V0, cf -2, Ce -2, T -I 

An inifinite system of equations (1.4), (3.1) was obtained in p, u, @k, Vk, which are 
functions of s and t. The density p and the specific volume V, depending on the fast variable 
$, are obtained following calculations of sums of Fourier series. In numerical calculations 
one can confine oneself to partial series sums, while the system of equations is closed. The 
process is described with the same accuracy with which the restricted Fourier series repro- 
duces the structure of the medium. This makes it possible to separate the averaged problem 
in the slow variable, and in the computer solution select the step in the spatial coordinates 
by the perturbation wavelength and not by the period of the structure. The basic difficulty 
is thus overcome, and the wave propagation can be found at large distances. 

In the numerical experiments the period of the structure did not impose any restriction 
on the spatial step. However, the use of partial Fourier series leads to a substantial in- 
crease in the number of equations (3.1) including nonlinear factors of the type PkVn o 

The system (1.4), (3.1) was solved numerically by a finite-difference method in dimen- 
sionless quantities. From (1.4) one finds <V> and u by an explicit two-layered difference 
scheme. The pressure p and the Fourier coefficients Pk, Vk at the following temporal layer 
are determined by solving the 4m + 2 nonlinear equations (3.1) by the iterative Newton method 
(2m + 1 is the number of terms in the partial Fourier series sum). At each iteration the 
equations are transformed to linear, and the system obtained is solved by the Gauss method. 
The algorithm suggested was implemented in a Fortranprogram written for BESM-6 with invoking 
mathematical control by computer. 

Besides calculating the motion of a self-similar dilatation wave in a periodic medium 
(Fig. i), we calculated the propagation of acoustic perturbations in relaxing media. The 
structure of the periodic medium also consisted of two layers of equal extension with unper- 
turbed medium parameters 

po (;) = lo,5po ' o~ = ~[ i,o" Kpo/po "e~ = /O, le~ ,  0,5 < ~ 4 l ,o.  

The initial perturbation parameters (mass velocity, pressure, density) were mutually 
related in terms of the sound velocity cf: 

= we71 V <v~, (~)>, pl (~) = vi/4. 

Initial conditions were assigned so as to guarantee invariance in the pressure profile with 
time in media without relaxation. The sound velocity in a homogeneous medium was selected 
with condition (2.4) satisfied, i.e., cf = 1.006]/p0/p0, ce ~ O.iO0]/po/po. The pressure sound 
wave must then operate identically in homogeneous and periodically relaxing media. The 
numerical calculations have verified these conditions and served as tests of the software 
developed. Estimating the characteristic perturbation frequency m in terms of the halfwidth 
of the initial perturbation and of the frozen sound velocity cf, mT can be determined. The 
mT value was varied for different relaxation times, making it possible to investigate the 
wave evolution as a function of the relations between the dynamic and relaxation characteristics. 
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Fig. 2 Fig. 3 

The pressure dependence on the dimensionless Euler coordinate • = xT$1Yp0P~ I is shown 
in Fig. 2 for relaxing media. The initial pressure perturbation in the form of a Gaussian 
distribution, whose center is at x = 8, are identical. The dashed curves are constructed for 
the dimensionless relaxation time z/T0 = 2000 (~m = 30), the dashed-dotted - for z/m 0 = 200 
(wT = 3), and the solid ones - for z/T 0 = 20 (mm = 0.3). The pressure perturbation profiles 
are shown for the initial moment of time, as well as for t/m 0 = 3.33 and t/T 0 = 6.67. The 
presence of relaxation generates perturbation decay. The shorter the relaxation time, the 
more slowly it moves. It seems that when z/m 0 = 200 the perturbation maximum moves more 
slowly than when T/T 0 = 2000. However, a reduction in the wave propagation velocity compen- 
sates the pressure reduction in the rear part of the wave due to deeper relaxation transmis- 
sion. In all waves there exists a dilatation wave, the pressure in which approaches gradu- 
ally the original value as the wave moves away. 

The density perturbation evolution in media which are homogeneous for wT = 3 (dashed 
lines) and periodic for ~m = 1.5 (solid lines) is shown in Fig. 3. Though the initial pertur- 
bations in them are identical, the initial perturbation of the mean density in the periodic 
medium is more than two times smaller than in the homogeneous medium. Their qualitative be- 
havio~ is similar. The propagation velocities of the mid-fronts of the density and pressure 
perturbations coincide. A phase of reduced density is generated, lagging with respect to the 
reduced pressure phase. 

The authors are grateful to V. A. Danilenko for stating the problem and for his constant 
interest in this study. 
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