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and its Backlund transformation
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Han pisnanna (uy + vug)e + u = 0, wo 30nucane 6 dewo mwur xoopdunamaz, 6usedeno
nepemeopenna Bexaynda ax y Giainiinomy suzandi, max i y 3eunatinomy. Popmyaroemvcs
obeprena 3adaua poscivsanna. Obeprenuti memod po3cOBaRnA YMpumye 36dauy Mpembo2o
nopadxy na eaachi 3nauennsa. Haa npuxaady nasodumovca odnocoaimonnuili po3e’sa3ox pie-
wanna Barnenxa, odepacanuti memodom obepuenot 3adaut po3cio6anns.

1. Introduction. This paper deals with the nonlinear evolution equation
%(%+u%)u+u=0 (1)
which was first presented by Vakhnenko in [1] to describe high frequency waves in a relaxing
medium [2]. Hereafter, as was initiated in [3], this equation (1) is referred to as the Vakhnenko
equation (VE). A remarkable feature of the VE is that it has a soliton solution which has loop-
like form, i.e., it is a multiple-valued function (see Fig. 1 in [1]). Recently, we obtained the two
loop soliton solution to the VE both by use of Hirota’s method [4] and by use of elements of
the inverse scattering transform (IST) procedure for the KdV equation [5, 6]. We have obtained
the N loop soliton solution to the VE by use of Hirota’s method [MoPa2]. Whilst these multi-
soliton solutions are rather intriguing, it is the solution to the initial value problem that is of
more interest in a physical context. As we have shown that the VE is integrable, the IST is the
most appropriate way of tackling the initial value problem. In order to use the IST method, one
first has to formulate the associated eigenvalue problem; this is the main aim of this paper. We
achieve this aim by first finding a Backlund transformation associated with the VE. It is well
known that the Bicklund transformation is one of the analytic tools for dealing with soliton
problems and has a close relationship to the IST method (8, 9].
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In §2, we introduce new independent coordinates as previously (4, 5]. In terms of these coordi-
nates, the solution to the VE is given by single-valued parametric relations. The transformation
into these coordinates is the key to solving the problem of the interaction of solitons as well
as explaining multiple-valued solutions [2]. This transformation also leads to an equation that
can be expressed in bilinear form in terms of the Hirota D operator [8]. In §3, we present the
Backlund transformation both in bilinear form and in ordinary form for the VE written in terms
of the new independent variables. This type of Backlund transformation was first introduced
by Hirota [9] and has the advantage that the transformation equations are linear with respect
to each dependent variable. The Backlund transformation is rewritten in ordinary form which
enables one to relate pairs of solutions of the VE. In §4, we find that the IST problem for the
transformed VE involves a third order eigenvalue problem. As an example, we state the one
soliton solution of the VE as found by using the IST method.

2. Equation in new coordinates. As previously [4, 5], let us define new independent
variables (T, X) by the transformations

pdT = dz —udt, X =t (2)

The function ¢ is to bc obtained. It is an additional dependent variable in the system of cqua-
tions (4), (5) to which we reduce the original equation (1). Transformation (2) is similar to the
transformation between Eulerian coordinates (z,t) and Lagrangian coordinates (7', X). We then
require T = z if there is no perturbation, i.e., if u(z,t) = 0. Hence, ¢ = 1 when u(z,t) = 0.
For example, it may be shown from Egs. (12) and (14) in [1] that ¢ = 1 — u/v for the one loop
soliton solution. It is noted that the functions z = 0(T, X) and u = U(T, X) are single-valued.

In terms of the coordinates (T, X), Eq. (1) in the unknown U(T, X) = u(z,t) has the {orm

10 8
aT ox

The cquation for the variable ¢ can be obtained in the following way. Noting that the trans-
formation inverse to (2) is

U+U=0. (3)

dr = pdT + U dX,

and taking into account the condition that dz is an exact differential, we get

Op OU

e 8 4

o0X 0T )
This equation together with Eq. (3), rewritten in the form

9%

— =0 5

oxz t Up=0, (5)

are the main system of equations. In terms of the coordinates (T, X), the solution is given by
single-valued parametric relations. The transformation into these coordinates is the key to solving
the problem of the interaction of solitons as well as explaining multiple-valued solutions [2].
System (4), (5) can be reduced to a nonlinear equation in the unknown W defined by

Wx =U (6)
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as follows. As in [4, 5], we study solutions U that vanish as | X| — oo‘or, equivalently, solutions
for which W tends to a constant as |X| — oo. From (4) and (6) and the requirement that
@ — 1 as | X| — oo, we have ¢ = 1+ Wr; then (5) may be written (the transformed Vakhnenko
equation) as

Wxxr + (1 + WT)WX =(. (7)
Furthermore, then it follows that the original independent space coordinate z is given by
z=0(T,X):=xo+T+ W, (8)

where z( is an arbitrary constant.
Finally, by taking

W =6(nf)y, (9)

where f is a function of X and T, we observe that the transformed VE (7) may be written as
the bilinear equation [4]

(DrD3% + D3.)f - f =0. (10)

3. Backlund transformation for the transformed Vakhnenko equation. In this sec-
tion, we present a Backlund transformation for Eq. (10), the bilinear form of the transformed

VE (7).
We follow the method developed in [9]. First, we define P as follows:
P:=2{((DrD% + DX)f - ' £ = 'f' [(DrD% + DX)f - 1}, (11)

where f # f'. We aim to find a pair of equations such that each equation is linear in each of
the dependent variables f and f’, and such that together f and f’ satisfy P = 0. (It follows
then that if f is a solution of (10), then so is f* and vice versa.) The pair of equations is the
required Backlund transformation.

We show that the Backlund transformation is given by two equations

(DY = NS - f=0, (12)
(3DxDr +1+uDx)f"- f =0, . (13)

where A = A(X) is an arbitrary function of X and p = p(T') is an arbitrary function of T

We prove that together f and f', as determined by Eqs. (12), (13), satisfy P = 0 as follows.
By using identities (VIL.3), (VIL.4) from [10], and Eq. (5.86) from [8], we may express P in
the following form:

P=Dr [(DXf - £)-(ff)=3(D%f - f)-(Dxf'- )] + Dx [3(DrDXf'- £)- (/') -
~6(DxDrf'- f)- (Dxf'-f) =3(DXf"- ) (Drf'- /) +4(Dx f'- f)- (£ )] . (19)
By using (26) and (27), we can rewrite P in the following form, where A = A(X) and p = pu(7T'):
P =4Dy ({D% —MX)} - f) - (f'f) =
~4Dx ({3DrDx + 1+ u(T)Dx} f'- f) - (Dxf'- f). (15)
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In constructing this expression for P, we have used the results
Dxa-b=—-Dxb-a and Dxa-a=0,

which follow from result (II) in [8]. It is clear from (15) that if Egs. (12), (13) hold then P =0
as required.

Thus, we have proved that Egs. (12), (13) constitute the Béacklund transformation for
Eq. (10). Separately these equations appear as a part of the Backlund transformation for other
nonlinear evolution equations. For example, Eq. (12) is the same as one of the equations that is
a part of the Backlund transformation for a higher order KdV equation (see Eq. (5.139) in [8]),
and Eq. (13) is similar to (5.132) in [8] that is a part of the Backlund transformation for a model
equation for shallow water waves.

The inclusion of 4 in the operator 3D+ p which appears in (15) corresponds to a multiplica-
tion of f and f' by terms of the form %) and 9" (1), respectively; we see from (9) that this has
no effect on W or W'. Hence, without loss of generality, we may take i = 0 in Eq. (13) if we wish.

Following the procedure given in [8, 11}, we can rewrite the Béicklund transformation in

X
ordinary form in terms of the potential W = / U dX' obtained from (6). In new variables

— 00
defined by
¢=Inf/f, p=Inf'f, (16)
Eqs. (12), (13) have the form
dxxx +3bxpxx + % —A=0, (17)
3(oxr + dxdr) + 1+ pdx =0 (18)

respectively, where we have used results similar to (XI.1) - (XI.3) in [8]. From definitions (9)
and (16), different solutions W, W' of Eq. (7) are related to ¢ and p by

W' —W =6¢y, W +W =6py. (19)

Substitution of (19) into (17), (18) with p = 0 leads to

1 1
(W' = W)xx + 5 (W = W)(W'+ W)x + (W = W)* =61 =0, (20)

(W' — W) [3(W’ +W)xr + %(W’ — W)W’ - W)T] -
—6(W' —W)x [1+ -;—(W’+W)T] =0. (21)

The required Backlund transformation is Egs. (20), (21).

4. Formulation of the inverse scattering eigenvalue problem. In this section, we will
show that the IST problem for the transformed VE in the form (7) has a third order eigenvalue
problem that is similar to the one associated with a higher order KdV equation [11, 12], a
Boussinesq equation [12, 13, 15], and a model equation for shallow water waves [8, 10].
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Introducing the function

= f'1f, (27)
and taking into account Egs. (6) and (9), we find that Egs. (12), (13) reduce to

Yxxx +Uy¥x — A =0, (23)

3¢xr + (Wr+ 1)¢ + upx =0 (24)

respectively, where we have used results similar to (X.1)~(X.3) in [8]. It may be shown from (23)
and (24) that, even with pu # 0,

[W,\‘,\'T + (1 + WT)W,\']X’(/) + 3Axyvr = 0.

Hence, (7) is the condition for Ay = 0 and for A to be constant. The constant X is what is
required in the IST problem. Since Egs. (23), (24) are alternative forms of Egs. (12), (13), it
follows that system (23), (24) is associated with the transformed VE (7) considered here. Thus,
the IST problem is directly related to a spectral equation of third order, namely (23). The
inverse problem for certain third order spectral equations has been considered by Kaup [12] and
Caudrey [13, 14].

As an example, we state the one soliton solution for the transformed VE that follows from
Egs. (3.29) and (3.30) in [12]. In our case, the time dependence of 1 is described by Eq. (24)
in contrast to Eq. (1.2) from [12] for the 5th order KdV equation. Taking these features into
account, we can rewrite Eq. (3.30) from [12] for the transformed VE with the notation used

in [4] as
3 o 2 | V3 T 2 2 T
=3 = 0N _ X i = k 1 | — — .
U=6Q=256 i sech { 5 n( Ep 6k*sech” |k | X PT® (25)
(25) is essentially the one soliton solution of the transformed VE (7) that is given in [4] by
Eq. (3.4).

5. Conclusion. We have found the Backlund transformation both in bilinear form and
in ordinary form for the transformed VE. It enables us to formulate an IST problem for the
transformed VE which is directly related to a spectral equation of third order. We have stated
the one soliton solution of the transformed VE as derived by use of the IST method. The
corresponding result for the N soliton solution is currently under investigation, as is the general
initial value problem.

6. Appendix. The following identities (26), (27) are required in §3:

D3 (Drf' - £)-(ff) =Dy [(DXFf - f) - (ff)=3(D%f - ) - (Dxf'- f)] . (26)
ADr(D%f'- f) - (Dxf'- f) = Dx[(DrD%f' - f)- (f'f) +2(DrDxf'- f)- (Dxf'- f) —
—(D%f' - f)-(Drf'- £)] = DX (Drf'- £) - (f'£). (27)

Identities (26) and (27) come from

exp(D)fexp(Da)f" 1) lxp(Da)s' - 1) = exp 3Dz - Da} ) x
y [exp{%(Dg +Dy) + Dl} - f} - [exp{%(Dz +Dg) — Dl} £ f] , (28)
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which is Eq. (5.83) in [8], where D; = ¢;Dx + §;D7. In the ordér €353, (28) yields (26), and
(28) yields (27) in the order &,e3es.
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