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Abstract.  We suggested the nonlinear evolution equation  0)( =++ uuuu xxt   
(Vakhnenko equation – VE) for describing the high-frequency perturbations in a relaxing 
medium. The study of this equation has scientific interest both from the viewpoint of the 
existence of stable wave formations and from the viewpoint of the general problem of 
integrability of nonlinear equations. The equation has stable loop-like soliton solutions. 
The inverse scattering transform (IST) procedure is associated with a third-order 
eigenvalue problem. This has been achieved by finding a Bäcklund transformation. A 
procedure for finding the exact N-soliton solution to the VE via the IST method is 
described. Under the interaction of solitons there are features that are not typical for the 
KdV equation. 

 
EVOLUTION EQUATION FOR HIGH-FREQUENCY WAVES 

 
From the nonequilibrium thermodynamics standpoint, the models of a relaxing 

medium are more general than the equilibrium models. Thermodynamic equilibrium is 
disturbed owing to the propagation of fast perturbations. There are processes of the 
interaction that tend to return the equilibrium. In essence, the change of 
macroparameters caused by the changes of inner parameters is a relaxation process. 

To analyze the wave motion, we use the hydrodynamic equations in Lagrangian 
coordinaties and dynamic state equation to account for the relaxation effects: 
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The mechanisms of the exchange processes are not defined concretely when deriving 
the dynamic state. The values ec , fc  and pτ  can be found experimentally. 
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Considering a small nonlinear perturbation pp «' , from Eqs.(1.1) we obtain the 
nonlinear evolution equation in one unknown p  (the dash in 'p  is omitted) [1] 
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For low-frequency perturbations ( 1«ωτ p ) Eq.(1.2) is reduced to the Korteweg-de 
Vries – Burgers (KdVB) equation, while for high-frequency waves ( 1»ωτ p ) we have 
obtained the new equation [1]  
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In the general case the last equation has been investigated insufficiently. 
Eq.(1.3) without dissipative term can be written down in dimensionless variables 

),(2~ tcxx ff −= γ  ,2~ tct ffγ=  pcu ff
2~ α=  (tilde over utx ~,~,~  is omitted) [1,2] 
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Hereafter, as was initiated in [3], this equation is referred to as the Vakhnenko 
equation (VE). A remarkable feature of Eq.(1.4) is that it has a soliton solution which 
has loop-like form [2,3]. Whilst loop soliton solutions are rather intriguing, it is the 
solution to the initial value problem that is of more interest in a physical context. 

The physical interpretation of the loop-like soliton solutions was given in [1]. 
The problem is whether the ambiguity has a physical nature or is related to the 
incompleteness of the mathematical model, in particular to the lack of dissipation. It is 
significant that the loop-like solutions are stable to long-wavelength perturbations [3], 
and that the introduction of a dissipative term does not destroy these loop-like 
solutions [1]. Consequently, the ambiguity of solution does not relate to the 
incompleteness of the mathematical model. Thus in the framework of this model 
approach, the high-frequency perturbation can be described by the multi-valued 
functions [1]. 
 

BÄCKLUND TRANSFORMATION AND LAX PAIR 
 

We have succeeded in finding new coordinates ),( TX , in terms of which the 
solution of Eq.(1.4) is given by single-valued parametric relations [4] 
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When −∞→X , the derivatives of W  vanish. Eq.(1.4) then has the form [4,5] 
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.0)1( =++ XTXXT WWW  (2.2)
 

By taking XfW )ln(6= , we observe that the transformed VE (2.2) may be written as 
the bilinear equation [4,5] through the Hirota binary operator D  [6] 
 

0)( 23 =⋅+ ffDDD XXT . (2.3)
 

We have obtained a Bäcklund transformation for Eq.(1.6) [5], following [6] 
 

0'))(( 3 =⋅− ffXDX λ ,  ( ) 0')(13 =⋅++ ffDTDD XTX µ . (2.4)
 

Separately these two equations appear as part of the Bäcklund transformation for other 
nonlinear evolution equations. Introducing the function ff /'=ψ , we have obtained 
the following third-order Lax pair for Eq.(2.2) 
 

0=−+ λψψψ XXXXX W , 0)()1(3 =+−++ ψλµψψλψ TWW XXTXXTT . (2.5)
 

Thus the IST problem is directly related to a spectral equation of third order [5]. 
 

INTERACTION OF THE SOLITONS 
 

The third-order eigenvalue problem is similar to the one associated with a higher 
order KdV equation, a Boussinesq equation, and a model equation for shallow water 
waves. Kaup [7], Caudrey [8] and Deift et al. [9] studied the inverse problem for 
certain third-order spectral equations. We adapt the results obtained by these authors to 
the present problem and describe a procedure for using the IST to find the N -soliton 
solution to the transformed equation (2.2) 
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where M  is the NN 22 ×  matrix given by 
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Here ,)( ζωζλ jj =  ,)(3 λζλ =j  and 3/)1(2i −= j
j e πω are the cube of roots of 1. For the 

N -soliton solution there are N  arbitrary constants mξ  and N  arbitrary constants mβ . 
In the interaction of two solitons for the VE (1.4) there are features that are not 

typical for the KdV equation (see Figs.1 – 2). The larger soliton moving with larger 
velocity catches up with the smaller soliton moving in the same direction. For 
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convenience in the figures, the interactions of solitons are shown in coordinates 
moving with the speed of the centre mass. After the nonlinear interaction the solitons 
separate, their forms are restored, but phaseshifts arise. The larger soliton always has a 
forward phaseshift, while the smaller soliton can receive any phaseshift. Note that this 
property is not typical for the KdV equation. 
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FIGURE 1. Interaction of two solitons in moving 

coordinates at time ./70∆ 1α=t  
FIGURE 2. Both solitons have phaseshifts in the 

same direction. Time interval is ./1∆ 1α=t  
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