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SOLUTIONS ASSOCIATED WITH BOTH THE BOUND STATE
SPECTRUM AND THE SPECIAL SINGULARITY FUNCTION FOR
CONTINUOUS SPECTRUM IN INVERSE SCATTERING METHOD

"Yakhnenko V.O., *Parkes E. J.

nstitute of Geophysics, Kyiv, Ukraine
University of Strathclyde, Glasgow, UK

It is of significance to look for exact solutions of nonlinear evolution
equations in many applications of physics and technology. Various effective
approaches have been developed to construct exact wave solutions of completely
integrable equations. The inverse scattering method is the most appropriate way
of tackling the initial value problem [1,2].

This paper deals with a nonlinear evolution equation

W, +{(1+WW, =0, n
which arises from the Vakhnenko equation (VE) [3-5]
(u, +uu, ), +u=0 2)
through the transformation [6,7]
ux, 1) =UX,T)=W,(X,T), x=x,+T+WX]T), t=X 3

These equations describe high-frequency perturbations in a relaxing medium
[5]. Following the papers [8,9], hereafter the equation (1) is referred to as the
Vakhnenko-Parkes equation (VPE). Hone and Wang [10] have shown that there
is a subtle connection between the Sawada—Kotera hierarchy and the VE,
between the Degasperis—Procesi equation and the VE.

Recently the inverse scattering method has been applied to obtain the exact
N-soliton solutions of the VPE [11]. In this paper we use the inverse scattering
transform method to study additionally the periodic solutions of the VPE (1)
associated with continuum part of the spectral data as well as to investigate the
interaction of solitons with these periodic waves.

1. The associated eigenvalue problem for the VPE. In order to use the inverse
scattering method, one first has to formulate the associated eigenvalue problem.
In [11] it is shown that the pair equations

Vx tUpx —Ay =0, 4
3y + (W +1y =0 &)

is associated with the VPE (1). The inverse problem for third-order spectral
equations (4) has been considered by Caudrey [12] and Kaup [13]. We adapt the
results obtained by these authors to the present spectral problem and describe 2
procedure for using the inverse scattering transform method to find the solutions
of the VPE. The solution of the linear equation (4) has been found by Caudrey
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[12] in terms of Jost functions 9(X,¢) through (X, =

exp-A(OX} 9,(X.0), A= wf , B()=4, @ =" The equation
(5) determinates T —evolution of the scattering data. It turns out [12,13] that we
need only consider the element ¢,(X,{) (as well as @ (X,¢)). In general case

it mm. necessary to take into account both the bound state spectrum and the
continuous spectrum. According to the relation (6.20) in [12], the solution of (4)
is as follows

0 AN ﬂ\vIH MMW\E 96;& Am\_cnvv \r@\_:cv_vﬂe AN &.n\ccv

k=1 j=2 N_A“_?JIN_R\V av
exp{[4,() - A} . N
o _ Mp_av 7 O} (X, w¢")de".

Eq. (6) contains the spectral data, namely, K poles with the quantities y{}’
for the bound state spectrum as well as the functions Q,;({") given along all the

boundaries of regular regions for the continuous spectrum. The boundaries
between regions, where the Jost function ¢@(X,{) is regular, appear at

Re(4,({")-4,(£") =0 over all j=1 [12]. The integral in (6) is along all the
boundaries (see the dashed lines in Fig. 1).
o_aﬂumu Im @ o™ ©-0

Q@0 da@é
. poe2" .
_uu Lsaw-. 4.. ..s
oy . Re ©
__u 9%- . \.. o...
“poke 1 u R .
e Gmbkok, S ' e Gerloot,
e Gk ne Geofy
Re@)=Req) Re@)=Re @)

Fig. 1. The regular regions for Jost functions ¢,(X,{) in the complex & —plane.
The dashed lines determine the boundaries between regular regions. These lines are lines
where the singularity functions Q,;(¢") are given. The dotted lines are the lines where

the poles appear.

Provided Q,;({)=0 in (6), the consideration of the bound state spectrum

only gives rises to the purely soliton solutions. The procedure for finding the
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exact N —soliton solution of the VPE via the inverse scattering method is
described in paper {11].

2. Special singularity function for continuous spectrum. Additionally to the
bound state spectrum we consider the continuous spectrum of the associated
eigenvalue problem, i.e. assume that at least some of the functions Q,;({") are

nonzero. This singularity can appear only on boundaries between the regular
regions on the ¢ —plane. The condition Re(4(5")-4,({")) =0 determines these

boundaries [12]. According to [12] we find that for ®,(X,{) the complex {
plane is divided into four regions by two lines
() ¢'=w¢, with QY(¢)=0, Q7()=0, (7a)
(i) §'=-w¢&, with QP({)=0, QN0 (7b)
* where & is real (see Fig. 1). Analysis shows that the direction of the integration
in (6) is to be so that £ sweeps from —o t0 +o0.
Let us consider the singularity functions Q,;(") on the boundaries, on

which the Jost function ¢,(X,¢) is singular, in the form (n=1,2,..,N)

QY= |~EM“%__-:%R "= Conat)
on the line {' = w,&, (8a)

Q)= |~BM&:,§R =G =0

it
(=]

QY= -SM%&R, ~43)
on the line {' =-w,&. (8b)

Q¢ = -NaM@_wqa =$3)
For the singularity functions (8) and for M pairs of poles, the relationship
(6) is reduced to the form
exp{[4,(£”) - 4 ()X}
O,(X,$)=1- o O, (X, 0
=133 AEO A e

B expil4(E) -AGDIX)
M:MMD m\_ - n\

In [11] it is proved that the poles appear in pairs only ¢ =i@é,

©)

0, (X, 04

¢ =~iw,&, under the conditions yo" V=@, B , yIm V=0, y2™ =0,
»\mav =wf, , (m=12,.,M). Morcover, the singularities in the form (8)

@1y (2n)

=q,5 for

appear also in pairs ¢ =, ¢, =-w¢ with qf
n=1,2,.,N [14].
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Insofar as we have 2M poles and 2N coefficients q2"", q®" in the
adopted mcoo_mowaosm (8) of the singularity functions Q, ;(¢"), itis convenient to
introduce the notations

AEP) oA at i=1..K

AR i . , 1
(&) Py q¥™ at i=K+1,.,K+L (19)

where K =2M and L =2N . Then the relationship (6) are rewritten as follows

e o EXPls; — 44X
G_Axwm\vﬂﬁlM Mm M I
i1 g2 Hi =G

According to [11] the solution of Eq. (1) can be found (see also Eq. (6.38) in
[12])

\&: =

D, (X, ;). 1n

W(X)~ W(~00) = umﬂwgaa M(X)) (12)

through the matrix M(X) , which is defined as follows
@) ONU:\&.: \&:vxu
=2 N .__ \N:

Now let us consider the T —evolution of the spectral data. By analyzing the
solution of Eq. (5) when X —> -, we find that p(X,T,4)=

M, (X)=6, ~ (13

exp[—(34;,(¢ DB Tl;(X,0,¢) . Hence, the T —evolution of the scattering data is
given by the relationships (with i=1,2,...,K+L)

4(M=40), p(T)=pf @exp{~Gu,)" +(Ga)'IT}.  (14)

Consequently, the final result for the solution of the VPE, when we consider

the spectral data from both the bound state spectrum and the continuous
spectrum, as well as taking into account their T —evolution, is as follows:

@N
oxX?
Here M(X,T) is the (K +L)x (K +L) matrix given by

o SXPECHy = )X + (=G )™ + By ) T}

UX,T) = Wy (X, T) = 3= In(det M(X, T)). (15)

Z_n_ = %E - 1j > C@
=2 Hy — My
where for i <M
Higiy = AT =im,8, Hopiy = ALGE ) =img,
vm_ s Sw_ e B, EW e u\m_ V=0, a7
Moy = PR\,EJ =-igyd,, Haeiy = \ﬁ@._n:v = -,
Py =75 =0, P =75 = ap,

and for M<i<M+N
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Haioy ™ }A&ATZTL =0, thony = an\N\:‘KTL =ad,
O =aE O ap, B =g -0,
Moy ™ 4 A&ATZL = -4, Moy = }Aﬁm‘cxzvv =@,
a0, =i g,

For the solution (15), (16) there are (M +N) arbitrary constants & and

(M+N) arbitrary constants f,. The constants £ are real, while the constants

(18)

B, , in general case, are complex.

As will be clear from the examples in next section, the solution (15), (16)
includes N discrete frequencies from continuum part of the spectral data. For
this reason, the solution (15), (16), without solitons (i.e. with M =0), will be
referred to as N —mode solution of the VPE. Evidently these discrete modes
emanate from the special choice (8) of the singularity functions Q;;(¢").

3. The soliton and periodic solutions. To obtain the solutions of the VPE, one
has to calculate the determinant of matrix (16). We present three results of such
calculation for M+ N <3 . For the sake of convenience we will use the auxiliary
function F(X,T) given by the definition F(X,T) = ,\anﬁ M(X,T) . In particular,
from (16),
D for M+ N =1 we have
F=1+c,q;; (19)
2) for M+N =2 we have
F=1+¢,q, +¢,q; +b,,6,0,4,9,; (20
3) for M+ N =3 we have
F=1+¢,q, +¢,q, +6,q; +b,,¢,,q,d; +b13¢,¢,q9,;
+b,,€,€5Q,0; +by;,b13b5€,€,€59,G,0s-
For M+N >3, the explicit expression for the function F(X,T) can be

(21)

obtained in a similar manner. It is reasonable to present the quantities ¢;, q;, b
involved in the above formulas (19)—(21) separately for three distinct cases:
(i)  the purely solitonic case (i,j)<M assumes

q, =exp(28), 26, =3EX-(BE)'T,

u:wu NN
S S S0 KT R 22)

N R W Y

(ii)  the case of purely multi-mode waves M < (3, j) < M + N assumes
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q, =exp(260), 20, =-iV3EX+GVBE)T,

is, E-&Y E+8-£L (23)
= p = i i j i%j > 0:
G N)\W.W_ ij %+W~. %~+W‘m~+mwmm.wu U__Vou

(i)  the case of a combination of solitons (i,i’)<M and multi-mode waves
M <(j,j') <M +N -assumes

6, =exp(20), 26, =\BEX-GBE'T, ¢ -
3¢
4, =exp@6) 26, =X+ (LT, o =L,

I 2BE

]

_(e-eY g8 -ce
by =[Gb | EXEm8L oy o
£ve ) Brgves T (24)

b. = W_.lm_. N_.~+N_.~.IW_.%_..W 0<b.. <1,
PGHG) e !

2
b. = % Imnu .MN +ﬂ~ l%ﬁ
Po\G+g ) ErE+es]
With the above found representation of the auxiliary function F(X,T) and

taking into account the key relationship (12), we can write the explicit solution to
the basic nonlinear evolution equation (1) in the following concise form:

WX, T) = m%m In(F(X, T)) + const. (25)

_w_.u. _Hﬂ.

The function F(X,T) is complex-valued in the general case because the

values of S, (and hence of c,) are complex constants. Thus, the solution (25) is,
in general, a complex function. Consequently, there is a problem in selecting the
rea] solutions from the complex solutions. It turns out that we can obtain the real
solutions by means of festriction of arbitrariness in the choice of the constants
p. . We have succeeded in finding these restrictions.
4. Real solutions associated with the bound state spectrum. The features of
the solutions associated with bound state spectrum can be shown by considering
the two-soliton solution for which M =2, N=0. The solution (25) can be
obtained through (20), (22),

In Appendix A it is proved that the constants c; can be only real ones.
Moreover, the signs of &, =¢,/|c, | can independently take the values £1, i.e.
we have four variants, namely o, =a, =1, a,=a,=-1, a,=-a, =1 and

a, = —a, = —1. Note that in [15] only the first two variants are observed. The
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standard soliton solution for which &, = @, =1 and the singular soliton solutions

for which a, =a,=-1, a,=~a,=1 and a, =-a, =-1, are obtained by
means of the relation (25)
& &
UX,T) =WX,T), = = 26
(X, T)=W(X,T)y e o (26)

where G, are defined by (A.6) — (A.9).
For N23 we give the conditions without proof. All the constants c; are to
be real and the signs of @, =c,/|c;| can equal to %1 independently of each

other.

‘5. Real solutions associated with the continuous spectrum. We study the
multi-mode solutions for M =0 and N =1, 3, while for N>4 all formulas
* can easily be obtained by means of a generalization of these examples.

5.1. The one-mode solution. In order to obtain the one-mode solution of the
VPE (1) we need first to calculate the 2x2 matrix M(X,T) according to (16)

with M=0 and N =1. From (19), (23) we find
det M(X, T) = (1+ ¢, exp(~iv3& X+ (iV3&) ' T))2, c = Wm\\W.'ﬁ @n

As it has been already noted, the singularity functions in the form (8) with
N =1 give rise to a single frequency for the continuous part of the spectral data.
Hence, the expression (27), having been substituted into the concise formula
(25), must provide us with the one-mode solution.

The condition that W, is real requires a restriction on the constant 8, (if the
constant ¢ is arbitrary but real). We have succeeded in obtaining this restriction
(see Appendix B), namely that the constant c¢,, which in general is the complex-

valued one ¢, ={c, |exp(iy;), should possess the unity modulus |¢, |=1, while

the arbitrary real constant y, defines an initial shift of solution X, = z, \T\MWL

so that
2

det M(X, T) =| 1+exp| —i3&(X-X,) + (28)

T
iW3¢g
The final result for one mode of the continuous spectrum is the solution (25)
with (28), namely,
B

W(X,T)=-3/3¢ tan 6 (X=X,)+ - | +const. 29)

NS 3¢,

The corresponding solution for U= W, was obtained recently by other
methods, for example, by the sine—cosine method [16], the (G’/G) —expansion
method [9], and the extended tanh—function method [16, 17, 18]. However, only
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the approach developed here and the solution in the form (15), (16) enable us to
study the interaction of solitons and periodic waves.
5.2. The three-mode solution. For N=3 and M =0 in the relationship (21)

with (23), we write ¢, =|c, |exp(iy,) . Then the arguments y, dctermine the

initial phasc shifts of modes X, = y, / T\w%v . As 1s proved in Appendix B, the
conditions on the constants c, (or the same on S, ) are
le, |=1/Jb,b,,, lc, [=1/4/b,by,, le; =1/yybsby,.  (30)

Hence, the three-mode solution is the relation (25) with

1 1
m.AvAv‘Hv = ~+|||AD_ + @unuv +||An~ + nrnuv
USU; USUNu

1
===(q; +¢,9,)+q,9,9;-
UG—US

6. Real soliton and multi-mode solutions. In this subsection we will consider
the general case, when both the bound state spectrum and the continuous
spectrum are taken into account in the associated spectral problem. We will find
the conditions on ¢, for real solutions of the VPE. To obtain the solution, we

need to know the function F (see (19)(24)).
Let the indexes i,i'’ be related to the values involved in the bound state

3h

+

spectrum for which (i,i") <M, while the indexes j,j' are related to the values
involved in the continuous part of the spectral data -for which
M<(},j)<M+N.

6.1. The interaction of a soliton with one-mode wave. The interaction of a
standard soliton with periodic one-mode wave can be described by means of the
relations (20) with g, and b, as in (24). First, we emphasize that the soliton and

one-mode wave (29) propagate in opposite directions. The soliton propagates in
the positive direction of the X —axis, while the one-mode wave (29) propagates
in the negative direction of the X —axis.

Here we restrict ourselves to the simplest case b,,c,c, =1 that describes the

mteraction of a standard soliton with a one-mode wave. As follows immediately
from Appendix B, for real solutions (25) we have

1 1
F(X,T)= — & + o 9, +9,4;- (32)
GS _US
There is an exceptional case at & =¢&,. Then we have b, =1, and
F=(1+q,)(1+4q,) . Consequently, the solution (25) is reduced to the relation
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3 T
W=W +W, =3J3£ tanh| — & (X - X ) — ——
_+ 2 l\‘%_ N%A 1 N)\Wﬁ

|u»\wm_ »\umkx X, V+N,\|m_ + const.

Here W, is the one-soliton solution and W, is the solution (29) associated

(33)

with one mode in the continuous part of the spectral data. The relationship
W =W, +W, is easily verified also by direct substitution into Eq. (1). The two
waves W, and W, propagate in different directions with the same speed without

change of wave profile.
- 6.2. Real solutions for M solitons and the N —mode wave. The interaction of
M solitons and the N -mode wave (25) can be obtained by means of the

function F(X,T) with restrictions (B.6) given in Appendix B, namely

c=b., i=1,.,M+N, (34)

and with the retention of the phase shifts X, in the quantities g, (B.2). The signs
for ¢, in (34) can be chosen independently of each other. If the index i in (34) is

connected with the continuous part of the spectral data (M <i<M+N), then
the solutions generated by plus' and 'minus’ signs in (34) are different only in
the phase shifts. However, for the index i from the bound state spectrum
(i< M), the solutions have different forms of function dependencies. Here it is
relevant to remember that there are standard soliton solutions and singular
soliton solutions generated by different signs in the constants ¢, (34).

The solution will contain (M +N) real constants £ for determining the
values b; and (M +N) real constants X; to define the phase shifts.

7. Conclusion. The procedure for finding the solutions of the Vakhnenko--Parkes
equation by means of the inverse scattering method is described. Both the bound
state spectrum and the continuous spectrum are taken into account in the
associated eigenvalue problem. The special form of the singularity functions
enables us to obtain the multi-mode solutions. Sufficient conditions have been
proved in order that the solutions become real functions. Finally we studied the
interaction of the solitons and the multi-mode wave.

8. Acknowledgment. Authors are grateful to Prof V.A. Danylenko for sustained
assistance and to K.P. Kutsevol for stimulating criticism and helpful discussions.
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Appendix A.
Here we consider the conditions on signs for the constants ¢; under the

interaction of two solitons (M =2, N =0). We start with the relationship (20),
(22)

F=1+¢q, +¢,q, +b,,¢,c,q,q,- (A.D
Let us present the constants ¢, in the form
¢, =a|c |exp(iy,) = b, mvalz\w%xm +m9vv
o =y+x(l-a)/2.
All new constants y, and X, =~In(] oi\ﬂ D/ A;\wﬁv are real. We assume
that —z/2<y <z /2, then the values @, retain the signs of the constants

(A.2)

Re(c;),ie. a; =Re(c,)/|Re(c,)]|. It is convenient for analyzing to rewrite (A.1)
in the form

F= Nee? +6, +w§ + quwo. (A3)
with
G-= S%T_ +6, Twﬁ +quvw+c_.~s 8%?_ -8, +w§ -0, vw, (A4)

26, =BEX-X)-(BE)'T.

It is easily seen that only G defines the solution, since

o’ o’ . -
e —In(F)= e In(G), while the conditions that the function G is real are as
follows:

X =0, o,+0,=2rk, o -0,=27k, (A.5)
with k; =0,1. These restrictions (A.5) lead to the requirements o, ==*l1,
a, = *1, independently of each other, and y, = 0. Then the function F has the
following forms:

@ foro=a,=1"

F=2exp(6,+6,)G,, G,=cosh(6+6,)+b,?cosh(6,~6,); (A.6)
(i) fora =a,=-1

F=2exp(6,+6,)G,, G,=cosh(6,+86, ,)—b;,? cosh(6,-6,); (A7)
(i) for @, =-a, =1

F=2exp(6,+6,)G,, G,=-sinh(6+6,)+b,”sinh(6,-6,); (A.8)
(iv) for o, =-a,=-1

F=2exp(6,+6,)G,, G,=-sinh(§+6,)-b;,?sinh(8-6,). (A9)

Hence, the standard soliton solution that follows from (A.6) and the singular
soliton solutions that follow from (A.7)—(A.9) are the real functions
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mm

X’
Now we rewrite the restrictions in somewhat different form. By retaining the
values of the phaseshifts X, in the quantities q,, we require

¢, =+qb,, ¢,=%b,, (A.11)
where the signs are independent of each other. Note that for this case there are
two arbitrary real constants £, and two arbitrary real constants X, (i=1,2).

The notation in (A.6)—(A.9) shows that the solution is defined by two
combinations of the spectral parameters, namely & +¢, and & —-¢&,, but not
three values &, &,, & +¢&, as it may appear from (A.1).

The foregoing proof points to a way for finding the restrictions for any M
with N = 0. Here it should be underlined that only at real ¢, with any sign of

UX,T) = W, (X,T) = 6—In(G,). (A.10)

, a, =¢,/|c,|, the soliton (or singular soliton) solutions are determined by a real
function. The conditions on the constants ¢, are as follows:

(A.12)

with the retention of the phase shifts X, in the quantities g, . The signs for ¢, are
independent of each other. The solution will contain the M real constants & for
determining the values b; and the M real constants X; to define the phase
shifts.

Appendix B.
Here we will obtain the restrictions on the constants c; for real solutions, in

the general case, taking into account the spectral data from both the bound state
spectrum and the continuous spectrum. All features are inherent in the case
M+ N =3 considered here as an example. To find the solution by means of the
inverse scattering method, one needs to know the function (21)
F=1+¢,q, +¢,q, +¢4q; + b,,¢,¢,9,9, +b;;¢,¢,G,,
+b,,6,€,9,9; +by,b;;b5:€,6,¢,6,0,4;-
For convenience we rewrite the variables g; in the somewhat different form
q,exp(26), q;exp(i26,), 20 = VBEX-X)- (36T,

26, =—35(X-X,)- (3¢ T,

The phase shifts X, are the arbitrary real constants. The values b, in (B.1)

(B.1)

(B.2)

are as in (24). Note that by,

gencrality, we will consider one set of values M,N , for example M =1, N=2.
Now we will show that the restrictions

b y are real values, and dw =1/ b, . Without loss of
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*

¢, =21/ Jbpby,, ¢, =21/ \Jouby, o =%1/.b.b,, (B.3)

3

(with b, determined by (24)) are sufficient in order to obtain the real solutions.
For definiteness, we assume that /b, is a root of an equation x* = b, with

lﬁ\NAEm,\ﬂ. <z/2. Let us rewrite the relations (B.3) in the form

3

¢, =a,/ HHA \cc. where o, =+1. It is evident that we can always attain
j=t
j#i

@, = a; =1 by choosing the phase shifts X, , X,, while we need to consider the

two cases @, =+1. By defining o =(1-a,)/2, we can rewrite the auxiliary
function F from (B.1) in the form

F(X,T)=2Ge"™ (b,b,;) ™" exp(6, +ino /2 +16, +i6,),
Ge™ =[(b,,b,,)"* exp(~if, + 75/ 2+ 6, +6,)
+(b,,b,,) " exp(-if, + 75/ 2~ 8, - 8,)]
+(by) *[(b, /b,)  exp(if, ~ 15 /2+6,-6,) (B.4)
+(by, /b,) " exp(-i8, + 75 / 2+ 6, —6,)]
+(b,,)"?[(b, /b)) "  exp(i6, ~no /12— 6, + 8,)
+(b, /b,,) " exp(~i6, + 7o /2 -6, +6,)].

Since b,, is real, and E_, =1/b,; for j=2,3, it is evident that G =G, ie.

the variable G in the solution is a real-valued function. Hence, the solution of
the VPE

& &
In(F) = 6
o "o

UX,T)= W, (X,T)=6 nG)  (B.S)

represents a real quantity.
Using this example, one can prove without difficulty that the procedure
considered above can be extended to any M,N with restrictions

i=1,...M+N, (B.6)

while the quantities q; retain the phase shifts X, (see (B.2)). The signs in (B.6)
can be chosen independently of each other. For interaction of M solitons and the
N -mode wave there are (M + N) real constants & and (M +N) real constants
X,

Note that the restrictions (B.6) are sufficient conditions in order that the
solution of the VPE becomes real.
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