
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The singular solutions of a nonlinear evolution equation taking
continuous part of the spectral data into account in inverse scattering
method

V.O. Vakhnenko a,⇑, E.J. Parkes b

a Institute of Geophysics, National Academy of Sciences of Ukraine, 01054 Kyïv, Ukraine
b Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, United Kingdom

a r t i c l e i n f o

Article history:
Received 29 May 2011
Accepted 29 February 2012
Available online 5 April 2012

a b s t r a c t

A procedure for finding the solutions of the Vakhnenko–Parkes equation by means of the
inverse scattering method is described. Both the bound state spectrum and the continuous
spectrum are considered in the associated eigenvalue problem. The suggested special form
of the singularity function gives rise to periodic solutions. The interaction of a soliton with
a one-mode periodic wave is studied.
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1. Introduction

In many applications of physics and technology it is sig-
nificant to look for exact solutions of nonlinear evolution
equations. Various effective approaches have been devel-
oped to construct exact wave solutions of completely inte-
grable equations. One of the fundamental direct methods is
undoubtedly the Hirota bilinear method [1,2] which pos-
sesses significant features that make it practical for the
determination of multiple-soliton solutions. However, the
direct methods can be applied only for finding the solitary
wave solutions or the traveling-wave solutions. In this
sense, the inverse scattering method is the most appropri-
ate way of tackling the initial value problem although its
employment is a fairly difficult procedure [3–5].

In this paper we will consider the nonlinear evolution
equation:

WXXT þ ð1þWTÞWX ¼ 0: ð1:1Þ

This equation arises from the Vakhnenko equation [6–8]:

o

ox
o

ot
þ u

o

ox

� �
uþ u ¼ 0; ð1:2Þ

through the transformation:

uðx; tÞ :¼ UðX; TÞ ¼WXðX; TÞ;
x :¼ x0 þ T þWðX; TÞ; t :¼ X: ð1:3Þ

The details of the transformation (1.3) can be found in
[9,10]. The corresponding governing equation for U,
namely:

UUXXT � UXUXT þ U2UT ¼ 0; ð1:4Þ

is given in [9]. Following the papers [11–13], hereafter
(1.1) (or equivalently (1.4)) is referred to as the
Vakhnenko–Parkes equation (VPE).

Recently the Hirota method [2,9,10] as well as the
inverse scattering method [14] have been applied to obtain
the exact N-soliton solutions of the VPE. In this paper we
use the inverse scattering transform method to study addi-
tionally the periodic solutions of the VPE (1.1) associated
with the continuum part of the spectral data as well as to
investigate the interaction of a soliton with a periodic
wave.

In Section 2 we formulate the spectral problem for the
VPE by adapting the results given by Caudrey [15] and by
Kaup [16]. For convenience, in Section 3 we present briefly
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the results that we obtained in [14] for the N-soliton solu-
tion corresponding to the bound state spectrum. In Section
4 we develop the corresponding results for the continuous
spectrum. As a particular example, we find the one-mode
solution. We then investigate how this solution interacts
with a soliton solution. Our results are summarized in
Section 5.

2. The spectral problem for the VPE

In order to use the inverse scattering method, one first
has to formulate the associated eigenvalue problem. In
[14] it is shown that the pair of equations

wXXX þ UwX � kw ¼ 0; ð2:1Þ
3wXT þ ðWT þ 1Þw ¼ 0 ð2:2Þ

is associated with the VPE (1.1) considered here. Note that
the inverse scattering transform problem is related to a
spectral equation of third order (2.1). The inverse problem
for third-order spectral equations has been considered by
Caudrey [15] and Kaup [16]. We adapt the results obtained
by these authors to the present spectral problem and de-
scribe a procedure for using the inverse scattering trans-
form method to find the solutions of the VPE.

We use the general theory of the inverse scattering
problem for N spectral equations which has been devel-
oped by Caudrey [15]. According to [15] the spectral Eq.
(2.1) can be rewritten in the form:

o

oX
w ¼ AðfÞ þ BðX; fÞ½ � � w ð2:3Þ

with

w ¼
w

wX

wXX

0
B@

1
CA; A ¼

0 1 0
0 0 1
k 0 0

0
B@

1
CA; B ¼

0 0 0
0 0 0
0 �WX 0

0
B@

1
CA:
ð2:4Þ

The matrix A has the eigenvalues kj(f) and left- and right-
eigenvectors ~v jðfÞ and vj(f) respectively (j = 1,2,3). In the
case considered here we define:

kjðfÞ ¼ xjf; k3
j ðfÞ ¼ k; v jðfÞ ¼

1
kj

k2
j

0
B@

1
CA;

~v jðfÞ ¼ k2
j kj 1

� �
; ð2:5Þ

where xj = e2pi(j�1)/3 are the cube of roots of 1.
The solution of the linear Eq. (2.1), or equivalently Eq.

(2.3), has been obtained by Caudrey [15] in terms of Jost
functions /j(X,f) which have the asymptotic behaviour:

UjðX; fÞ :¼ exp �kjðfÞX
� �

/jðX; fÞ ! v jðfÞ as

X ! �1: ð2:6Þ

Here T is regarded as a parameter; the T-evolution of
the scattering data will be taken into account later. The
solution of the direct problem (2.3) is given by the equa-
tion system (4.5) in [15]. Since there is a set of symmetry
properties /1(X,f/x1) = /2(X,f/x2) = /3(X,f/x3) (see (6.14)
and (6.15) in [15], for example) for Jost functions /j(X,f),

we need only consider the element /1(X,f) (as well as
U1(X,f)). In the general case it is necessary to take into ac-
count both the bound state spectrum and the continuous
spectrum. According to the relation (6.20) in [15], the solu-
tion of (2.3) is as follows:

U1ðX; fÞ ¼ 1�
XK

k¼1

X3

j¼2

cðkÞ1j

�
exp kj fðkÞ1

� �
� k1 fðkÞ1

� �h i
X

n o
k1 fðkÞ1

� �
� k1ðfÞ

U1 X;xjf
ðkÞ
1

� �

þ 1
2pi

Z X3

j¼2

Q 1jðf0Þ

�
exp kjðf0Þ � k1ðf0Þ

� 	
X

� �
f0 � f

U�1 X;xjf
0
 �

df0:

ð2:7Þ

Eq. (2.7) contains the spectral data, namely K poles with
the quantities cðkÞ1j for the bound state spectrum as well as
the functions Q1j(f0) given along all the boundaries of reg-
ular regions for the continuous spectrum. The boundaries
between regions, where the Jost functions /1(X,f) is regu-
lar, appear at Re(k1(f0) � kj(f0)) = 0 over all j – 1 [15]. The
singularities on boundaries of these regions within the
complex f-plane are taken into account by the third term
in the relation (2.7). The integral in (2.7) is along all the
boundaries (see the dashed lines in Fig. 1).

3. The standard and singular soliton solutions

For convenience, in this section we repeat the results
from [14] for the N-soliton solution. The bound state spec-
trum is associated with soliton solutions; for this case we
put Q1j(f) � 0 in (2.7). The poles appear only in pairs. Let

Fig. 1. The regular regions for Jost functions /1(X,f) in the complex f-
plane. The dashed lines with singularity functions Q1j(f0) determine the
boundaries between regular regions. The dotted lines are the lines where
the poles appear.
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there be N pairs, then K = 2N over which the sum is taken
in (2.7). In [14] it is proved that for the pair n
(n = 1,2, . . . ,N) there are the properties

ðiÞ fð2n�1Þ
1 ¼ ix2nn; cð2n�1Þ

12 ¼ x2bn; cð2n�1Þ
13 ¼ 0;

ðiiÞ fð2nÞ
1 ¼ �ix3nn; cð2nÞ

12 ¼ 0; cð2nÞ
13 ¼ x3bn; ð3:1Þ

where the constants nn are real always, while the constants
bn can be regarded as real, if we consider only soliton
solutions of the VPE.

The N-soliton solution of the VPE is:

UðX; TÞ ¼WXðX; TÞ ¼ 3
o2

oX2 ln det MðX; TÞð Þ; ð3:2Þ

where M is the 2N � 2N matrix given by

Mkl¼dkl�
X3

j¼2

cðkÞ1j ð0Þ

�
exp � 3kj fðkÞ1

� �� ��1
þ 3k1 fðkÞ1

� �� ��1
� 


Tþ kj fðkÞ1

� �
�k1 fðlÞ1

� �� �
X

� �

kj fðkÞ1

� �
�k1 fðlÞ1

� � ;

ð3:3Þ

and

n ¼ 1;2; . . . ;N; m ¼ 2n� 1;

k1 fðmÞ1

� �
¼ ix2nm; k2 fðmÞ1

� �
¼ ix3nm;

cðmÞ12 ¼ x2bm; cðmÞ13 ¼ 0;

k1 fðmþ1Þ
1

� �
¼ �ix3nm; k3 fðmþ1Þ

1

� �
¼ �ix2nm;

cðmþ1Þ
12 ¼ 0; cðmþ1Þ

13 ¼ x3bm: ð3:4Þ

For the N-soliton solution there are N arbitrary real con-
stants nm and N arbitrary constants bm.

We present the first three results of the calculation of
the matrix determinants (3.3). For the sake of convenience
we will use the auxiliary function F(X,T) given by the def-
inition FðX; TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det MðX; TÞ

p
. In particular, from (3.3).

(1) for N = 1 we have:

F ¼ 1þ c1q1; ð3:5Þ

(2) for N = 2 we have:

F ¼ 1þ c1q1 þ c2q2 þ b12c1c2q1q2; ð3:6Þ

(3) for N = 3 we have:

F ¼ 1þ c1q1 þ c2q2 þ c3q3 þ b12c1c2q1q2

þ b13c1c3q1q3 þ b23c2c3q2q3

þ b12b13b23c1c2c3q1q2q3: ð3:7Þ

For N > 3, the explicit expression for the function F(X,T)
can be obtained in a similar manner. The formulas (3.5)–
(3.7) contain the quantities bij that prove that the solitons
interact only in pairs. For soliton solutions the quantities ci,
qi, bij involved in the above formulas (3.5)–(3.7) have the
forms:

qi ¼ exp
ffiffiffi
3
p

niX � ð
ffiffiffi
3
p

niÞ�1T
� �

; ci ¼
bi

2
ffiffiffi
3
p

ni

;

bij ¼
ni � nj

ni þ nj

� �2 n2
i þ n2

j � ninj

n2
i þ n2

j þ ninj

: ð3:8Þ

With the above representation of the auxiliary function
F(X,T), and taking into account the key relationship (3.2),
the explicit solution to the basic nonlinear evolution Eq.
(1.1) can be written in the following concise form:

UðX; TÞ ¼WXðX; TÞ ¼ 6
o2

oX2 ln FðX; TÞð Þ: ð3:9Þ

The auxiliary function F is complex-valued, in the general
case, because the values of bi (and hence ci) are complex
constants. Special attention must be given to the constants
ci. Since we are interested only in real solutions for WX with
real constants ni, we need restrictions on the constants ci in
(3.8).

In Appendix A we prove that only with real constants c i

do the soliton solutions reduce to real functions. Hence, the
restrictions (A.12) are the conditions for real soliton solu-
tions of the VPE.

It should be noted that for different signs of ci, namely
ai = ci/jcij, the soliton solutions can be represented in forms
either of standard solitons with ai = 1 or of singular solitons
with ai = �1 (see [2]). Additionally to the cases considered
by Wazwaz [2], when either all ai = 1 or all ai = �1, the solu-
tions obtained in the form (3.2) and (3.3) allow us to choose
the signs for the constants ai = ±1 independent of each other.

For example, at N = 1 we have either one standard
soliton:

W ¼ 3
ffiffiffi
3
p

n1 tanhðh1Þ ð3:10Þ

or one singular soliton:

W ¼ 3
ffiffiffi
3
p

n1 cothðh1Þ ð3:11Þ

with

2h1 ¼
ffiffiffi
3
p

n1ðX � X1Þ � ð
ffiffiffi
3
p

n1Þ�1T;

X1 ¼ �
1ffiffiffi
3
p

n1

ln jc1j: ð3:12Þ

4. The solutions associated with the continuum part of
the spectral data

Now in addition to the bound state spectrum we study
the continuous spectrum of the associated eigenvalue
problem, i.e. we assume that at least some of the functions
Q1j(f0) are nonzero. At each fixed j – 1 the functions Q1j(f0)
characterize the singularity of U1(X,f). This singularity can
appear only on boundaries between the regular regions on
the f-plane. The condition Re(k1(f0) � kj(f0)) = 0 constitutes
these boundaries [15]. According to [15] we find that for
U1(X,f) the complex f-plane is divided into four regions
by two lines

ðiÞ f0 ¼ x2n; with Q ð1Þ12 f0ð Þ– 0; Q ð1Þ13 f0ð Þ � 0;

ðiiÞ f0 ¼ �x3n; with Q ð2Þ12 f0ð Þ � 0; Q ð2Þ13 f0ð Þ– 0;

ð4:1Þ
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where n is real (see Fig. 1). Analysis shows that the direc-
tion of the integration in (2.7) is such that n sweeps from
�1 to +1.

Let us consider the singularity functions Q1j(f0) on the
boundaries, on which the Jost function /1(X,f) is singular,
in the form:

Q ð1Þ12 ðf
0Þ ¼ �2piqð1Þ12 d f0 � f01


 �
Q ð1Þ13 ðf

0Þ ¼ �2piqð1Þ13 d f0 � f01

 �

� 0

9=
; on the line f0 ¼ x2n;

Q ð2Þ12 ðf
0Þ ¼ �2piqð2Þ12 d f0 � f02


 �
� 0

Q ð2Þ13 ðf
0Þ ¼ �2piqð2Þ13 d f0 � f02


 �
9=
; on the line f0 ¼ �x3n:

ð4:2Þ

For singularity functions (4.2) and for one pair of poles, the
relationship (2.7) is reduced to the form:

U1ðX; fÞ ¼ 1�
X2

k¼1

X3

j¼2

cðkÞ1j

�
exp kj fðkÞ1

� �
� k1 fðkÞ1

� �h i
X

n o
k1 fðkÞ1

� �
� k1ðfÞ

U1 X;xjf
ðkÞ
1

� �

�
X2

l¼1

X3

j¼2

qðlÞ1j

�
exp kj f0l


 �
� k1 f0l


 �� 	
X

� �
f0l � f

U1 X;xjf
0
l


 �
:

ð4:3Þ

As follows from the relationship (4.3) and the formula:

/1XðX; fÞ ¼
iffiffiffi
3
p /1X X; �x2fð Þ/1 X; �x3fð Þ½

� /1X X; �x3fð Þ/1 X; �x2fð Þ�; ð4:4Þ

given in [14], for example, the singularities in the form
(4.2) appear as poles and in pairs f01 ¼ x2n1; f

0
2 ¼ �x3n1.

From (4.4), considering the limits f! f0l and X ? �1, it
also follows immediately that

qð1Þ12 x2 ¼ qð2Þ13 : ð4:5Þ

We call attention to the fact that, at the special choice of
the singularity function Q1j(f0) as in (4.2), the second term
on the right-hand side of the relation (4.3) is similar in
mathematical structure to the third term in this relation
(4.3). Indeed, the formal substitution n2 ¼ in1; q

ðkÞ
1j ¼ cðkÞ1j

transforms the third term into the second term in (4.3).
Then, introducing the notations:

lji ¼
kj fðiÞ1

� �
kj f0ði�2Þ

� �
8><
>: ; pðiÞ1j ¼

cðiÞ1j at i ¼ 1;2

qði�2Þ
1j at i ¼ 3;4

8<
: ; ð4:6Þ

the relationship (4.3) can be rewritten as follows:

U1ðX; fÞ ¼ 1�
X4

i¼1

X3

j¼2

pðiÞ1j

�
exp lji � l1i

� �
X

h i
l1i � f

U1 X;lji

� �
: ð4:7Þ

Since the two terms in (4.3) can be reduced to the same
form as in (4.7), we can apply the procedure developed
for solving the N-soliton interaction to obtain the solutions
connected with the continuum part of the spectral data for
the associated eigenvalue problem [14,15]. According to
[14] (see Eqs. (5.11–5.15) therein), we can find U1(X,f)
and can connect U1(X,f) with the solution W(X). As a re-
sult, the key relationship

UðXÞ ¼WXðXÞ ¼ 3
o2

oX2 ln det MðXÞð Þ ð4:8Þ

can be derived, which is similar to (3.2). Here M(X) is the
4 � 4 matrix given by

MilðXÞ ¼ dil �
X3

j¼2

pðiÞ1j

exp lji � l1l

� �
X

h i
lji � l1l

: ð4:9Þ

Now let us consider the T-evolution of the spectral data. By
analyzing the solution of Eq. (2.2) when X ? �1, we find
that /j(X,T,f) = exp[ � (3kj(f))�1T] /j(X,0,f). Hence, the
T-evolution of the scattering data is given by the relation-
ships (with i = 1,2,3,4):

kjðTÞ ¼ kjð0Þ;

pðiÞ1j ðTÞ ¼ pðiÞ1j ð0Þ exp �ð3ljiÞ
�1 þ ð3l1iÞ

�1
h i

T
n o

: ð4:10Þ

Consequently, the final result for the solution of the VPE,
when we consider the spectral data from the bound state
spectrum and from the continuous spectrum, as well as
taking into account their T-evolution, is as follows:

UðX; TÞ ¼WXðX; TÞ ¼ 3
o2

oX2 ln det MðX; TÞð Þ: ð4:11Þ

The 4 � 4 matrix M(X,T) is defined as follows:

Mkl ¼ dkl �
X3

j¼2

pðkÞ1j

�
exp ðljk � l1lÞX þ �ð3ljkÞ

�1 þ ð3l1kÞ
�1

h i
T

n o
ljk � l1l

;

ð4:12Þ

where

l11 ¼ k1 fð1Þ1

� �
¼ ix2n1; l21 ¼ k2 fð1Þ1

� �
¼ ix3n1;

pð1Þ12 ¼ cð1Þ12 ¼ x2b1; pð1Þ13 ¼ cð1Þ13 ¼ 0;

l12 ¼ k1 fð2Þ1

� �
¼ �ix3n1; l32 ¼ k3 fð2Þ1

� �
¼ �ix2n1;

pð2Þ12 ¼ cð2Þ12 ¼ 0; pð2Þ13 ¼ cð2Þ13 ¼ x3b1;

l13 ¼ k1 f01

 �

¼ x2n2; l23 ¼ k2 f01

 �

¼ x3n2;

pð3Þ12 ¼ qð1Þ12 ¼ x2b2; pð3Þ13 ¼ qð1Þ13 ¼ 0;
l14 ¼ k1 f02


 �
¼ �x3n2; l34 ¼ k3 f02


 �
¼ �x2n2;

pð4Þ12 ¼ qð2Þ12 ¼ 0; pð4Þ13 ¼ qð2Þ13 ¼ x3b2: ð4:13Þ

For the solution (4.11) and (4.12) there are two arbitrary
constants ni and two arbitrary constants bi. The constants
ni are real, while the constants bi, in the general case, are
complex. The solution obtained through the matrix
(4.11)–(4.13) is, in general, a complex function.

As will be clear from the examples in the next section,
the solution (4.11)–(4.13) includes a single frequency from

V.O. Vakhnenko, E.J. Parkes / Chaos, Solitons & Fractals 45 (2012) 846–852 849
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the continuum part of the spectral data. For this reason, the
solution (4.11)–(4.13), without the soliton, will be referred
to as the one-mode solution of the VPE. Evidently this dis-
crete mode emanates from the special choice (4.2) of the
singularity functions Q1j(f0).

By considering the singularity functions Q1j(f0) in (4.2)
in the form of the sum of d-functions, one can generalize
without difficulty the solution represented by (4.11)–
(4.13) to the interaction of N solitons and K-mode waves.
Nevertheless, there is a problem in selecting the real solu-
tion from the complex solutions.

4.1. The one-mode solution

In order to obtain the one-mode solution of the VPE
(1.1) we need first to calculate the 2 � 2 matrix M(X,T).
For the matrix elements Mkl(X,T) we have:

M11 X; Tð Þ ¼ 1� ix2b1ffiffiffi
3
p

n1

exp �i
ffiffiffi
3
p

n1X þ i
ffiffiffi
3
p

n1

� ��1
T

� 

;

M12 X; Tð Þ ¼ �x3b1

2n1
exp 2x3n1X þ i

ffiffiffi
3
p

n1

� ��1
T

� 

;

M21 X; Tð Þ ¼ x2b1

2n1
exp �2x2n1X þ i

ffiffiffi
3
p

n1

� ��1
T

� 

;

M22 X; Tð Þ ¼ 1� ix3b1ffiffiffi
3
p

n1

exp �i
ffiffiffi
3
p

n1X þ i
ffiffiffi
3
p

n1

� ��1
T

� 

;

ð4:14Þ

so that the respective determinant is:

det M X; Tð Þ ¼ 1þ c1 exp �i
ffiffiffi
3
p

n1X þ i
ffiffiffi
3
p

n1

� ��1
T

� �� 
2

;

c1 ¼
ib1

2
ffiffiffi
3
p

n1

: ð4:15Þ

As has already been noted, the singularity functions in the
form (4.2) give rise to a single frequency for the continuum
part of the spectral data. Hence, the expression (4.15) hav-
ing been substituted into the concise formula (4.11) must
provide us with the one-mode solution.

The condition that WX is real requires a restriction on
the constant b1 (if the constant n1 is arbitrary, but real).
The constant c1, which in general is the complex-valued
one c1 = jc1jexp (iv1), should possess unit modulus
jc1j = 1, while the arbitrary real constant v1 defines an
initial shift of solution X1 ¼ v1=ð

ffiffiffi
3
p

n1Þ so that:

det MðX; TÞ ¼ 1þ exp �i
ffiffiffi
3
p

n1ðX � X1Þ þ
T

i
ffiffiffi
3
p

n1

� �� 
2

:

ð4:16Þ

The final result for one mode of the continuous spectrum is
the solution (4.11) with (4.16), namely:

WðX; TÞ ¼ �3
ffiffiffi
3
p

n1 tan

ffiffiffi
3
p

2
n1ðX � X1Þ þ

T

2
ffiffiffi
3
p

n1

 !
þ const:

ð4:17Þ

The corresponding solution for U = WX (with U governed
by (1.4)) was obtained recently by other methods, for
example, by the sine–cosine method [17], the (G0/G)-

expansion method [13], and the extended tanh-function
method [17–19]. However, only the approach developed
here and the solution in the form (4.11)–(4.13) enable us
to study the interaction of the soliton and a periodic one-
mode wave.

4.2. The interaction of a soliton with one-mode wave

The interaction of a soliton with the periodic one-mode
wave is described by means of the relation (4.11) with the
matrix (4.12) and (4.13). The calculation of this matrix
leads to the auxiliary function FðX; TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det MðX; TÞ

p
as

in (3.6), namely

FðX; TÞ ¼ 1þ c1q1 þ c2q2 þ b12c1c2q1q2; ð4:18Þ

where

q1 ¼ exp
ffiffiffi
3
p

n1X �
ffiffiffi
3
p

n1

� ��1
T

� �
; c1 ¼

b1

2
ffiffiffi
3
p

n1

;

q2 ¼ exp �i
ffiffiffi
3
p

n2X þ i
ffiffiffi
3
p

n2

� ��1
T

� �
; c2 ¼

ib2

2
ffiffiffi
3
p

n2

;

b12 ¼
n1 þ in2

n1 � in2

� �2 n2
1 � n2

2 þ in1n2

n2
1 � n2

2 � in1n2

; jb12j � 1:

ð4:19Þ

In Appendix B, the restrictions on the constants ci for
real solutions are found to be:

c1 ¼ �1=
ffiffiffiffiffiffiffi
b12

p
; c2 ¼ �1=

ffiffiffiffiffiffiffi
b12

p
: ð4:20Þ

The signs here are chosen independently of each other.
Consequently, the real solution describing the interaction
of one (standard or singular) soliton with the one-mode
wave is defined by the relationship (4.11):

WðX; TÞ ¼ 6
o

oX
lnðFðX; TÞÞ þ const; ð4:21Þ

where F(X,T) is (4.18), b12 is as in (4.19), while qi should
contain the phaseshifts Xi as in (B.2).

There is an exceptional case for the interaction of one
standard soliton with a one-mode wave at n1 = n2. Then
we have b12 = 1, and F = (1 + q1)(1 + q2). Consequently, the
solution (4.21) is reduced to the relation

W ¼W1 þW2 ¼ 3
ffiffiffi
3
p

n1 tanh

ffiffiffi
3
p

2
n1ðX � X1Þ �

T

2
ffiffiffi
3
p

n1

 !

� 3
ffiffiffi
3
p

n1 tan

ffiffiffi
3
p

2
n1ðX � X2Þ þ

T

2
ffiffiffi
3
p

n1

 !
þ const:

ð4:22Þ

Here W1 is the one-soliton solution and W2 is the one-
mode solution (4.17). The relationship W = W1 + W2 is
easily verified also by the direct substitution in Eq. (1.1).
The two waves W1 and W2 propagate in opposite directions
with the same speed without change of wave profile.

5. Conclusion

In this paper we have applied the inverse scattering
method to the Vakhnenko–Parkes equation in order to find
the solutions that are associated with both bound state
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spectrum and continuous spectrum of the spectral prob-
lem. We have suggested a special form of the singularity
function in order to obtain the periodic solutions. We
found sufficient conditions in order that the solutions be-
come real functions. The approach developed here enables
us to study the interaction of a soliton and a periodic one-
mode wave.
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Appendix A

Here we consider the conditions on the constants ci

under the interaction of two solitons. Assuming that in
the general case the constants ci = jcijexp (ivi) are com-
plex-valued, we start with the relationship (3.6) and
(3.8), namely:

F ¼ 1þ c1q1 þ c2q2 þ b12c1c2q1q2: ðA:1Þ

Let us present the constants ci in the form:

ci ¼ aijcij expðiviÞ ¼ b�1=2
12 exp �

ffiffiffi
3
p

niXi þ iri

� �
;

ri ¼ vi þ pð1� aiÞ=2: ðA:2Þ

All the new constants vi, and Xi ¼ � lnðjci

ffiffiffiffiffiffiffi
b12

p
jÞ=ð

ffiffiffi
3
p

niÞ are
real. We assume that �p/2 < vi 6 p/2, then the values ai re-
tain the signs of the constants Re(ci), i.e. ai = Re(ci)/jRe(ci)j. It
is convenient for analyzing to rewrite (A.1) (the same as
(3.6)) in the form:

F ¼ 2 exp h1 þ h2 þ
i
2

r1 þ r2ð Þ
� �

G ðA:3Þ

with

G¼cosh h1þh2þ
i
2
ðr1þr2Þ

� �
þb�1=2

12 cosh h1�h2þ
i
2
ðr1�r2Þ

� �
;

2hi¼
ffiffiffi
3
p

niðX�XiÞ�ð
ffiffiffi
3
p

niÞ�1T:

ðA:4Þ

It is easily seen that only G defines the solution, since
o2

oX2 lnðFÞ ¼ o2

oX2 lnðGÞ, while the conditions that the function
G is real are as follows:

vi ¼ 0; ri þ r2 ¼ 2pk1; ri � r2 ¼ 2pk2 ðA:5Þ

with ki = 0,1. The restrictions (A.5) lead to the results that
a1 = ±1,a2 = ±1, independently of each other, and vi = 0.
Then the function F acquires forms:

F ¼ 2 expðh1 þ h2ÞGi; ðA:6Þ

where the functions Gi are different for different signs of ai,
namely,

1. for a1 = a2 = 1:

G1 ¼ coshðh1 þ h2Þ þ b�1=2
12 coshðh1 � h2Þ; ðA:7Þ

2. for a1 = a2 = �1:

G2 ¼ coshðh1 þ h2Þ � b�1=2
12 cosh h1 � h2ð Þ; ðA:8Þ

3. for a1 = �a2 = 1:

G3 ¼ � sinhðh1 þ h2Þ þ b�1=2
12 sinhðh1 � h2Þ; ðA:9Þ

4. for a1 = �a2 = �1:

G4 ¼ � sinhðh1 þ h2Þ � b�1=2
12 sinhðh1 � h2Þ: ðA:10Þ

Hence, the standard soliton solution following from
(A.6) and (A.7) and the singular soliton solutions following
from (A.6), (A.8),(A.9) and (A.10) are the real functions:

UðX; TÞ ¼WXðX; TÞ ¼ 6
o2

oX2 lnðGiÞ: ðA:11Þ

Now we rewrite the restrictions in somewhat different
form. By retaining the values of phaseshifts Xi in the
quantities qi, we require c1 ¼ �

ffiffiffiffiffiffiffi
b12

p
; c2 ¼ �

ffiffiffiffiffiffiffi
b12

p
, where

the signs are independent of each other. Note that for this
case there are two arbitrary real constants ni, and two
arbitrary real constants Xi(i = 1,2).

The notations (A.7)–(A.10) show that the solution is
defined by two combinations of the spectral parameters,
namely n1 + n2 and n1 � n2, but not three values n1, n2,
n1 + n2 as it may appear from (A.1).

The foregoing proof points to a way for finding the
restrictions for any case N. Here it should be noted that
the soliton (or singular soliton) solutions are determined
by a real function only when ci is real with either sign of
ai = ci/jcij. The conditions on the constants ci should be:

ci ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiYN

j¼1
j – i

bij

vuuut
,

; i ¼ 1; . . . ;N; ðA:12Þ

with the retention of the phaseshifts Xi in the quantities qi.
The signs for ci are independent of each other. The solution
will be contained the N real constants ni for determining
the values bij and the N real constants Xi to define the
phaseshifts.

Appendix B

In this Appendix we obtain the restrictions on the con-
stants ci for real solutions taking into account the spectral
data from both the bound state spectrum and the continu-
ous spectrum. To find the solution by means of the inverse
scattering method, one should know the function (4.18)

FðX; TÞ ¼ 1þ c1q1 þ c2q2 þ b12c1c2q1q2: ðB:1Þ

For convenience we rewrite the variables qi in the
somewhat different form:

q1 expð2h1Þ; 2hi ¼
ffiffiffi
3
p

niðX � XiÞ � ð
ffiffiffi
3
p

niÞ�1=2T;

q2 expði2h2Þ; 2h2 ¼ �
ffiffiffi
3
p

n2ðX � X2Þ � ð
ffiffiffi
3
p

njÞ�1=2T:

ðB:2Þ
The phaseshifts Xi are arbitrary real constants. The value
b12 in (B.1) are as in (4.19). Note that b�12 ¼ 1=b12.

Now we will show that the restrictions:

c1 ¼ �
ffiffiffiffiffiffiffi
b12

p
; c2 ¼ �

ffiffiffiffiffiffiffi
b12

p
ðB:3Þ

V.O. Vakhnenko, E.J. Parkes / Chaos, Solitons & Fractals 45 (2012) 846–852 851



Author's personal copy

are sufficient in order to obtain the real solutions. For

definiteness, we assume that
ffiffiffiffiffiffiffi
b12

p
is a root of an equation

x2 = b12 with �p=2 < argð
ffiffiffiffiffiffiffi
b12

p
Þ 6 p=2. Let us rewrite the

relations (B.3) in the form ci ¼ ai

ffiffiffiffiffiffiffi
b12

p
, where ai = ±1. It is

evident that we can always obtain a2 = 1 by choosing the
phaseshift X2, while we need to consider the two cases
a1 = ±1. By defining r = (1 � a1)/2, we can rewrite the
function F from (B.1) in the form:

FðX; TÞ ¼ 2Geiprðb12Þ�1=4 exp h1 þ ipr=2þ ih2ð Þ; ðB:4Þ

where

Geipr ¼ b1=4
12 cos �ih1 þ pr=2þ h2ð Þ
þ b�1=4

12 cos �ih1 þ pr=2� h2ð Þ: ðB:5Þ

Since b�12 ¼ 1=b12 (see (4.19)), it is evident that G⁄ = G, i.e.
the variable G constituting the solution is a real-valued
function. Hence, with the restrictions (B.3), the solution
of the VPE

UðX; TÞ ¼WXðX; TÞ ¼ 6
o2

oX2 lnðFÞ ¼ 6
o2

oX2 lnðGÞ ðB:6Þ

represents a real quantity. The signs in (B.3) can be chosen
independently of each other. For interaction of one
(standard or singular) soliton and a one-mode wave there
are two real constants ni and the two real constants Xi.

Note that the restrictions (B.3) are sufficient conditions
in order that the solution of the VPE becomes real.
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