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ESTIMATION OF ROCK FAILURE ZONE UNDER CONFINED EXPLOSION

V. O. Vakhnenko, V. P. Nagorny,
I. I. Denisyuk, and A. V. Mishchenko* UDC 622.235

The model of rock-mass shattering is constructed with due regard for the wave load attenuation governed by
the geometrical divergence of wave and irreversible losses in rock. The geometrical similarity of failure zone
is proved for explosions of different energy. The analytical relations connecting the blast wave characteristics
and failure parameters are established.
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INTRODUCTION

In many problems of blasting, the formation of cracks in a rock mass under the explosion action is
of decisive importance. The crack formation exerts an influence on the change in physico-mechanical
rock properties, particularly, the rock-mass permeability. As the permeability in the near-well zone of
the productive strata rises, the producing well discharge increases. It is known that for intensifying the
stratum permeability, acids, surface-active substances, and dissolvents, as well as different kinds of
thermal treatment, etc. are widely applied [1,2]. The method of controlled change in physico-
mechanical properties of rocks in the near-well zone using the pulse action, including explosion energy
is perspective [3].

At the present time, there are a number of models for investigating the explosion action exerted on
solid medium [4 —8]. The zone model is the most adequate, since it takes into account both the rock
properties and the failure character [5]. For real conditions, the theoretical description of crack formation
under explosion is a sufficiently complicated problem. This is associated with the fact that rock mass is
inhomogeneous, and the blast loads are the highly intensive nonlinear actions causing the irreversible
processes within the medium. Based on the solution of system of differential equations, the wave field
can be determined only for certain model media [9—11]. For real media, it is impossible to calculate
the parameters of propagating nonlinear disturbances and the change in the physico-mechanical
properties in each case.

In this paper, the method is proposed for estimating the region of crack formation under the action
of intensive wave loads. To characterize the rock-mass shattering in blast wave propagation, we
selected the energy criterion. The investigations confirmed the functional dependence of failure zone
size on the explosion energy. In addition to it, the obtained analytical relations indicate the blast wave
characteristics which affect the failure process and lay the theoretical foundations for estimating the
blast wave properties by the known failure zone.
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MODEL OF WAVE DISTURBANCE ATTENUATION

During wave disturbance propagation in the medium, the wave attenuates, which is governed not
only by its geometrical divergence, but also by irreversible losses of energy spent for crack formation.
Physically, the functional independence of the first and second processes is possible only in acoustical
approximation. In general case, however, as the cracks form, the load is such that the waves are
nonlinear. Therefore, we restrict ourselves to estimation of only the shattering zone. Yet for mathematical
description of wave field, we assume that these two processes are functionally independent.

We suppose that for one-dimensional motion in medium without energy losses, the dependence of
the blast wave front pressure p . on the distance is determined by the relation:

/v W
pf=A(Q ] (1.1)

r

where Q is the explosion energy; the parameter v determines the type of symmetry: v =1, 2, 3 are the
plane, cylindrical, and spherical symmetries, respectively; t is the constant value; A is the dimension
factor depending on both the medium and the explosive properties [9].

Assume that when the blast wave is at the distance r at the moment ¢=¢,, the pressure changes by

the exponential law [9]:
t,—t
p(r, t)=9(t—t1)pf(r)eXp[17)- (1.2)

Here, 0(¢) is Heaviside function. For a convenience, we accept ¢, =0 in unambiguous cases.

The characteristic time of the wave load action without energy losses has the following functional
dependence:

B
t(r,0)=B0"" (Q%J : (1.3)

where B is the dimension factor [9].

Since the displacement is insignificant as compared with the distance under investigation, we can
state that relations (1.2) and (1.3) are valid for a particular medium microvolume, i.e., in the absence of
energy losses, it undergoes pressure (1.2).

The values of the constants i and [ are interconnected. This fact can be established from the
condition that the energy flow W through the closed surface is distance-independent:

rY~' W (r)=const. (1.4)

For weak blast waves, the flow energy through the surface unite:

W(r)=j %dr, (1.5)

where p is the medium density; c¢ is the longitudinal wave velocity [12, 13]. With the value of
r'7'W (r) required to be independent of distance, we obtain:

B=1-v+2u. (1.6)
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Note that functional dependence (1.3) is known for water [9, 14]. At the same time, for geophysical
medium, the empirical relationship (the spherical case) is used:

=0Y3a+br. (1.7)

The coefficients a and b are determined from the experimental data [3, 9, 11]. The calculation of 7 by
(1.3) and (1.7) showed that these values are close for » <20z, , where 7, is the charge radius.

Relations (1.2) and (1.3) are obtained for blast wave without energy absorption by the medium, i.e.,
at condition (1.4). In general case, under intensive wave loads which are the blast waves, the
irreversible nonequilibrium processes occur in the medium and lead to the additional wave attenuation.
The experimental investigations indicate that the high-frequency disturbances attenuate faster than the
low-frequency ones. We use one of the most frequently applied dependences characterizing the change
in the spectrum density of pulse load [13, 15—17]:

S(r,w)=S,(w)exp(-o|w|r). (1.8)

Physically, this relationship implies that the monochromatic wave of the frequency w attenuates
exponentially. In this case, the energy is absorbed by the medium and not redistributed between
different wave frequencies. Usually the spectrum density of the wave disturbance is determined by
Fourier transformation; for (1.2), it has the form:

Py
)

So(@) = F[p(®)] = J-Q(f)p(t)exp(iwt)dt = (1.9)

REGION OF CRACK FORMATION

As a characteristic of rock shattering in blast wave propagation, the energy criterion is selected: the
crack formation occurs until the energy absorbed by the medium exceeds a certain limiting value. In
order to determine the energy remained in the medium after the blast wave propagation, we calculate
first the total energy flow through the surface unit by formula (1.5):

T exp(=2awr)
pc ®? +772

W(r)——jp (r0ydr=2 do. .1

The latter equality follows from Parseval theorem [18].
The value of the integral:

)= J'exp( 2000r) do

> 22)
- +T

can be expressed through the special functions. However, such notation is ponderous and
uninformative. More effective is the approximation, where (2.2) is estimated by the saddle point
method. From the appendix to this article, integral (2.2) has the following functional dependence on r
and 7: [=e '\ 2nrarctg(t/20r). Therefore, the whole energy flow to pass through the surface

o()r', where c(v)=2m(v-1)+(v-2)(v-3), equals:

G(ry=soW)r''W(r)=o((\)D Q2 arctg w9 , D= AzBe\/Z . (2.3)
pc 2or /4
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Using (2.3), we can estimate the energy remained in the medium layer o(v)rV~'dr after the blast
wave propagation:
d[r’='W(r)]

Gr)-G(r+dr)=-0() P

dr.

According to the accepted failure criterion, the crack formation takes place if the k-share of the
energy exceeds a certain admissible value. Denote the maximum admissible energy of crack formation
per volume unite by ¥, and obtain the crack formation criterion:

—ko(v) % >o(V)r'ly,. (2.4)

Note that in general case, the specific energy 7, of failure depends on v, and the failure mechanism

can vary. For example, the tangential stresses to be considerable in rock mass failure under the action
of the cylindrical or spherical waves are absent in the plane case.

We proceed to the investigation of the coefficient k. As mentioned above, it has the following
sense. The k-share of the blast wave energy absorbed by the medium is spent for crack formation. It is
evident that in failure zone, the value of k& can be distance-dependent. We can consider the energy 7,

to be the same for different Q on the boundary of crack formation region. Therefore, it is assumed that
values of & coincide in this case.
Substituting (2.3) into (2.4), we derive the equation connecting Q and the failure zone size 7, :

) 2
o v “rb2(1+/4—v)

2p2
W e |2 gopy @B 2.5)
Qory)? +1%(r,, Q) H T pc
By forward substitution, the solution of this equation takes the form:
7, =RV (2.6)

where the dimensional constant R satisfies the equation:

R2(1+y—v)
S 2.7)
(QocR)?> +(BRPY?* H

Thus, the relations obtained make it possible to confirm the following statements. Firstly, equality (2.6)
previously established experimentally is theoretically substantiated [13—20]. Also, the conformity of the
theoretical and experimental results indicates the correct choice of the basic characteristics of the model
proposed for the physical phenomenon of crack formation in a rock mass. Secondly, expression (2.7)
enables us to estimate the coefficient R by the medium and explosive properties. Moreover, using (2.7),
we can consider the inverse problem and calculate the blast wave parameters, as well as the medium
properties by the known failure zone: to determine ¢, ¥, , 4, and B through the value of R.

ENERGY AND REGION OF CRACK FORMATION

Examine the change in region of crack formation at fixed explosion energy relative to 7, .

Represent (2.7) in the dimensionless form:
Zl—v—ﬁ

e (3.1)
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Here, T'=y,B"™"-F) pc/(2e'V2/m (1- B)k A%’ =P)) and 1=(20/B)"""") R are the dimensionless
values. Figures 1, 2 present the graphs of the dependence TI'(/) at different B for the cylindrical
(v =2) and spherical (v =3) cases, respectively.

Rewriting (3.1) as T~! =1V (I""# +1-0-P)) , we note that "' =/V~IB-1l at [ <<1, and T'~! =7v+|B-1l
when />>1. In logarithmic coordinates, they are the straight lines going through the point /=1, at
I'=0.5 (dark-colored points in Figs. 1, 2). Provided =1, both asymptotic forms coincide; if #1,
the graphs are convex upwards. Pay attention to the fact that with | 8, —1|=| B, —1], the graphs coincide
for any two values of u, and u, satisfying the relationship u, +u, =v . It is obvious from Fig. 1 that
curve 3 corresponds both to 1 =0.5 and p=1.5. The same is observed in Fig. 2: curve 3 corresponds
simultaneously to the values =1 and u=2.

In the different domains I'>1 and I"<1, the same relative energy change required for failure of I"
leads to the various changes in size of the failure zone. For example, the decrease of I' in the domain
I">1 by a factor of 2 causes more considerable increase in the failure zone as compared with the same
decrease of I" in I'<1.

1073 T T T TTTT T T T Z
107" 10° 10!

Fig. 1. Graphs of dependence I'(/): / — B=1;2— B=1+0.44;and 3 — [f=1%1

10. II'I] l
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107" 10
Fig. 2. Graphs of dependence T'(/): I — f=1;2— f=1£0.74;and 3 — B=1%1
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It is required that in real process, the conditions corresponding to the value close to /=1 in terms of
the dimensionless variables /, I" are realized. For example, for blasting in granite, the values 2cr, and

7(r,, Q) coincide completely, i.e., /=1. This implies that the process is governed both by the
characteristic time 7 of the blast load and the wave attenuation at the distance 2car. When [/ <<1, the
process of crack formation is determined by 7, and conversely at />>1, the most important
characteristic is the degree of the blast wave attenuation with distance.

COMPARISON WITH THE EXPERIMENT

Theoretical dependence (2.6) of the crack-formation region size on the blasting energy contains
only one unknown parameter R. Thus, to find R and the dependence 7, =r,(Q), it is sufficient to carry
out one experiment on blasting the solid medium; in the experiment, for assigned Q, the size r, of the
fractured region is known. The comparison of the experimental results [13, 19] and (2.6) is shown in
Fig. 3. To calculate R, we specified a fiducial point whose values for granite and limestone are
presented in Table 1. In logarithmic coordinates, the graph of (2.6) represents a straight line passing
through a fixed point. The fiducial points are darkened in Fig. 3.

The blast wave parameters are presented for trotyl. The dimension factor B is established from the
condition of coincidence of the values of 7 calculated by (1.3) and (1.7) at a distance equal to the charge
radius. In (1.1), the dimensional constant 4 is connected with 4" from Table 1 by the relation:
A" =A(QY3 Ir)* , where Q, =1 kg, 1, =0.054 m.

In fact, equality (2.6) is not a new result. However, the identity of the theoretical dependence r, ~ Q'3

and the experimental data indicates that the assumptions in the model are admissible. In this case,
R functionally depends on p,c, o, i, A, B, and 7y, (but without Q), i.e., on the properties of both the

medium and the explosive. Using (2.7), we determine R by the above-mentioned values as well as obtain
¥, or another value from the listed ones by the known R, which corresponds to the direct and inverse

problems, respectively.
For inverse problem, the energy density 7y, /k is estimated. It is absorbed by the medium near the

boundary of crack formation region. The Y, /k ratio obtained from (2.7) is presented in Table 1.

¥, m

10 H

A

107" 10° 10! 102 O, ke

Fig. 3. Size of crack formation region as explosion energy function (theoretical results — straight
lines; experiment: © — granite, A — limestone)
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TABLE 1

Features Blast wave Fixed point Calculation
Medium | ¢ | 107, 4108, a-105, | b-10%, | O, | n. | R | n/k
3 H 13 13 3

kg/m’ | m/s m/s Pa s/kg s/m kg m | m/kg J/m
Granite 2600 | 5720 2 1.13 1.09 3.6 0.18 1 2.4 2.4 0.67
Limestone | 2580 | 4650 6 1.13 0.30 4.1 4.69 1 2.0 2.0 0.19

At the same time, the direct problem of calculating R by the energy 7y, spent for crack formation

makes it possible to use additional theoretical and experimental results which are not pertinent to
explosion. In this case, apart from the well-known values p, ¢, , 4, B, and o [15—17] (Table 1), it

is required to find y, and kor 7y, /k. Knowing 7y, and k, we can estimate R by (2.6) without carrying
out an experiment. Currently, the problem on finding the values of y, and k& from the other theoretical

and experimental data remains unsolved.
CONCLUSION

The model of crack formation under the action of blast wave is developed. It takes into
consideration the change in the wave load to be governed by geometrical divergence of wave as well as
irreversible losses in the medium. The energy criterion was selected for the solid medium failure during
blast wave propagation. The geometrical similarity of failure zone caused by the explosion energy is
proved. The conformity of the theoretical and experimental results indicates the correct choice of the
basic characteristics for the proposed model of crack formation in a rock mass. On the basis of the
assigned features of the medium and explosive (the direct problem), the analytical dependences ensure
the estimation of crack formation zone, as well as lay the foundation for determining the blast wave
parameters and the medium properties by the known failure zone (the inverse problem).

APPENDIX
Reduce integral (2.2) to the form convenient for applying the saddle point method:

= J‘d exp(-2awr)

PRI = tarctgT w exp (2 awr) |, + 20t J dw arctg (Tw) exp(-2o0wr) =

0

T t
:TJ dw%(“o)exp (2a0or+nRawr)).

At the point @, =(2ar)™!, the exponential curve has the maximum. In the vicinity of this point, the
integrand contributes to the integral required, and according to the saddle point method, it has the form:

T T
tg —. .1
Tarc g2ocr (a. 1)

I =20t arctg (Tw) J dw exp(-1-20%r*(0-m,)*)=

—o0

The numerical calculations show that the deviation of the exact value of integral (2.2) from
approximate value (a. 1) does not exceed 8 %.

The study was conducted with partial financial support from the Ukraine Scientific and Technical
Center, Project No. 1747.
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