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The expanded range of pulsed materials processing requires the development of means for 
localizing the effect of high-power energy sources used to excite shock waves in the surround- 
ing medium. In addition to special chambers, recently multiphase media (bubble screens in 
liquids [i, 2], gas--liquid foams [3, 4], foam plastics [5, 6], etc.) have been used for damp- 
ing of shock waves. 

Studies have shown that the energy of explosions is most efficiently absorbed by water 
foa~s [3, 4] Thus, fqr sufficiently large distances from an explosive charge (R > 0.8 m/ 
kg~/~, where R = rf/Q~/3; rf is the distance from the center of the energy source (m), and Q 
(kg) is the mass of the charge for an energy of 5.4 MJ/kg; the pressure at a shock front falls 
to more than an order of magnitude below air pressure. At the same time, decreasing distance 
from the charge leads to a sharp reduction in the damping coefficient and, in particular, for 
R < 0.5 m/kg ~/3 the pressure impulse in the decaying wave becomes greater than in a gas. 

A qualitative theoretical analysis of strong shock waves in two-phase media with a small 
volume fraction of condensed material showed that the potential ability of foams to damp shock 
waves is greater and that the parameters of shock waves at a fixed distance can be reduced 
below those obtained experimentally [4, 7]. It was noticed that the failure tQ reach the cal- 
culated damping parameters was apparently a result of the fact that the characteristic inter- 
phase relaxation times, which determine the conversion of energy from the medium into internal 
energy of the condensed phase (which has no role in the pressure), are substantially greater 
than the time required to reach the peak pressure at the shock front. 

In this paper we analyze the dependence of the shock damping parameters on the thermal 
relaxation time in order to provide a deeper understanding of the damping of shock waves in 
such media and to determine their effectiveness as localizing media. On the other hand, the 
observed reduction in the damping coefficient for shocks in foam near the explosive charge 
requires an extension of the experimental investigation near the energy source. 

CALCULATION OF THE PARAMETERS OF STRONG SHOCK WAVES GENERATED BY 

POINT ENERGY SOURCES 

The occurrence of relaxation processes makes strong shock calculations in such media con- 
siderably more complicated because the flow is not self-similar. This means that a time- 
dependent system of differential equations must be solved. In analyzing shock flows in two- 
phase media the following assumptions are made: (a) the two-phase medium is homogeneous; (b) 
the volume fraction of the condensed phase is negligibly small and its density and specific 
heat are constant; (c) there are no phase transitions; (d) kinematic equilibrium exists be- 
tween the phases at the shock front; and, (e) the gaseous phase obeys the ideal gas equation 
of state. 

In Euler variables the basic hydTodynamic equations for the motion of a thermally noncon- 
ducting inviscous medium can be written in the form of an overall balance for the two phases 
in the continuity, momentum, and energy equations: 

~t t OrV-lp~ 
+" v-1 ~r (la) 

T 

~u u #u  I a p  
a-F + ~r + ---- @ ar (ib) 

- -  -----0, 

0 p E + p - ~ -  -1- rv_---7o-" T rV-lu p E + p - g -  + p  = 0 .  ( l c )  

Kiev. Translated from Fizika Goreniya i Vzryva, Vol. 20, No. i, pp. 105-111, January- 
February, 1984. Original article submitted January 5, 1983. 

0010-5082/84/2001-0097508.50 �9 1984 Plenum Publishing Corporation 97 



Here v is a parameter which rakes the values i, 2, or 3 for plane, cyllndrlcal,and spherical 
symmetry, respectively; u is the mass velocity of the flow; p is the density of the mixture; 
p is the pressure; E is the internal energy per unit mass; r is the spatial coordinate; and 
t is the time. Treating the equations for the mixture as a whole allows us to avoid specify- 
ing the interphase interaction terms which unavoidably arise when the equations are written 
down separately for each phase [8]. 

The effect of shock wave damping associated with interphase interactions in which part 
of the energy that determines the pressure of the mixture is transformed to energy that makes 
no contribution to the pressure, can be described by the time-dependent parameter F which 
specifies at any given time the relationship between the internal energy E, the pressure p, 
and the mixture density p: 

E=p/p(F- 1). (2) 

Tile thermodynamical basis for this type of dependence originates in ideas about nonequi- 
librium processes [9]. Suppose as a result of some process the change in the internal energy 
E causes a change in the quantity pp-Z. The magnitude of the latter quantity will vary de- 
pending on the extent of relaxation that has occurred. Following the formalism of [9], the 
dependence of pp-Z on the energy can be written in operator form: 
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that is, the changes ~pp-* and ~E are related by 

Here the subscripts e and f mean that the derivatives are taken for equilibrium between the 
phases and for frozen thermal relaxation, respectively. To is the characteristic interphase 
relaxation time. Since a two-phase medium in equilibrium can be described by the equations 

Po ( t o -  i ) '  ~ ~ ) ,  = t o -  i,  r o = ? t + ~ ,  

and since only the internalenergy of the gaseous phase will change during instantaneous com- 
pression, i.e., 

- ~ - - / t  = y--l, 

Eq. (3) yields 
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where y = Cp/CV; m = C/Cp'Os/C~; c and cD are the specific heats at constant pressure of the 
condensed phase and gas; and, o~ and o o a~e the mass concentrations of the condensed and gas- 
eous phases. Equation (4) is then substituted in Eq. (2). 

We now specify F for a passing shock wave. The phase disequilibrium, as assumed, de- 
velops at the shock front. Equilibration of the parameters of both phases takes place behind 
the shock. Assuming in the first approximation that the characteristic relaxation time To is 
a constant and that the change in the flow parameters behind the shock front makes no addition- 
al contribution to the disequilibrium between the phases, Eq. (4) can be written in the analy- 

tic form 

F = ro + (~ -- to) exp ( -  T / ~ ,  (5)  

where T is the lifetime of a microscopic volume in the shock wave. Although this expression 
is only an effective index and not exact, it does make it possible to analyze the main fea- 
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tures of shock wave propagation in the presence of nonuniformities. 

In general T is a function of the time and spatial coordinate, 
satisfies the differential equation 

o-T + u ~ T =  I, 

i.e., �9 = z(r, t), and 

(6) 

with T = 0 for t = 0 and r = rf. Supplementing Eqs. (i), (2), (5), and (6) with the overall 
energy balance equation for the volume occupied by the shock wave, 

rf 
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we obtain a closed system of equations for the motion of a two-phase medium including the 
thermal disequilibrium behind the shock front. Here Ego and Eso are the initial energies of 
the gas and condensed phase. 

We shall limit ourselves to considering a strong shock wave where the initial internal 
energy of the gas can be neglected in Eq. (7). Then the equations at the shock discontinuity 
(the boundary conditions) take the following form, given that the effects of thermal relaxa- 
tion have not yet been able to appear: 

p = 2/(~ + I) . pod 2, p = (~ + I)/(~ -- i) �9 po, u = 2/(~ + i) �9 D, 

where D is the shock speed. In the case of a point source of energy Eo the initial conditions 
for the system of equations can be found from the self-similar so!utionof the problem [I0, ii]. 

This system of differential equations was solved using a computer program. The method 
of solution was based on implicit finite-difference schemes analogous to those given in [12]. 
With an implicit scheme it is possible to avoid placing strict limitations on the time step. 
The unknown quantities at the nodes of the implicit scheme were found using the method pro- 
posed in [13] for solving problems with two independent variables. The machine time spent 
on the ES-1040 computer to calculate a single variant of the problem was 3-4 h. 

The calculations show that at the initiai time t < to the flow parameters deviate linear- 
ly, with an accuracy of 15%, from the self-similar parameters of a flow in a nonrelaxing med- 
ium. The more rapid damping of the shock velocity in the presence of thermal relaxation 
found in this case leads to an increase in the relative velocity u/D compared to the self- 
similar solution. Because of this the relative fraction of the mass in the central region 
decreases, but increases near the front. The pressure at the shock front decreases monoton- 
ically. The deviations from the self-similar parameters, given by the formulas (the self- 
similar variables are denoted by subscript a) 

8u== U--Ua t. ( ~  P~Pa t P--P______E t 
Ua ~o ~ Pa '~0 ~ ~P ~ ~Oa ~0 ' 

are shown in Fig. 1. 

The effect of relaxational heat exchange on the pressure damping in the shock wave is 
conveniently characterized by the parameter s which relates the pressure at the shock front, 
p, to the distance from the center of the energy source by p ~ rf -s. When kinematic equi- 
librium exists we have 

d l n p  ~ 2 d l n D  

It should be noted that for strong shocks, in which the relaxation processes occur within 
the shock front, s is a constant that for spherical symmetry, in particular, has the value 
so = 3. Then the reduction in the pressure drop with distance is related only to the geome- 
tric divergence of the flow. At the same time, for a medium in which the shock is damped 
more rapidly than in a uniform medium, the parameter s must exceed So, the value in the self- 
similar solution. 

The deviation from the self-similar value so for t < To is conveniently characterized 
by the quantity 
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Fig. i. Distributions of the corrections to 
the self-similar solution for the density ~p, 
mass velocity 6u, and pressure ~p. 

TABLE i 

.... 2,t 

1,2 I t,t 0,0" 
1,05 [ 0,610 
1,01 ] 1,095 

t,00t ] 1,205 

~fo r  T 

1.2 1,4 

0,0 0,505 
0,560 0,760 
0,840 0,885 
1,065 0,985 
1,tt5 1,010 

5/3 

0,~5 
0,800 
0,870 
0,025 
0,940 

8, - ( s -  8o). g/'~o. (8) 

Table i shows the computed corrections ~s for spherical symmetry. We note that the 
correction 6 s characterizes the rate of damping of the shock with time. 

Introducing the dimensioned parameter To into the problem (i.e., letting thermal relax- 
ation occur) makes the flow non-self-simil@r. In this case the extent of pressure damping 
at the same relative distances R* = rf/F~ ~/" is different. Thus, the reduction in the pres- 
sure at the shock front with dlstance-depends on the parameters po, Eo, 7, Fo, and To. These 
dependences are shown in Fig. 2. 

From Fig. 2a it follows that for To = const the reduction in Fo by changing the mass 
concentration of the condensed phase leads to a substantially more rapid damping of the wave 
than for the same values of Fo at lower mass concentrations, even though in the limiting case 
of no heat exchange (To + ~) the shock parameters are the same in both cases. This effect 
is explained by the fact that, despite the heat exchange, the enhanced concentration of the 
condensed phase leads to a reduction in the shock speed. When heat exchange occurs in the 
medium there is an increase in the time required for the shock to travel a given distance and 
this leads tO more complete heat transfer between the phases. 

For given po, y, Fo, and To (see Fig. 2b) an increase of i0 and i00 times in the energy 
causes a reduction by factors of 1.2 and 1.45, respectively, in the distance over which a pres- 
sure of 5 MPa is reached. The effect of the characteristic heat-exchange time on the pressure 
variation with distance is shown in Fig. 2c. As is to be expected, with more intense heat ex- 
change and all other conditions the same, damping should occur more rapidly. Variations in 
the initial value of y (the adiabatic index of the gaseous phase) lead, on one hand, to dif- 
ferent initial pressures and, on the other, to more rapid damping for smaller y (see Fig. 2d). 

In considering the damping of shock waves generated by nonpolnt energy sources, such as 
solid explosives, it should be noted that increasing the density of the condensed phase in 
order to reduce the shock wave parameters must cause a reduction in the shock formation region 
as well as an increase in the shock parameters at the interface between the two-phase medium 
and the explosion products. It is natural to assume that in some region of shock wave forma- 
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Fig. 2. Dependence of the pressure damping on the relative dis- 
tance when Fo, po, Eo, To and y are varied, a) y = 1.4, E = 107 J, 
To = 150 psec, i) Fo = 1.01, Po = 50 kg/m 3, 2) ro = 1.01, po = 20, 

3) Fo = 1.001, po = I0, 4) Fo = 1.01, po = i0, 5) Fo = I.i, po = 
I0, 6) Fo = 1.01, po = 2 kg/m3; b) y = 1.4, Po = i0 kg/m 3, ro = 
1.01, To = 150 psec, Eo, J: i) 109 , 2) 108 , 3) 107; C) y = 1.4, 
Eo = 107 J, po = i0 kg/m 3, Fo = 1.01, To, psec: i) 30, 2) 80, 3) 
150, 4) 300; d) Eo = 107 J, Po = i0 kg/m 3, Fo = 1.01, ~ = 150 

psec~ y: i) 1.67, 2) 1.4, 3) 1.2, 4) i.i. 
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Fig. 3. Variation in the shock front ve- 
locity with the reduced distance for air 
(i) and foam (2)~ 
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Fig. 4. Pressure variation with 
distance for foam (i, 2) and for 
air (3) [14]. 

tion the pressure amplitude at the shock front in the two-phase medium will also be greater 
than in a gas. 

EXPERIMENTAL STUDY 

In order to obtain quantitative estimates of shock damping in the formation region for 
shock waves generated by solid explosives, we have studied experimentally the velocity field 
of shock waves in an air foam with a mass concentration of liquid of 10-15 kg/m 3. The exper- 
iments were conducted with.spherical explosive charges having a bulk mass of 0.5 kg (Eo = 2.7 
M~J) and using electrical contact probes. 

Figure 3 shows the observed variation in the shock speed with the reduced radius R = 
rf/Q1/3 in foam and in air [14]. It can be seen that at closer distances from the charge, 
there is a sharp reduction in the differencesbetween the shock speeds in the foam and gas. 
Figure 4 shows the variation in the pressure drop at the shock front in foam calculated from 
these data assuming kinematic equilibrium between the phases at the shock front (curve 2). 

For R > 0.4 m/kg I/3, where direct measurements of the pressure were made (continuous 
curve in Fig. 4), with charges having a mass of 0.5-2.8 kg the difference between the measured 
values of the pressure drop [4] and those calculated from the velocity lies within the meas- 
urement error of 20-30%, Thus, we may assume to this accuracy that kinematic interphase 
equilibrium exists in the shock front. Since direct pressure measurements were not made there, 
the calculated dashed curve 2 should be regarded as the upper limit of the possible pressure 
drop at the shock front in foam because a given shock speed would correspond to a lower pres- 
sure in the absence of kinematic equilibrium. Curve i of Fig. 4 represents the pressure field 
of a point explosion in foam taking thermal relaxation into account. As can be seen in Fig. 
4, when R = 0.3 m/kg~/s the pressure in a foam becomes comparable to the pressure at a shock 
front in air and sharply increases on approaching the charge, at the boundary of which, 
judging from the shock speed, the pressure must be p =500 MPa. These data agree with esti- 
mates obtained from the decay of the discontinuity between the explosion products and foam 
(D = 6000 m/sec, p = 500 MPa). Thus, attenuation does not occur near the explosive charge, 
but rather an increase in the shock parameters in foam compared to air. This must be taken 
into account when using foam as a damping medium. 

The characteristic time for heat exchange between the gas and liquid in a foam can be 
estimated by determining the parameter s from the slope of the pressure vs. distance curve 
(see Fig. 4). For R = 0.5 m/kg I/3, when the wave can still be regarded as strong, we have 
s = 4. Given that ~s = I for a gas-water foam with the above mass concentrations of the 
condensed phase (7 = 1.4, Po = 1.01-i.001) and knowing the time for the shock to propagate 
from the surface of the explosive charge to the specified distance, Eq.(8) can easily be used 
to estimate the characteristic heat exchange time, which is To = 150-180 ~sec in this case. 
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This analysis shows that heat transfer significantly changes the flow pattern and makes 
it more difficult to describe the damping of strong shock waves in two-phase media. The 
coupling of the time-varying heat-exchange parameters with changes in the shock damping coef- 
ficients has been demonstrated. It has been found that the parameters of shock waves in 
foams are enhanced compared to those in gases near nonpoint energy sources because of the 
conditions under which energy is transferred from the source to the medium. 

In conclusion, the authors thank A. V. Cherkashin and A. T. Malakhov, who have participa- 
ted directly in the experimental work. 
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