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Molecular relaxation following an explosion in a gaseous or liquid medium proceeds so 
fast that the perturbation front can be regarded as a discontinuity surface (shock wave). 
This makes it correct to use the self-adjoint theory of point explosion [3, 6] for describing 
the evolution of a shock wave during the high-intensity stage of the explosion process also 
at distances where the shape of the energy source does not play a significant role. In this 
case the pressure and velocity field building up after an explosion is uniquely determined 
by the energy of explosion and the thermophysical properties of the gas surrounding the energy 
source. After explosion in a two-phase medium only the gaseous component reaches equilibrium 
immediately, owing to the inertia of condensate particles at the base of the wavefront, The 
hydrodynamic jump is followed by a wide relaxation zone, the equalization time forthe param- 
eters of both phases being one order of magnitude longer than the relaxation time for the gas 
[2, 8]. Consequently, formation of a shock wave after explosion in a two-phase medium cannot 
any more be regarded as occurring within an infinitesimally short time and for determining 
the parameters of such a shock wave one must take into account the relaxatlonal character of 
the wave process [2]. 

For the purpose of analyzing the" effect of relaxation processes on the attenuation of 
strong shock waves, we will consider a homogeneous two-phase medium consisting of a gaseous 
phase and a condensate phase. Let an explosion occur in this medium and, as a result, an 
energy E producing a shock wave be released instantaneously within an infinitesimally small 
volume. We will make the following assumptions: 

i. The density and the specific heat of the condensate phase remain constant. 

2. The volume fraction and the partial pressure of the condensate phase are low so that 
they can be disregarded. 

3. The gas obeys the ideal gas law with constant Cp and y. 

4. The gaseous phase and the condensate phase flow at the same velocity. 

5. The energy of the mixture is an additive quantity. 

6. The time for thermal relaxation between gas and condensate is constant. 

7. Transfer of perturbations from the relaxation zone to the front of the shock wave 
occurs instantaneously. 

For describing the motion of the two-phase mixture was let pg, p, cp, T, eg denote re- 
specitvely the density, the pressure, the constant-pressure specific heat, the temperature, 
and the energy per unit mass of the gaseous phase, ~, c, r, e c denote respectively the mass 
concentration, the specific heat, the temperature, and the energy per unit mass of the con- 
densate phase, r, u, 9, denote respectively the distance from the center of symmetry, the 
mass rate of flow, and the dimensionality of symmetry, and let subscript 0 refer to parameters 
of gasdynamic discontinuity. 

On the basis of the assumptions made here, the fundamental system of equations for the 
mixture will be put in the form 
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8 O ,, au ~ -  1 \ 
ps+ 07'~ u)=O; at 

p8 = pgeg q- O'ec; p=pg+~. (2) 

Inasmuch as the condensate phase does not contribute to the pressure, the well known approach 
to the problem [2, 7] can be used for reducing Eq. (2) to one analogous in form to the equa- 
tion of state for a gas 

P 
pe -- aec0 = ]~-_T 1 , (3) 

-- T O 
1 -{- r T c a 

F=~ , ~ _ T  ! ~ .... 
1 + Too T ' cp ~g 

(4) 

With the aid of the equation of state for a two-phase medium in form (3), one can write 
the equation of a shock adiabat for a two-phase medium as 

r + l , p  + t  
P_!f = P - - 1  Po (5)  
90 ?-+- 1 p 

?-- 1 -~ Po 

During the high-intensity stage of a shock wave (when p >> Po) we have, according to 
Eq~ (5), parameters at the wavefront which obey the conventional relations 

2 r + l  2 
u f =  F.----~-D; P f - -  P - - 1  Po; P f - -  F + I  P~ (6) 

with D denoting the velocity of the shock front. At the center of symmetry r = 0 must be 
u= 0. 

The foregoing equations and boundary conditions will be supplemented with the integral 
relation 

re 

2 ( v - - l ) ~ + 2 - ( v - - 2 ) ( v - - 3 )  ] +p-~-)f-'dr=E. (7) 

0 

The mathematical form of Eqs. (1)-(3), (6), (7) is analogous to the mathematical form of the 
equations for a strong point explosion in a gas [6]. This analogy permits us to use existing 
methods [3, 6, 9] for solving our equations. 

Assuming that T >> To behind the front of a strong shock wave, it is easy to demonstrate 

with the aid of Eq. (3) that T = T and F = Fo during thermodynamic equilibrium (r0=? I + ]~ 

denoting the exponent of the Poisson adiabat for a two-phase mixture [2, 5, 7]). Experi- 
mental studies [8, ii] have demonstrated the correctness of using Fo for a description of 
equilibrium parameters of shock waves in two-phase media. 

On the other hand, during "frozen" relaxation processes T = To and, according to rela- 
tion (4), F = y. Therefore, F is a function of relaxation parameters behind the front of 
the shock wave. 

For specificity, we will henceforth consider a two-phase medium with Fo = i. In two- 
phase media with a foamy structure, for instance, Fo = 1 over the entire ~ = 2-50 kg/m 3 range. 
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For solving the system of Eqs. (i)-(3), (6), (7) and determining the effect of relaxa- 
tion processes on the parameters of a shock wave in a two-phase medium one must specify the 
law according to which F varies behind the wavefront. Let us stipulate that P varies ex- 
ponentially from 7 to its equilibrium value Fo as a function of the time f during which a 
microvolume of the two-phase mixture finds itself within the shock wave 

r :- ro + (~ - to) exp ( -  f/to). (8) 

Then at the wavefront r = y at r = rf. Here to denotes the thermal relaxation time for a 
two-phase mixture. 

For the initial stage of explosion (t ~ to), when F = y, the system of Eqs. (i)-(3), 
(6), (7) has a self-adjoint solution [3, 6] at every r. In this solution in % = r/rf, t 
coordinates the dependent variables, nondimensionalized respectively as 

V = u/D; P = P/poD2; g = P/Po, (9)  

remain constant in time. 

The time f during which a microvolume finds itself within the shock wave, and the self- 
adjoint solution Is valid, satisfies the differential equation 

of 1-- 2 (v--x) of (lo) 
ot = ,~ + ~  t "o--f- 

with the initial and boundary conditions f = 0 at t = 0 and at % = i. 

It is well known [3, 6] that the velocity at the center of symmetry varies according to 
the law V = %/y. We will start with the assumption that this law remains valid over the 
entire range of ~. Then the solution of Eq. (i0) will be 

f = t(1 _~a) ;  a = ? ( v +  2) (11) 
2 ( ? - -  1) " 

For further analysis we assume that transfer of perturbation from the relaxation zone to the 
front of a shock wave occurs at a much faster rate than the rate of change of F. It follows 
from this assumption that the terms in Eqs. (i) which include partial derivatives with respect 
to time are each much smaller when written in variables (9). If it were possible to introduce 
some quantity s constant over the volume and characterizing the given process, therefore, 
then the values of variables V, P, and ~ would appear in a series of self-adjoint solutions 
differing only in the value of s 
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In order to achieve this, we average F over the voluem in the first approximation on 
the basis of the equation for the total energy with the assumption that P = const 

I 1 

1 , .  

o 

We transform the left-hand side, using the variables (9) and the properties of the incomplete 
gamma function y'(~/a, t/to) [I0] 

! 1 

�9 ~-~-~d~=(v--ro) explt/to(1--X=)]X'-!d)~ =(Y--P~ ? -a-' 
o o 

(t/t o ~!a/  (13) _ 

t=O 

This series can be approximated with exp t/to '-~/a when t << to and with e t/to when t >> to. 

One can thus introduce a new variable, constant over the volume, which characterizes the rel- 

axation process 

F '  = F o + ('~ - -  Fo) exp ( - -  t/nto), (14) 

2w (y -- 1) 
where ]~n~ 1 + ? ( ~ + 2 )  ' so that, for instance, i~n~1.34 for y = 1.4 and ~ = 3. 

In subsequent calculations n will be regarded as a constant, inasmuch as it varies only 
slightly in time. 

We differentiate Eqs. (7) with respect to time, using the variable (14), which yields 
for the velocity of the shock front D = drf/dt [9] 

r,f dD ~; i r f  P ' - - F o  
D ~ dt = - - Y -  2nto "--D" F ' - - I  ' ( 15 )  

with rf = 0 at t = 0. 
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The solution to this equation is 

r f -.= A 2nto 1 - - x + . 2 - 1 n  l + b  
I + b/x '/~ +' 
i - - b / x  ' (16) 

with the notation x . . . .  and b = %,--I ' %'--I 

The constant A is evaluated from the condition that at t § 0 the solution must become 
self-adjoint, this constant being related to the explosion energy E and to the initial densit3 
of the medium Oo through the coefficient a [2, 3]: 

E ]1/v+2 
A = \ - ~ o  / " 

At the initial instant of time, when P0--1 r--I <<1, 

(17) 

the solution does not depend on ro 

and is 

r f = A [2nto ( 1 - -  exp ( - -  t/2nto))] ~/~+2. (18) 

According to definition, the pressure attenuation coefficient K for a two-phase medium 
is the ratio of pressure of the shock wave in the medium without thermal relaxation to pres- 
sure at the same distance in a medium of the same density with heat transfer between phases. 
According to relations (6), the attenuatlon coefficient can be expressed a~ 

r '  + I [ o,~ '~, (19) 
r = - V I - v  k--s- / , 

with D and D A denoting the velocity of shock fronts respectivelywith and without heat transfer 
occurring. 

It can be demonstrated that K depends on F' 

(v-- 1)(r0+ i) (20) 
K= (r'-- l)(y+ I) 

The attenuation of shock waves will, obviously, be the maximum attainable when the relaxation 

( ? "  I) (to + 1) 
p r o c e s s  run  t h e i r  f u l l  cofirse and then  K =  ~ o - - - i ) ( ~ l )  ' so t h a t ,  f o r  i n s t a n c e ,  K = 33.4 

when y = 1 .4  and Fo = 1 .01 r e s p e c t i v e i y .  

At the initial instant of time, when heating of the condensate phase is still insignifi- 
cant (Po -- i ~ F' -- i), the pressure attenuation coefficient depends on the time in which the 
shock wave reaches a certain distance in the relaxing medium and does not depend on Fo, i.e., 
on the condensate concentration: 

t )  (21) K = exp -~o " 

Upon examining the dependence of the initial value of the pressure attenuation coefficient 
on the relative radius R = L/E*/9, the explosion energy E, and the initial density 0o, we 
arrive at the relation 

2nto R 2 El/~gtj2 . (22) 
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In the absence of heat transfer between phases the solution to the system of Eqs. (I)- 
(3), (6), (7) becomes self-adjoint, with the pressure attenuation coefficient (20) equal to 
unity and depending neither on the explosion energy nor on the relative radius. The same 
result is obtained from relation (22) at the limit to § ~. 

Expressions (21) and (22) for K are also valid in the case of foams with high concentra- 
tion of the condensate phase, when Fo approaches unity~ 

Curve ! in Fig. 1 depicts the dependence of the calculated pressure attenuation coef- 
ficient on the dimensionless distance L = rf/A(2nto)2/~+2 in media ' with y= 1.4, ~ = 3, 
C/Cp = 4, pg = 1.3 kg/m 3, and a mass concentration of the condensate phase ~ § ~ (which cor- 
responds to Pc § = under the constraints imposed by smallness of the volume fraction of the 
condensate phase). This curve approaches asymptotically the limit L = i. Accordingly, a 
wave can reach only a certain distance which is determined on the one hand by the thermo- 
physical properties of the medium and the explosion energy but on the other hand also by the 
kinetics of relaxational interaction between the phases. Curves 2, 3, and 4 in Fig. I depict 
the dependence of calculated K on L for a medium with mass concentrations of the condensate 
phase ~ = i0, 5, and 2 kg/m 3 respectively. It is noteworthy that these curves reach the 
saturation level within a narrow range of the dimensionless distance for all the three dif- 
ferent concentrations. The dimensionless group L can, therefore, be regardedas s similitude 
criterion for determining the maximum attenuation of shock waves in media with thermal relaxa- 

tion. 

The graph in Fig. 2 depicts the interrelation between four quantities: distance L to the 
shock front, relative radius R = L/E :/~, relative explosion energy E, and pressure attenuation 
coefficient K. One can trace here the variation of any three of them as well as of then 
together. According to this graph, the pressure attenuation coefficient increases with in- 
creasing distance at constant explosion energy as well as with increasing explosion energy at 
a fixed relative radius R. 

The curves in Fig. 3 depict the dependence of coefficient K on the density 0o at various 
relative radii R. According to these curves, an increase of the density of the medium causes 
the pressure attenuation coefficient to increase only slightly near the explosion center but 
quite appreciably at larger radii R. This trend is attributable to expenditure of more energy 
on heating the condensate in a denser medium as the velocity of the propagating wave decreases 
and to a longer time required by the wave in a denser medium to reach a certain point in space. 
It is noteworthy that in the absence of heat transfer between the phases P = y, according to 
relation (4), and relations (16), (17), (19) yield a pressure attenuation coefficient which 
does not depend on the density of the medium. 

The graph in Fig. 4 depicts experimental data on the dependence of the pressure drop at 
the wavefront and of the velocity of the shock wave generated by detonation of an explosive 
substance in foam with a mass concentration of liquid ~ = 15 kg/m s (dash iine) and in air 
(solid line) on the referred distance R* = rfQ1/~ [2], with rf (m) denoting the distance from 
the explosion center and Q (kg) denoting the mass of the hexogen charge. The experiments 
were performed with hexogen charges weighing 1-3 kg. A comparison of the experimental veloc- 
ity-pressure curves indicates the relation between maximum pressure and wave velocity, within 
the given ranges of condensate concentration and explosion energy, can be described by the 
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third of expressions (6). Such a relation is possible only under condition of kinematic 
equilibrium between the gaseous phase and the condensate phase. 

Since the pressure attenuation coefficient under conditions of kinematic phase equilib- 
rium depends only on the heat transfer between phases, it becomes in such a case possible to 
deduce the trend of thermal relaxation in a two-phase medium, without distortion, from experi- 
mental data on attenuation of shock waves. In order to establish the model kinetics here, it 
is appropriate to compare the experimental curves of shock wave attenuation in foams an in a 
medium describable by the equation of state for a gas but not endowed with relaxation prop- 
erties. As such a medium can, specifically, serve a gaseous one and available data on explo- 
sion in air [i] can be used for this purpose. 

From these experimental data one calculates the pressure attenuation coefficient as the 
ratio of pressure in air to pressure in foam at a fixed value of the dimensionless distance. 
It must be taken into consideration that the thus calculated pressure attenuation coefficient 
K within the zone for which the energy source cannot be regarded as a point source will be 
lower than that calculated theoretically. This is so because a shock wave begins to "dis- 
regard" the nonideality of the energy source at nearer distances in a denser medium, in this 
case in foam, than in air [4]. The pressure at the front of a shock wave attributable to 
nonideality of the energy source within the near zone of shock wave buildup, for instance, 
should be higher in foam than in air. 

For predicting the attentuation of shock waves in foam on the basis of the proposed model 
one needs to have an experimental point as reference, inasmuch as the parameter to is involved. 
In this study R* = 0.4 m/kgl/3 was used as the reference point for calculations and to was 
found to be 180 ~sec. 

The graph in Fig. 5 depicts the dependence of the pressure attenuation coefficient on 
the dimensionless radius R*, according to experiment (dash line) and according to theory 
(solid line). A comparison of the two curves indicates that it is possible to describe the 
trend of shock wave attenuation in a two-phase medium with Fo = 1 and to evaluate the param- 
eters of a shock wave during the high-intensity stage of the explosion within the scope of 
the proposed model. Disregarding the counterpressure will, as was to be expected, result in 
an overestimation of the pressure attenuation coefficient at R* > 0.6 m/kgl/s. 
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