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DB pobomi das esonrwouitnozo pisnanusa (u, + tiy ), + u = 0 dopmyaoembes obeprena 3adaxua
DO3CI108AHNRA. ACOYIU0BANHG CUCTNEME PIGHAND YMPUMYE CNEKINPAALHE PIBHANNA TPEMbOZO NO-
pAadxy. Memodom oGeprenoi 3adaui po3cieanna 3natideno mounui N -coaimonnui poss ‘s3ox
pisnanna Bazrnenxa.

In this paper, we continue to study the nonlinear evolution equation

J(a J
a—z—(-a—t+u5£)u+u—0. (1)

This equation was first suggested by Vakhnenko in [1] to describe high-frequency waves in a
relaxing medium [2]. Hereafter, as was initiated in (3}, Eq. (1) is referred to as the Vakhnenko
equation (VE). A number of papers deal with the VE. In {1, 3], travelling-wave solutions were
investigated, while the symmetry properties of the equation were studied in [4]. The physical
interpretation of multivalued functions that describe loop-like soliton solutions was given in [2].
The loop-like solutions are stable to long-wavelength perturbations [3]. The introduction of a
dissipative term, with a dissipation parameter less than some limit value, does not destroy these
loop-like solutions [2]. Two-loop soliton solutions have been obtained both by use of Hirota’s
method [5] and by use of elements of the inverse scattering transform (IST) procedure for the
KdV equation [6]. We have also applied Hirota’s method to obtain the N-soliton solution and
to prove that the VE is integrable [7]. As the IST method is the most appropriate way of
- tackling the initial-value problem, we have formulated the associated eigenvalue problem for the
transformed VE [8]. This was achieved by finding a Backlund transformation associated with
the VE. It turns out that the IST problem is directly related to a spectral equation of third
order. The inverse problem for certain third-order spectral equations was considered by Kaup [9]
and Caudrey [10, 11]. These results enable us in this paper to find N-soliton solutions to the
transformed VE as derived by using the IST method.

It is convenient to write Eq. (1) in new independent coordinates X, 7" as defined in (5], namely

X
c=zo+T+W(X,T), t=X, W= /U(X’,T) dx'. (2)
—oco

Here, u(z,t) = U(X,T), and z; is a constant. We also assume that, as X — —oo, the derivatives
of W vanish and W tends to a constant. Eq. (1) then has the form [5, 8

Wxxr + (1+ Wr)Wx =0. (3)

If the solution U(X,T) = Wx of the transformed VE (3) is obtained, the original independent
space coordinate z can be found by means of formula (2). This relationship together with

ISSN 1025-6415 Ilonoeidi Hayionaavnoi axademii nayx Yxpainu, 2001, Ne 7 81



u(z,t) = U(X,T) enables us to define a solution of the VE (1) in parametric form with T as a
parameter. We note that transformation (2) between the old and new coordinates is similar to
the transformation between the Eulerian variables (z,t) and Lagrangian variables (T, X) [8].

It is well known that the Backlund transformation is one of the analytic tools for dealing
with soliton problems and has a close relationship to the IST method [12, 13]. In [8], we have
formulated the IST problem for the transformed VE in the form (3) as

Yxxx +Ux — Ap =0, (4)
3YxT + (1+Wr)p =0, (5)

where A is a constant. We achieved this by finding a Backlund transformation associated with
Eq. (3) [8]. The condition for the compatibility of Egs. (4) and (5) is Eq. (3). Thus, the IST
problem is directly related to a spectral equation of third order (4). The third-order eigenvalue
problem is similar to the one associated with a higher order KdV equation [9, 14], a Boussi-
nesq equation [9, 10}, and a model equation for shallow water waves [12, 15]. Kaup [9] and
Caudrey (10, 11] studied the inverse problem for certain third-order spectral equations.

The general theory of the inverse scattering problem for IV spectral equations was developed
in [10]. Following that paper, the spectral equation (4) can be rewritten as

a .
a5 = A0 +B(X.Q)] - ¥ (6)

by putting

" 010 0 0 0
P = 1/),\—), A=(0 0 1), B=[0 o0 o). (7)
Yxx A 0O 0 -U 0

The matrix A has eigenvalues A;({) and left- and right-eigenvectors v;(¢) and v;(¢), respectively,
where

1
Ay
and w; = ¢F0G-1 are the cubic roots of 1. :

A solution of the linear Eq. (3) (or, equivalently, Eq. (6)) was obtained by Caudrey {10] in

terms of Jost functions ¢;(X, () which have the asymptotic behaviour
®;(X,() :=exp{=A;({)X}¢;(X,() = v;(¢) as X — —oo. (9)

Here, T is regarded as a parameter until the T-evolution of scattering data is taken into account
later. The solution of the direct problem is given by the system of equations (4.5) in [10]. We
restrict our attention to the N-soliton solution. To do this, we consider Eq. (6.20) from [10]
by putting Q;;(¢) = 0. Then there is only the bound-state spectrum which is associated with

soliton solutions.
Let the bound-state spectrum be defined by K poles. Relation (4.5) from [10] is reduced to

¢, (X,¢)=1- ZZ (k)exp{ ((k.)))_

k=1j3=2

(GNXY o
A1(¢)

&y (X, w;cH). (10)
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We need only to consider the function ®;(X, () since there is a set of symmetry properties as
those for the Boussinesq equation, namely, properties (6.15) in [10] for Jost functions ¢;(X, ().

Egs. (10) involve the spectral data: poles Ci( ) and quantities 'y,(]) First, we prove that Re A = 0

for a compact support. Indeed, from Eq. (4), we have

(¥x)xxx + (Uyx)x — Mpx = 0. (11)
This together with Eq. (4) enables us to write
o ( 0 .
ax 2’(,[))\"/’ = 3axyx + Uvxy® | —2ReMpxy” =0. (12)

Integrating Eq. (12) over all values of X, we obtain that, for a compact support, Eq. (4) has
o0
only the bound-state spectrum, and Re A = 0 since, in the general case, / PYxy*dX # 0.

-0
As follows from Egs. (2.12), (2.13), (2.36), and (2.37) of [9], ¥ x({) is related to the adjoint
states 1(—(). In the usual manner, using the adjoint states and Eq. (14) from [11] and Eq. (2.37)
from [9], one can obtain

$1x (X, () = —= [P1x (X, —w2{) 1 (X, —w3C) — d1x (X, —w3() 1 (X, —w2()]. (13)

i
W
It is casily seen that if C§1) is a pole of ¢,(X, (), then there is a pole cither at sz) = —wgdl)
(if ¢1(X, —w2() has a pole) or at C{z) = —w:;C{l) (if ¢1(X, —wg,() has a pole). For definiteness,
let C{Q) = —wgcl(l) , then Eq. (13) implies that the point —wggl ) should be a pole. However, this
pole coincides with the pole Cfl) since —w3C§2) = —w3(—w2)(; 1 1) . Hence, poles appear in
the pairs (; (2n-1) {2") under the condition (%2")/ dm V= iy, where n is the number pair.
Let us con51der N pairs of poles, i.e., there are K = 2N poles in all over which the sum is

taken in Egs. (10). For the pair n (n = 1,2,...,N), we have
() ¢V =iwnt,, () (P = —iwsba. (14)

Since U is real and A is imaginary, & is real. Relationships (14) are in line with condition (2.33)

from [9]. These relationships are also similar to Egs. (6.24) and (6.25) in {10}, while 7§ J)

out to be different from 7§J) for the Boussinesq equation (see Egs. (6.24) and (6.25) in [10}).

Indeed, by considering Eq. (13) in the vicinity of the first pole dzn_l) of the pair n and using
relation (10), one can obtain a relation between %gn—l) and 'ygn) . In this case, the functions
drix (X, (), d1(X, —wa(), and ¢ x (X, ~w2() also have poles here, while the functions ¢; (X, —ws()

and ¢y (X, —w3() have no ones. Substituting ¢;(X,¢) in the form (9), (10) in Eq. (13) and
letting X — —oo, we have the ratio 'ylgn)/fy(z" Y = W, and 'yé") = ,an—n = 0. Therefore, the

properties of 7, ( ) should be defined by the relationships

(i) 7§3"”1)=w2ﬂk, y2rm1) 0,}

(11) 7£§n) - 07 75311) = w3ﬂk7

turns

(15)

where, as will be proved below, (¢ is real when U is real.
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By expanding @, (X, () as an asymptotic series in A7'(¢), one can obtain (cf. Eq. (2.7) in [9])
21X, ¢) =1 -5 (< [W(X) = W(-o0)] + O(AT*(0)). (16)

On the other hand, we may rewrite relationship (10) as (see, for instance, Eqgs. (6.33) and (6.34)
in [10])

2N (k)\ v
(X, ¢)=1- exp{—Ai({ )A}\I, X),
1( C) ’fi_:l /\1(<§k)) _ ,\I(C) k( )

(17)
Zv(") exp{X;(¢{) X1 (X, wi¢{),
It follows from (16) and (17) that (cf. Eq. (6.38) in [10})
k 0
W(X) —W(-00) = =33 exp{~M(¢{) X }i(X) = 3% In(det M). (18)
The matrix M is defined as that in relationship (6.36) in [10] by
0]
Mi(X) = 64 — Z () exp{[}; ) = (¢ NX} (19)

=2 ](CYG)) - AI(C{[))

Now let us consider the T-evolution of spectral data. By analyzing the solution of Eq. (5)
when X — —oo, we find that ¢;(X,T,¢) = exp [— (3Ai(c))‘1T] $:(X,0,¢). Hence, the T-
evolution of scattering data is given by the relationships (k = 1,2,..., K)

BTy = M), }
AT) = 75 0) exp{ [~ (3% (¢{) 7+ B (i) T}

The final result, including the T-evolution, for the N-soliton solution of the transformed VE is

(20)

2
3 axz
where M is a 2N x 2N matrix given by

UX,T) = In (det M(X, T)) (21)

My = bxi —
(k)y)~1 (k)y) -1 (k) 0]
_5 8 2= BNGT) T + BMGT) T+ (NG - M G)X o,
;7” & 29y = A .

and

n=12,...,N, m=2n-—1,
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ACE™) = iwsbm,  M(C™) =iwstm,  AO0) =wBm, A ™(0) =0,
M) = gty A(G™) = gt ATV 0) =0, A5V(0) = wafm

For the N-soliton solution, there are N arbitrary constants &, and N arbitrary constants 3,,,.
Note that m = 1,3,...,2N — 1, i.e., m is odd.

In order to obtain a one-soliton solution of the transformed VE (3), we need first to calculate
the 2 x 2 matrix M according to Eq. (22) with N = 1. We find that the matrix is

1- 9P oVEEX — (VAE)TT] BB iy X — (V3E) T

V3 26,
—iwnfh wsbh @
7 exp[—2iws€1 X — (V3&)7IT] 1 - v exp[V3&1 X — (V3&)!T]
and its determinant is
detM={1+ A exp [\/551 (X—l)]}z. (24)
2V3, 1 35%

Consequently, from Eq. (21), the one-soliton solution of the transformed VE as obtained by the
IST method is

9 3 I &
U= Eff sech? [—\—g——fl (x\ — 3—€%> + al], (25)

where a1 = 3 1n(8; /2v/3€1) is an arbitrary constant. Since U is real, it follows from (25) that
ai is real, and so (; is also real. Recently, we found the same solution by means of Hirota’s
method (see Eq. (3.4) in [5)).

It is of interest to compare Eq. (25) with the solution of the 5th-order KdV-like equation
discussed in [9]. The spectral equation (4) is the same as that given by (1.1) (with R = 0) in [9],
whereas the equation that governs the time-dependence of v, i.e. (5), is different from (1.2)
in [9]. Thus, the X-dependence of (25) should agree with the z-dependence of the solution given
by (3.30) in [9]. With the identification U = 6Q, &, = 7, this is indeed the case.

Let us now consider a two-soliton solution of the transformed VE. In this case, M is a 4x4
matrix. We give no its explicit form here, but we find that

det M = (1+¢% + g2 + b2q3q?)”, (26)
where
V3 T 2 (52-51)253‘*“5%—51{2
mexp| 6 (X -y ) b, B = ,
& e"p[ 3 (X 3&?) “‘] L16) 88T a6 27)

and o = %ln(ﬁi /2v/3¢;) are arbitrary constants. Both for the one-soliton solution (24) and
for the two-soliton solution (26), det M is a perfect square. The two-soliton solution to the
transformed VE is given by (21) together with (26). In contrast to the IST method that we have
used here, Hirota’s method was used in [5] to obtain the same two-soliton solution.

This paper completes the series of papers that connect the application of the IST method
to the VE [6, 8]. The study of the evolution and formation of multivalued solutions (loop-
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like solutions) from a single-valued initial solution is important and will be investigated in the

future.
The authors would like to express their thanks to Prof. A. Prykarpatsky for his stimulating questions
and interest in the equation considered here. This research was supported in part by STCU, Project N 1747.
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