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Abstract

A B€aacklund transformation both in bilinear form and in ordinary form for the transformed Vakhnenko equation is
derived. An inverse scattering problem is formulated. The inverse scattering method has a third-order eigenvalue

problem. A procedure for finding the exact N -soliton solution of the Vakhnenko equation via the inverse scattering
method is described. The procedure is illustrated by considering the cases N ¼ 1 and N ¼ 2. � 2002 Elsevier Science

Ltd. All rights reserved.

1. Introduction

This paper deals with the nonlinear evolution equation

o

ox
o

ot

�
þ u

o

ox

�
uþ u ¼ 0; ð1:1Þ

which was first presented by Vakhnenko in [1] to describe high-frequency waves in a relaxing medium [2]. Hereafter

(1.1) is referred to as the Vakhnenko equation (VE).

In [1,3] the travelling-wave solutions of the VE were derived. A remarkable feature of the VE is that it has a soliton

solution which has loop-like form, i.e. it is a multi-valued function (see Fig. 1 in [1]). The physical interpretation of the

multi-valued functions that describe the loop-like soliton solutions was given in [2]. In [4] the symmetry properties of the

VE were studied. It is significant that the loop-like solutions are stable to long-wavelength perturbations [3] and that the

introduction of a dissipative term, with dissipation parameter less than some limit value, does not destroy these loop-

like solutions [2]. Recently we obtained the two-loop soliton solution to the VE both by use of Hirota’s method [5] and

by use of elements of the inverse scattering transform (IST) procedure for the KdV equation [6]. We have obtained the

N -loop soliton solution to the VE by use of Hirota’s method [7]. As we have shown that the VE is integrable, the IST is
the most appropriate way of tackling the initial value problem. In order to use the IST method one first has to formulate

the associated eigenvalue problem. This can be achieved by finding a B€aacklund transformation associated with the VE;
it is well known that the B€aacklund transformation is one of the analytical tools for dealing with soliton problems and
has a close relationship to the IST method [8–10]. In this paper we use the IST method to find the exact N-soliton
solution of the VE.

In Section 2 we summarise how we previously introduced new independent coordinates in terms of which the

solution to the VE is given by single-valued parametric relations [5,6]. The transformation into these coordinates is the

key to solving the problem of the interaction of solitons as well as explaining multiple-valued solutions [2]. This
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transformation also leads to a transformed VE that can be expressed in bilinear form in terms of the Hirota D operator
[8]. In Section 3 we present the B€aacklund transformation in bilinear form and in ordinary form for the VE written in
terms of the new independent variables. The former type of B€aacklund transformation was first introduced by Hirota [9]
and has the advantage that the transformation equations are linear with respect to each dependent variable. The

B€aacklund transformation in ordinary form enables one to relate pairs of solutions of the VE. In Section 4 we find that
the IST problem for the transformed VE involves a third-order eigenvalue problem. The inverse problem for certain

third-order spectral equations has been considered by Kaup [11] and Caudrey [12,13]. In Section 5 we adapt the results

obtained by these authors to the present problem and describe a procedure for using the IST to find the N -soliton
solution to the transformed VE, and hence to the VE itself. In Section 6 we consider the cases N ¼ 1 and N ¼ 2 in
more detail.

2. Equation in new coordinates

As previously [5,6], we define new independent variables ðT ;X Þ by the transformations
udT ¼ dx� udt; X ¼ t: ð2:1Þ

The function u is to be obtained. It is an additional dependent variable in equation system (2.3), (2.4) to which we

reduce the original equation (1.1). The transformation (2.1) is similar to the transformation between Eulerian co-

ordinates ðx; tÞ and Lagrangian coordinates ðT ;X Þ. We then require T ¼ x if there is no perturbation, i.e. if
uðx; tÞ ¼ 0. Hence u ¼ 1 when uðx; tÞ ¼ 0. For example, it may be shown from Eqs. (12) and (14) in [1] that

u ¼ 1� u=v for the one-loop soliton solution.
In terms of the coordinates ðT ;X Þ and the unknown UðX ; T Þ � uðx; tÞ, Eq. (1.1) becomes

u�1 o

oT
o

oX
U þ U ¼ 0: ð2:2Þ

An equation for the variable u can be obtained in the following way. Noting that the transformation inverse to (2.1) is

dx ¼ udT þ U dX ;

and taking into account the condition that dx is an exact differential, we get

ou
oX

¼ oU
oT

: ð2:3Þ

This equation, together with (2.2) rewritten in the form

o2u
oX 2

þ Uu ¼ 0; ð2:4Þ

is the main system of equations. In terms of the coordinates ðT ;X Þ the solution is given by single-valued parametric
relations. The transformation into these coordinates is the key to solving the problem of the interaction of solitons as

well as explaining multiple-valued solutions [2]. The equation system (2.3), (2.4) can be reduced to a nonlinear equation

in the unknown W defined by

WX ¼ U ð2:5Þ

as follows. As in [5,6], we study solutions U that vanish as jX j ! 1 or, equivalently, solutions for which W tends to a

constant as jX j ! 1. From (2.3) and (2.5) and the requirement that u ! 1 as jX j ! 1 we have u ¼ 1þ WT ; then (2.4)

may be written

WXXT þ ð1þ WT ÞWX ¼ 0: ð2:6Þ

Furthermore, it then follows that the original independent space coordinate x is given by

x ¼ hðX ; T Þ :¼ x0 þ T þ W ðX ; T Þ; ð2:7Þ

where

W ¼
Z X

�1
UðX 0; T ÞdX 0 ð2:8Þ
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and x0 is an arbitrary constant. Now the solution to the VE is given in parametric form by

uðx; tÞ ¼ Uðt; T Þ; x ¼ hðt; T Þ; ð2:9Þ

where, for T fixed, the functions Uðt; T Þ and hðt; T Þ are single valued.
Finally, by taking

W ¼ 6ðln f ÞX ; ð2:10Þ

where f is a function of X and T , we observe that (2.6) may be written as the bilinear equation [5]

DTD3X
�

þ D2X
�
f � f ¼ 0; ð2:11Þ

where D is the Hirota binary operator defined by

Dm
T D

n
X

� �
a � b :¼ o

oT

�
� o

oT 0

�m
o

oX

�
� o

oX 0

�n

aðX ; T ÞbðX 0; T 0Þ
����
X 0¼X ;T 0¼T

for non-negative integers m and n [8].
In passing we note that the Hirota–Satsuma equation (HSE) for shallow water waves [14] may be written in the form

WXXT þ ð1þ WT ÞWX � WT ¼ 0; ð2:12Þ

or in bilinear form as

DTD3X
�

þ D2X � DTDX

�
f � f ¼ 0: ð2:13Þ

Clearly (2.12) and (2.13) are similar to, but cannot be transformed into, (2.6) and (2.11), respectively. Hence solutions

to the HSE cannot be transformed into solutions of the transformed VE. The solution to the HSE by Hirota’s

method is given in [14]; however, as far as we are aware, the solution by the IST method has not been given explicitly

in the literature.

Our main aim in this paper is to give the details of the IST method for solving the transformed VE. This is done in

Section 5. First, however, we need to formulate the scattering problem. This is done in Section 4 using results from

Section 3.

3. Bäcklund transformation for the transformed Vakhnenko equation

In this section we present a B€aacklund transformation for (2.11), the bilinear form of Eq. (2.6).

We follow the method developed in [9]. First we define P as follows:

P :¼ 2 DTD3X
���

þ D2X
�
f 0 � f 0	ff � f 0f 0 DTD3X

��
þ D2X

�
f � f

	

; ð3:1Þ

where f 6¼ f 0. We aim to find a pair of equations such that each equation is linear in each of the dependent variables f
and f 0, and such that together f and f 0 satisfy P ¼ 0. (It then follows that if f is a solution of (2.11) then so is f 0 and vice

versa.) The pair of equations is the required B€aacklund transformation.
We show that the B€aacklund transformation is given by the two equations

ðD3X � kÞf 0 � f ¼ 0; ð3:2Þ

ð3DXDT þ 1þ lDX Þf 0 � f ¼ 0; ð3:3Þ

where k ¼ kðX Þ is an arbitrary function of X and l ¼ lðT Þ is an arbitrary function of T .
We prove that together f and f 0, as determined by Eqs. (3.2) and (3.3), satisfy P ¼ 0 as follows. By using the

identities (VII.3), (VII.4) from [15], and Eq. (5.86) from [8] we may express P in the following form:

P ¼ DT D3X f
0 � f

� �
� ðf 0f Þ

�
� 3 D2X f

0 � f
� �

� ðDXf 0 � f Þ
	
þ DX ½3 DTD2X f

0 � f
� �

� ðf 0f Þ � 6ðDXDT f 0 � f Þ � ðDXf 0 � f Þ
� 3 D2X f

0 � f
� �

� ðDT f 0 � f Þ þ 4ðDXf 0 � f Þ � ðf 0f Þ�: ð3:4Þ

On using the identities (A.1) and (A.2) given in Appendix A we can rewrite P in the following form:

P ¼ 4DT D3X
��

� kðX Þ


f 0 � f

�
� ðf 0f Þ � 4DX ðf3DTDX þ 1þ lðT ÞDXgf 0 � f Þ � ðDXf 0 � f Þ: ð3:5Þ

From (3.5) it follows that if Eqs. (3.2) and (3.3) hold then P ¼ 0 as required.
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Thus we have proved that the pair of equations (3.2) and (3.3) constitute a B€aacklund transformation in bilinear form
for Eq. (2.11). Separately these two equations appear as part of the B€aacklund transformation for other nonlinear
evolution equations. For example,Eq. (3.2) is the same as one of the equations that is part of the B€aacklund trans-
formation for a higher-order KdV equation (see Eq. (5.139) in [8]), and Eq. (3.3) is similar to (5.132) in [8] that is part of

the B€aacklund transformation for a model equation for shallow water waves.
The inclusion of l in the operator 3DT þ lðT Þ which appears in (3.5) corresponds to a multiplication of f and f 0 by

terms of the form egðT Þ and eg
0ðT Þ, respectively; from (2.10) we see that this has no effect on W or W 0. Hence, without loss

of generality, we may take l ¼ 0 in (3.3) if we wish.
Following the procedure given in [8,16], we can rewrite the B€aacklund transformation in ordinary form in terms of the

potential W given by (2.8). In new variables defined by

/ ¼ ln f 0=f ; q ¼ ln f 0f ; ð3:6Þ

Eqs. (3.2) and (3.3) have the form

/XXX þ 3/XqXX þ /3X � k ¼ 0; ð3:7Þ

3 qXTð þ /X/T Þ þ 1þ l/X ¼ 0; ð3:8Þ

respectively, where we have used results similar to (XI.1)–(XI.3) in [8]. From the definitions (2.10) and (3.6), different

solutions W , W 0 of Eq. (2.6) are related to / and q by

W 0 � W ¼ 6/X ; W 0 þ W ¼ 6qX : ð3:9Þ

Substitution of (3.9) into (3.7) and (3.8) with l ¼ 0 leads to

ðW 0 � W ÞXX þ 1
2
ðW 0 � W ÞðW 0 þ W ÞX þ 1

36
ðW 0 � W Þ3 � 6k ¼ 0; ð3:10Þ

ðW 0 � W Þ 3ðW 0
�

þ W ÞXT þ
1

2
ðW 0 � W ÞðW 0 � W ÞT

�
� 6ðW 0 � W ÞX 1

�
þ 1
2
ðW 0 þ W ÞT

�
¼ 0; ð3:11Þ

respectively. The required B€aacklund transformation in ordinary form is the pair of equations (3.10) and (3.11).

4. Formulation of the inverse scattering eigenvalue problem

In this section we will show that the IST problem for the transformed VE in the form (2.6) has a third-order ei-

genvalue problem that is similar to the one associated with a higher-order KdV equation [11,16], a Boussinesq equation

[11,12,17,18], and a model equation for shallow water waves [8,15].

Introducing the function

w ¼ f 0=f ; ð4:1Þ

and taking into account Eqs. (2.5) and (2.10), we find that Eqs. (3.2) and (3.3) reduce to

wXXX þ UwX � kw ¼ 0; ð4:2Þ

3wXT þ ðWT þ 1Þw þ lwX ¼ 0; ð4:3Þ

respectively, where we have used results similar to (X.1)–(X.3) in [8]. It may be shown from (4.2) and (4.3) that, even

with l 6¼ 0,
½WXXT þ ð1þ WT ÞWX �Xw þ 3kXwT ¼ 0:

Hence (2.6) is the condition for kX ¼ 0, and hence for k to be constant. Constant k is what is required in the IST problem.
Since (4.2) and (4.3) are alternative forms of Eqs. (3.2) and (3.3), respectively, it follows that the pair of equations

(4.2) and (4.3) is associated with the transformed VE (2.6) considered here. Thus the IST problem is directly related to a

spectral equation of third order, namely (4.2). The inverse problem for certain third-order spectral equations has been

considered by Kaup [11] and Caudrey [12,13]. As expected (4.2) and (4.3) are similar to, but cannot be transformed into,

the corresponding equations for the HSE (see Eqs. (A8a) and (A8b) in [19]). Clarkson and Mansfield [20] note that the

scattering problem for the HSE is similar to that for the Boussinesq equation which has been studied comprehensively

by Deift et al. [18].
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5. The N-soliton solution

The general theory of the inverse scattering problem for N spectral equations has been developed in [12]. Following
the procedure given in [12], the spectral equation (4.2) can be rewritten in the form

o

oX
w ¼ AðfÞ½ þ BðX ; fÞ� � w ð5:1Þ

by putting

w ¼
w

wX

wXX

0
@

1
A; A ¼

0 1 0

0 0 1

k 0 0

0
@

1
A; B ¼

0 0 0

0 0 0

0 �U 0

0
@

1
A: ð5:2Þ

The matrix A has eigenvalues kjðfÞ and left- and right-eigenvectors ~vvjðfÞ and vjðfÞ, respectively, where

kjðfÞ ¼ xjf; k3j ðfÞ ¼ k; vjðfÞ ¼
1

kj

k2j

0
B@

1
CA; ~vvjðfÞ ¼ k2j ; kj; 1

� �
; ð5:3Þ

and xj ¼ ei2pðj�1Þ=3 are the cube roots of 1.
The solution of the linear equation (2.6), or equivalently Eq. (5.1), has been obtained by Caudrey [12] in terms of

Jost functions /jðX ; fÞ which have the asymptotic behaviour

UjðX ; fÞ :¼ expf�kjðfÞXg/jðX ; fÞ ! vjðfÞ as X ! �1: ð5:4Þ

Here T is regarded as a parameter; the T -evolution of the scattering data will be taken into account later. The
solution of the direct problem is given by the equation system (4.5) in [12]. We shall restrict our attention to the N -
soliton solution. To do this we consider equation (6.20) from [12] by putting QijðfÞ � 0. Then there is only the bound
state spectrum which is associated with the soliton solutions.

Let the bound state spectrum be defined by K poles. The relation (4.5) from [12] is reduced to the form

U1ðX ; fÞ ¼ 1�
XK
k¼1

X3
j¼2

cðkÞ1j
expf½kjðfðkÞ1 Þ � k1ðfðkÞ1 Þ�Xg

k1ðfðkÞ1 Þ � k1ðfÞ
U1ðX ;xjf

ðkÞ
1 Þ: ð5:5Þ

We need only consider the function U1ðX ; fÞ since there is a set of symmetry properties as for the Boussinesq
equation, namely the properties (6.15) in [12] for Jost functions /jðX ; fÞ. Eq. (5.5) involves the spectral data, namely
the poles fðkÞi and the quantities cðkÞij . First we will prove that Rek ¼ 0 for compact support. From Eq. (4.2) we have

ðwX ÞXXX þ ðUwX ÞX � kwX ¼ 0 ð5:6Þ

and together with Eq. (4.2) this enables us to write

o

oX
o2

oX 2
wXw�

�
� 3wXXw�

X þ UwXw�
�
� 2RekwXw� ¼ 0: ð5:7Þ

Integrating Eq. (5.7) over all values of X , we obtain that for compact support Rek ¼ 0 since, in the general case,R1
�1 wXw� dX 6¼ 0.
As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [11], wX ðfÞ is related to the adjoint states wAð�fÞ. In the usual

manner, using the adjoint states and Eq. (14) from [13], and Eq. (2.37) from [11], one can obtain

/1X ðX ; fÞ ¼ iffiffiffi
3

p /1X ðX ;½ � x2fÞ/1ðX ;� x3fÞ � /1X ðX ;� x3fÞ/1ðX ;� x2fÞ�: ð5:8Þ

It is easily seen that if fð1Þ1 is a pole of /1ðX ; fÞ, then there is a pole either at fð2Þ1 ¼ �x2f
ð1Þ
1 (if /1ðX ;�x2fÞ has a pole),

or at fð2Þ1 ¼ �x3f
ð1Þ
1 (if /1ðX ;�x3fÞ has a pole). For definiteness let fð2Þ1 ¼ �x2f

ð1Þ
1 . Then, as follows from (5.8),

�x3f
ð2Þ
1 should be a pole. However, this pole coincides with the pole fð1Þ1 , since �x3f

ð2Þ
1 ¼ �x3ð�x2Þfð1Þ1 ¼ fð1Þ1 . Hence,

the poles appear in pairs, fð2n�1Þ1 and fð2nÞ1 , under the condition fð2nÞ1 =fð2n�1Þ1 ¼ �x2, where n is the pair number.
Let us consider N pairs of poles, i.e. in all there are K ¼ 2N poles over which the sum is taken in (5.5). For the pair n

(n ¼ 1; 2; . . . ;N) we have the properties
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ðiÞ fð2n�1Þ1 ¼ ix2nn; ðiiÞ fð2nÞ1 ¼ �ix3nn: ð5:9Þ

Since U is real and k is imaginary, nk is real. The relationships (5.9) are in line with the condition (2.33) from [11]. These

relationships are also similar to Eqs. (6.24) and (6.25) in [12], while cðkÞ1j turns out to be different from ~ccðkÞ1j for the
Boussinesq equation (see Eqs. (6.24) and (6.25) in [12]). Indeed, by considering (5.8) in the vicinity of the first pole fð2n�1Þ1

of the pair n and using the relation (5.5), one can obtain a relation between cð2n�1Þ12 and cð2nÞ13 . In this case the functions

/1X ðX ; fÞ, /1ðX ;�x2fÞ, /1X ðX ;�x2fÞ also have poles here, while the functions /1ðX ;�x3fÞ, /1X ðX ;�x3fÞ do not have
poles here. Substituting /1ðX ; fÞ in the form (5.4), (5.5) into Eq. (5.8) and letting X ! �1, we have the ratio
cð2nÞ13 =cð2n�1Þ12 ¼ x2 and cð2nÞ12 ¼ cð2n�1Þ13 ¼ 0. Therefore the properties of cðkÞij should be defined by the relationships

ðiÞ cð2n�1Þ12 ¼ x2bk ; cð2n�1Þ13 ¼ 0;
ðiiÞ cð2nÞ12 ¼ 0; cð2nÞ13 ¼ x3bk ;

ð5:10Þ

where, as will be proved below, bk is real when U is real.

By expanding U1ðX ; fÞ as an asymptotic series in k�1
1 ðfÞ, one can obtain (cf. Eq. (2.7) in [11])

U1ðX ; fÞ ¼ 1�
1

3k1ðfÞ
W ðX Þ½ � W ð �1Þ� þOðk�2

1 ðfÞÞ: ð5:11Þ

On the other hand, by defining

WkðX Þ ¼
X3
j¼2

cðkÞ1j expfkjðfðkÞ1 ÞXgU1ðX ;xjf
ðkÞ
1 Þ; ð5:12Þ

we may rewrite the relationship (5.5) as (see, for instance, Eqs. (6.33) and (6.34) in [12])

U1ðX ; fÞ ¼ 1�
X2N
k¼1

expf�k1ðfðkÞ1 ÞXg
k1ðfðkÞ1 Þ � k1ðfÞ

WkðX Þ: ð5:13Þ

From (5.11) and (5.13) it may be shown that (cf. Eq. (6.38) in [12])

W ðX Þ � W ð�1Þ ¼ �3
X2N
k¼1

expf�k1ðfðkÞ1 ÞXgWkðX Þ ¼ 3
o

oX
lnðdetMÞ: ð5:14Þ

The matrix M is defined as in the relationship (6.36) in [12] by

MklðX Þ ¼ dkl �
X3
j¼2

cðkÞ1j
expf½kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ�Xg

kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ
: ð5:15Þ

Now let us consider the T -evolution of the spectral data. By analyzing the solution of Eq. (4.3) when X ! �1, we
find that /iðX ; T ; fÞ ¼ exp½�ð3kiðfÞÞ�1T �/iðX ; 0; fÞ. Hence the T -evolution of the scattering data is given by the rela-
tionships (with k ¼ 1; 2; . . . ;K)

fðkÞj ðT Þ ¼ fðkÞj ð0Þ; cðkÞ1j ðT Þ ¼ cðkÞ1j ð0Þ expf½�ð3kjðfðkÞ1 ÞÞ�1 þ ð3k1ðfðkÞ1 ÞÞ�1�Tg: ð5:16Þ

The final result, including the T -evolution, for the N-soliton solution of the transformed VE is

UðX ; T Þ ¼ 3 o2

oX 2
lnðdetMðX ; T ÞÞ; ð5:17Þ

where M is the 2N � 2N matrix given by

Mkl ¼ dkl �
X3
j¼2

cðkÞ1j ð0Þ
expf½�ð3kjðfðkÞ1 ÞÞ�1 þ ð3k1ðfðkÞ1 ÞÞ�1�T þ ðkjðfðkÞ1 Þ � k1ðfðlÞ1 ÞÞXg

kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ
; ð5:18Þ

and

n ¼ 1; 2; . . . ;N ; m ¼ 2n� 1;
k1ðfðmÞ1 Þ ¼ ix2nm; k2ðfðmÞ1 Þ ¼ ix3nm; cðmÞ12 ð0Þ ¼ x2bm; cðmÞ13 ð0Þ ¼ 0;
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k1ðfðmþ1Þ1 Þ ¼ �ix3nm; k3ðfðmþ1Þ1 Þ ¼ �ix2nm; cðmþ1Þ12 ð0Þ ¼ 0; cðmþ1Þ13 ð0Þ ¼ x3bm:

For the N -soliton solution there are N arbitrary constants nm and N arbitrary constants bm.

6. Examples of one- and two-soliton solutions

In order to obtain the one-soliton solution of the transformed VE (2.6) we need first to calculate the 2� 2 matrix M
according to (5.18) with N ¼ 1. We find that the matrix is

1� x2b1ffiffi
3

p
n1
exp½

ffiffiffi
3

p
n1X � ð

ffiffiffi
3

p
n1Þ�1T � ix3b1

2n1
exp½2ix3n1X � ð

ffiffiffi
3

p
n1Þ�1T �

�ix2b1
2n1

exp½�2ix2n1X � ð
ffiffiffi
3

p
n1Þ�1T � 1� x3b1ffiffi

3
p

n1
exp½

ffiffiffi
3

p
n1X � ð

ffiffiffi
3

p
n1Þ�1T �

 !
; ð6:1Þ

and its determinant is

detM ¼ 1

(
þ b1
2
ffiffiffi
3

p
n1
exp

ffiffiffi
3

p
n1 X

 "
� T

3n21

!#)2
: ð6:2Þ

Consequently, from (5.17), the one-soliton solution of the transformed VE as obtained by the IST method is

U ¼ 9
2

n21 sech
2

ffiffiffi
3

p

2
n1 X

 "
� T

3n21

!
þ a1

#
; ð6:3Þ

here a1 ¼ 1
2
lnðb1=2

ffiffiffi
3

p
n1Þ is an arbitrary constant. Since U is real, it follows from (6.3) that a1 is real, and so b1 is

also real. By writing
ffiffiffi
3

p
n1=2 ¼ k in (6.3) we recover the one-soliton solution as we found previously by Hirota’s

method (see Eq. (3.4) in [5]).

It is of interest to compare Eq. (6.3) with the solution of the fifth-order KdV-like equation discussed in [11]. The

spectral equation (4.2) is the same as that given by (1.1) (with R ¼ 0) in [11], whereas the equation that governs the
time dependence of w, i.e. (4.3), is different from (1.2) in [11]. Thus the X dependence of (6.3) should agree with the

x dependence of the solution given by (3.30) in [11]. With the identification U ¼ 6Q, n1 ¼ g, this is indeed the case.
Let us now consider the two-soliton solution of the transformed VE. In this case M is a 4� 4 matrix. We will not

give the explicit form here, but we find that

detM ¼ 1
�

þ q21 þ q22 þ b2q21q
2
2

�2
; ð6:4Þ

where

qi ¼ exp
ffiffiffi
3

p

2
ni X

 "
� T

3n2i

!
þ ai

#
; b2 ¼ n2 � n1

n2 þ n1

� �2 n21 þ n22 � n1n2
n21 þ n22 þ n1n2

; ð6:5Þ

and ai ¼ 1
2
lnðbi=2

ffiffiffi
3

p
niÞ are arbitrary constants. The two-soliton solution to the transformed VE as found by the IST

method is given by (5.17) together with (6.4). With the identification
ffiffiffi
3

p
ni=2 ¼ ki ði ¼ 1; 2Þ we recover the two-soliton

solution as given by Hirota’s method (see Eqs. (4.1)–(4.5) in [5]).

Finally we note that comparison of (5.17) with (2.10) together with (2.5) shows that

lnðdetMÞ ¼ 2 ln f ð6:6Þ

so that detM is a perfect square for arbitrary N .

7. Conclusion

We have found the B€aacklund transformation both in bilinear form and in ordinary form for the transformed VE. It
enabled us to formulate an IST problem for the transformed VE which is directly related to a spectral equation of third

order. We have described how to obtain the N-soliton solution to the VE.
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Appendix A

The following identities (A.1), (A.2) are required in Section 3:

D3X ðDT f 0 � f Þ � ðff 0Þ ¼ DT ðD3X f 0 � f Þ � ðff 0Þ
�

� 3ðD2X f 0 � f Þ � ðDXf 0 � f Þ
	
; ðA:1Þ

4DT ðD2X f 0 � f Þ � ðDXf 0 � f Þ ¼ DX ½ðDTD2X f
0 � f Þ � ðf 0f Þ þ 2ðDTDX f 0 � f Þ � ðDXf 0 � f Þ � ðD2X f 0 � f Þ � ðDT f 0 � f Þ�

� D3X ðDT f 0 � f Þ � ðf 0f Þ: ðA:2Þ

Identities (A.1) and (A.2) come from

expðD1Þ½expðD2Þf 0 � f � � ½expðD3Þf 0 � f �

¼ exp 1

2
fD2

�
� D3g

�
exp

1

2
ðD2

��
þ D3Þ þ D1

�
f 0 � f

�
� exp

1

2
ðD2

��
þ D3Þ � D1

�
f 0 � f

� ðA:3Þ

which is Eq. (5.83) in [8], where Di :¼ eiDX þ diDT . In the order e31d3 (A.3) yields (A.1), and in the order d1e22e3 (A.3)
yields (A.2).
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