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The two loop soliton solution of the Vakhnenko equation
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Abstract. An exact two loop soliton solution to the Vakhnenko equation is found. The key step
in finding this solution is to transform the independent variables in the equation. This leads to a
transformed equation for which it is straightforward to find an exact explicit 2-soliton solution
by use of Hirota’s method. The exact two loop soliton solution to the Vakhnenko equation
is then found in implicit form by means of a transformation back to the original independent
variables. The nature of the interaction between the two loop solitons depends on the ratio of
their amplitudes.

PACS number: 0340Kf

1. Introduction

In [1] Vakhnenko discussed the nonlinear evolution equation

∂

∂x

(
∂

∂t
+ u ∂

∂x

)
u+ u = 0 (1.1)

which governs the propagation of waves in a relaxing medium [2]. Hereafter (1.1) is
referred to as the Vakhnenko equation (VE). Vakhnenko [1] derived two families of periodic
travelling-wave solutions to the VE corresponding to propagation in the positive and negative
x-direction respectively. In the former case the solutions comprise periodic loops, and there
is also a travelling-solitary-wave solution comprising a single loop. Parkes [3] showed
that all the aforementioned solutions are stable to long-wavelength perturbations of small
amplitude.

Vakhnenko [1] also considered the nonlinear interaction between two solitary waves.
However, his formulation of the interaction was in error. The aim of this paper is to revisit
this problem; we derive an exact two loop soliton solution to the VE. The key step in finding
this solution is to transform the independent variables. This leads to an equation for which
it is straightforward to find an exact explicit 2-soliton solution by use of Hirota’s method.
The exact two loop soliton solution to the VE is then found in implicit form by means of
a transformation back to the original independent variables.

The problem discussed in this paper is closely related to work on another equation,
namely
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which describes waves propagating along a stretched rope. Herey is the transverse
displacement of the rope ands denotes arc length measured along the solution curve from
some reference point on the rope. The inverse scattering method has been used to obtain
the one loop soliton solution [4] and two loop soliton solution [5] to (1.2) in implicit form.
Ishimori [6] found a transformation of the dependent and independent variables in (1.2)
which leads to an mKdV equation in potential form. By use of the known multisoliton
solution to the mKdV equation, a multiple loop soliton solution to (1.2) may be constructed
[7, 8]. In particular the details of the implicit two and three loop soliton solutions to (1.2)
are given explicitly in [8]. The method used in this paper is similar, although here it is
only the independent variables that are transformed, and the construction of the loop soliton
solutions is more straightforward.

In section 2 the VE is transformed into an equation that has a Hirota form. The
previously known one loop soliton solution to the VE is recovered in section 3. The two
loop soliton solution to the VE is derived in section 4 and is discussed in section 5; it is
found that the nature of the interaction between the loop solitons depends on the ratio of
their amplitudes.

2. Transformation of the Vakhnenko equation

We introduce new independent variablesX, T defined by

x = θ(X, T ) := T +
∫ X

−∞
U(X′, T )dX′ + x0 t = X, (2.1)

whereu(x, t) = U(X, T ), andx0 is a constant. From (2.1) it follows that

∂

∂X
= ∂

∂t
+ u ∂

∂x
,

∂

∂T
= φ ∂

∂x
, (2.2)

where

φ(X, T ) = 1+
∫ X

−∞
UT dX′ (2.3)

so that

φX = UT . (2.4)

From (1.1) and (2.2) we obtain

UXT + φ U = 0. (2.5)

By eliminatingφ between (2.4) and (2.5) we obtain the transformed form of the VE, namely

UUXXT − UXUXT + U2UT = 0. (2.6)

In order to find soliton solutions to (2.6) by using Hirota’s method [9] we need to
express (2.6) in Hirota form. First we introduceW defined byWX = U and assume that
W and its derivatives vanish asX→−∞. Thenφ = 1+WT and (2.5) becomes

WXXT +WXWT +WX = 0. (2.7)

Equation (2.7) is equivalent to (2.6). By taking

W = 6(ln f )X, (2.8)

we find that

WX = 3D2
Xf · f
f 2

and WXXT +WXWT = 3DTD
3
Xf · f
f 2

, (2.9)
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whereD is the Hirota operator [9], so that (2.7) may be written as the bilinear equation

F(DX,DT )f · f = 0, (2.10)

where

F(DX,DT ) := DTD
3
X +D2

X. (2.11)

The solution procedure for the VE is as follows. We solve (2.10) forf by using Hirota’s
method and hence find the solutionU(X, T ) to (2.6) by using (2.8). The solution to the
VE is then given in parametric form by

u(x, t) = U(t, T ), x = θ(t, T ), (2.12)

where

θ(X, T ) = T +W(X, T )+ x0. (2.13)

3. The one loop soliton solution of the Vakhnenko equation

The solution to (2.10) corresponding to one soliton is given by

f = 1+ e2η, whereη = kX − ωT + α, (3.1)

andk, ω andα are constants. The dispersion relation isF(2k,−2ω) = 0 from which we
find thatω = 1/4k and then

η = k(X − cT )+ α with c = 1/4k2. (3.2)

Substitution of (3.1) into (2.8) gives

W(X, T ) = 6k(1+ tanhη) (3.3)

so that

U(X, T ) = 6k2 sech2 η. (3.4)

The one loop soliton solution to the VE is given by (2.12) with (3.3) and (3.4). From (2.13)
with v = 1/c we have

x − vt = −v(X − cT )+ 6k(1+ tanh[k(X − cT )+ α])+ x0. (3.5)

Clearly, from (3.4) and (3.5),U(X, T ) andx − vt are related by the parameterX − cT so
thatu(x, t) is a soliton that travels with speedv in the positivex-direction. That this soliton
is a loop may be shown as follows. From (2.2) we haveux = φ−1UT which, together with
(2.3), (3.2) and (3.4), yields

ux = −cUX/(1− cU). (3.6)

Thus, asX− cT goes from+∞ to −∞ in (3.5), so thatx−vt goes from−∞ to +∞, UX
changes sign once and remains finite whereasux given by (3.6) changes sign three times
and goes infinite twice.

If we require symmetry inX–T space, i.e.U(X, T ) = U(−X,−T ), we takeα = 0 in
(3.2) and then, for symmetry inx–t space, we takex0 = −6k in (2.13). In this case the
one loop soliton solution may be written in terms of the parameterζ := X − cT as

u = 3v

2
sech2

(√
vζ

2

)
, x − vt = 3

√
v tanh

(√
vζ

2

)
− vζ (3.7)

with v(> 0) arbitrary. (3.7) is essentially the one loop soliton solution given in [1, 3].
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4. The two loop soliton solution of the Vakhnenko equation

The solution to (2.10) corresponding to two solitons is given by

f = 1+ e2η1 + e2η2 + b2e2(η1+η2), whereηi = kiX − ωiT + αi, (4.1)

b2 = −F [2(k1− k2),−2(ω1− ω2)]

F [2(k1+ k2),−2(ω1+ ω2)]
, (4.2)

and ki , ωi andαi are constants. The dispersion relation isF(2ki,−2ωi) = 0 from which
we find thatωi = 1/4ki and then

ηi = ki(X − ciT )+ αi with ci = 1/4k2
i . (4.3)

Without loss of generality we may takek2 > k1 and then

b = k2− k1

k2+ k1

√
k2

1 + k2
2 − k1k2

k2
1 + k2

2 + k1k2
, (4.4)

so that 0< b < 1. Substitution of (4.1) into (2.8) givesW(X, T ). Following Hodnett and
Moloney [10], we may writeW(X, T ) in the form

W = W1+W2, whereWi = 6ki(1+ tanhgi) (4.5)

and

g1(X, T ) = η1+ 1

2
ln

[
1+ b2e2η2

1+ e2η2

]
, g2(X, T ) = η2+ 1

2
ln

[
1+ b2e2η1

1+ e2η1

]
. (4.6)

It follows thatU may be written

U = U1+ U2, whereUi = 6ki
∂gi

∂X
sech2 gi. (4.7)

The two loop soliton solution to the VE is given by (2.12) with (4.5) and (4.7).

5. Discussion of the two loop soliton solution

We now consider in more detail the two loop soliton solution found in section 4. First it is
instructive to consider what happens inX–T space.

As c1 > c2, we have

X − c2T →±∞ asT →±∞ with X − c1T fixed, (5.1)

and

X − c1T →∓∞ asT →±∞ with X − c2T fixed. (5.2)

From (4.6) and (4.7) with (5.1) it follows that, withX − c1T fixed,

U1 ∼ 6k2
1 sech2 η1 asT →−∞,

U1 ∼ 6k2
1 sech2(η1+ ln b) asT →+∞. (5.3)

Similarly, from (4.6) and (4.7) with (5.2), withX − c2T fixed,

U2 ∼ 6k2
2 sech2(η2+ ln b) asT →−∞,

U2 ∼ 6k2
2 sech2 η2 asT →+∞. (5.4)

Hence it is apparent that, in the limitsT →±∞, U1 andU2 may be identified as individual
solitons moving with speedsc1 andc2 respectively in the positiveX-direction. In contrast
to the familiar interaction of two KdV ‘sech-squared’ solitons [11], here it is the smaller
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soliton that overtakes the larger one. The shifts,1i , of the two solitonsU1 andU2 in the
positiveX-direction due to the interaction are

11 = −(ln b)/k1 and 12 = (ln b)/k2 (5.5)

respectively. As lnb < 0, the smaller soliton is shifted forwards and the larger soliton is
shifted backwards. Since the ‘mass’ of each soliton is given by

∫∞
−∞ Ui dX = 12ki , where

we have used (4.7), and the shifts satisfyk111+ k212 = 0, ‘momentum’ is conserved.
Let r := k1/k2 and recall that here we are assuming that 0< r < 1. (From (5.3)

and (5.4),r2 is the ratio of the amplitudes of the individual smaller and larger solitons.)
Note thatUXX(Xint, Tint) = 0 for r = R = 0.538 62, where(Xint, Tint) is the centre of the
interaction. (If the condition (5.9) is satisfied thenXint = 0 andTint = 0.) ForR < r < 1,
we haveUXX(Xint, Tint) > 0 and the 2-soliton solution inX–T space always has two
peaks; during interaction the two humps exchange amplitudes. For 0< r < R, we have
UXX(Xint, Tint) < 0 and the two humps of the individual solitons coalesce into a single
hump for part of the interaction; the smaller hump appears to pass through the larger one.

Now let us consider what happens inx–t space. From (2.13) withvi = 1/ci we have

x − vit = −vi(X − ciT )+W(X, T )+ x0. (5.6)

Note that in (5.3) taking the limitsT →±∞ with X− c1T fixed is equivalent to taking the
limits X → ±∞ with X − c1T fixed; also note thatX = t from (2.1). Accordingly from
(5.3) and (5.6) withi = 1 we see that in the limitst →±∞ with X− c1T fixed,U1(X, T )

andx−v1t are related by the parameterX−c1T . Similarly, from (5.4) and (5.6) withi = 2,
in the limits t →±∞ with X−c2T fixed,U2(X, T ) andx−v2t are related by the parameter
X − c2T . It follows that in the limitst → ±∞, u1 andu2 may be identified as individual
loop solitons moving with speedsv1 andv2 respectively in the positivex-direction, where
ui(x, t) = Ui(X, T ). As v2 > v1, the larger loop soliton overtakes the smaller loop soliton.
This is in contrast to the two loop soliton solution to (1.2) in which the smaller loop soliton
overtakes the larger one [5].

The shifts, δi , of the two loop solitonsu1 and u2 in the positivex-direction due
to the interaction may be computed from (5.6) as follows. From (5.3), asT → −∞,
U1 = U1max= 6k2

1 whereX− c1T = −α1/k1; thenW1 = 6k1 and, by use of (5.1),W2 = 0.
Similarly, asT →∞, U1 = U1max= 6k2

1 whereX−c1T = −(α1+ ln b)/k1; thenW1 = 6k1

andW2 = 12k2. Use of these results in (5.6) withi = 1 gives

δ1 = 4k1 ln b + 12k2. (5.7)

By use of (5.2), (5.4) and (5.6) withi = 2, a similar calculation yields

δ2 = −4k2 ln b − 12k1. (5.8)

Plots ofδ1/k2 andδ2/k2 as functions ofr with 0< r < 1 are shown in figure 1. It may be
seen thatδ2 > 0 so that the larger loop soliton is always shifted forwards by the interaction.
However, forδ1 we find that:

(a) for r = rc, whererc = 0.888 67 is the root of lnb+ 3/r = 0, δ1 = 0 so the smaller
loop soliton is not shifted by the interaction;

(b) for 0< r < rc, δ1 > 0 so the smaller loop soliton is shifted forwards;
(c) for rc < r < 1, δ1 < 0 so the smaller loop soliton is shifted backwards.

At first sight it might seem that the behaviour in (a) and (b) contradicts conservation of
‘momentum’. That this is not so is justified as follows. By integrating (1.1) with respect to
x we find that

∫∞
−∞ u dx = 0; also, by multiplying (1.1) byx and integrating with respect

to x we obtain
∫∞
−∞ xu dx = 0. Thus, inx–t space, the ‘mass’ of each soliton is zero, and



1462 V O Vakhnenko and E J Parkes

Figure 1. The quantitiesδ1/k2 (curve 1) andδ2/k2 (curve 2), given by (5.7) and (5.8)
respectively, as functions ofr.

Figure 2. The interaction process for two loop solitons withk1 = 0.9 andk2 = 1 so thatr = 0.9
andδ1 < 0.

‘momentum’ is conserved whateverδ1 andδ2 may be. In particularδ1 andδ2 may have the
same sign as in (b), or one of them may be zero as in (a).

For the interaction to be centred atX = 0, T = 0 we require

α1 = α2 = − 1
2 ln b (5.9)

and then, for the interaction to be centred atx = 0, t = 0 we require

x0 = −6k1− 6k2. (5.10)

We have used (5.9) and (5.10) in the computation of figures 2–4.
We have already seen that the shifts given by (5.7) and (5.8) depend upon the ratior.

The behaviour of the solution during the interaction process also depends onr. There are
three characteristic cases:

(1) for rb < r < 1, whererb = 0.759 68, the two loops exchange their amplitudes
during the interaction but never overlap;

(2) for ra < r < rb, wherera = 0.556 76, the two loops exchange their amplitudes
during the interaction and, for part of the interaction, the loops overlap;
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Figure 3. The interaction process for two loop solitons withk1 = 0.65 andk2 = 1 so that
r = 0.65 andδ1 > 0.

Figure 4. The interaction process for two loop solitons withk1 = 0.5 andk2 = 1 so thatr = 0.5
andδ1 > 0.

(3) for 0 < r < ra, the larger loop catches up the smaller loop which then travels
clockwise around the larger loop before being ejected behind the larger loop.

Cases (1)–(3) are illustrated in figures 2–4 respectively; in each of these figuresu is
plotted againstx − (v1+ v2)t/2 at several equally spaced values oft .

6. Conclusion

We have found the two loop soliton solution to the VE by using a blend of transformations
and Hirota’s method. The procedure can also be used to findN loop soliton solutions with
N > 2. This, together with a detailed investigation of the caseN = 3, will be reported
elsewhere. It should be possible to find loop soliton solutions by use of the inverse scattering
transform method [11]. This is currently under investigation.
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