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У рiзних фiзичних роздiлах з’являються рiвняння Камасса–Холма (CH рiвняння) та рiв-
няння Дегасперiса–Процесi (DP рiвняння). Цi рiвняння, як вiдомо, використовуються
для опису хвиль на мiлкiй водi, турбулентних потокiв, а також хвильових процесiв
у релаксуючому середовищi. Запропоновано нове нелiнiйне еволюцiйне рiвняння, яке уза-
гальнює DP i CH рiвняння. Це рiвняння вдається iнтегрувати подiбно до DP i CH рiв-
нянь, щоб одержати розв’язки на бiжучих хвилях. Класифiкацiя розв’язкiв, яка прове-
дена в роботi, може бути корисною для розумiння i опису фiзичних процесiв, що до-
слiджуються. Показано, що розв’язки нового рiвняння можуть бути iнтерпретованi,
як проекцiї спiралi на площину пiд рiзними кутами до осi спiралi. Розв’язки у виглядi
вiдокремлених хвиль з’являються, коли розглядається одна петля спiралi з розтягну-
тими верхньою або/та нижньою частинами.

1. Introduction. We proceed from the family of the equations

ut − utxx + (b + 1)uux = buxuxx + uuxxx, (1.1)

known as the ‘peakon b-family’ [1]. As is proved in [2], only two equations from family (1.1) are
integrable, namely the ones for which b = 2 and b = 3. With b = 2, Eq. (1.1) is known as the
Camassa–Holm equation (CHe) [3]

ut − utxx + 3uux = 2uxuxx + uuxxx, (1.2)

and, with b = 3, it is known as the Degasperis–Procesi equation (DPe) [4]

ut − utxx + 4uux = 3uxuxx + uuxxx. (1.3)

Originally Eq. (1.2) was derived as an equation for shallow water waves [3]. Later Chen et al.
showed that Eq. (1.2) can be applied successfully to describe turbulent flows [5]. Since Hone and
Wang revealed the connection of the DPe and the Vakhnenko equation [6, 7], Eq. (1.3) can be
used to model wave perturbations in relaxing media. As proved by Lenells (and it is important
from the physical point of view), the multivalued solutions of the CHe and the DPe can be the
basis for the construction of one-valued solutions [8].

It turns out that the travelling-wave solutions for both Eq. (1.2) and Eq. (1.3) can be written
in terms of the same formulas (see (2.5), (2.6) in Section 2) [9, 10]. In Section 3, we suggest a
new nonlinear equation that can be integrated in a similar way. There we present a classification
of the travelling-wave solutions of this new equation. Finally, we indicate in Section 4 that the
solutions can be interpreted as the projection of a spiral on a plane at different projection angles
to the axis of the spiral. The solitary-wave solutions appear when we consider a single loop of a
spiral with extended upper or/and lower parts.
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2. Travelling-wave solutions of CHe and DPe. Recently, we studied Eqs. (1.2) and (1.3)
and obtained the travelling-wave solutions [9, 10]. We repeat briefly some results from these
papers for convenience.

Restricting our attention to travelling waves, we introduce new variables

z =
u − v

|v|
, η = x − vt − x0, (2.1)

where v and x0 are arbitrary constants, and v 6= 0. In these variables, Eq. (1.1) has the form

zzηηη + bzηzηη − (b + 1)zzη − bczη = 0, with c = ±1, (2.2)

and can be integrated twice to give

(zzη)
2 = f(z), with f(z) = z4 + 2cz3 + Az2 + Bz3−b.

For CHe (1.2), we have

f(z) = z4 + 2cz3 + Az2 + Bz = (z − z1)(z − z2)(z − z3)(z − z4), (2.3)

while, for DPe (1.3), we obtain

f(z) = z4 + 2cz3 + Az2 + B = (z − z1)(z − z2)(z − z3)(z − z4). (2.4)

Here f(z) are polynomials of the fourth order, and the zi are the roots; in general, they are
different for (2.3) and (2.4).

Following [9, 10], we write here two forms of the solutions in terms of the roots of the
polynomial. These solutions are appropriate when the zi are real and z is such that z1 6 z2 6

6 z 6 z3 6 z4. The solutions are in parametric form with w as a parameter.
The first form of the solution is as follows:

z =
z2 − z1n sn2(w|m)

1 − n sn2(w|m)
, (2.5)

with

n =
z3 − z2

z3 − z1

, p =
1

2

√

(z4 − z2)(z3 − z1), m =
(z3 − z2)(z4 − z1)

(z4 − z2)(z3 − z1)
,

and

η =
wz1 + (z2 − z1)Π(n; w|m)

p
.

Here sn(w|m) is a Jacobian elliptic function, and Π(n; w|m) is an elliptic integral of the third kind.
The second form of the solution is

z =
z3 − z4n sn2(w|m)

1 − n sn2(w|m)
, (2.6)

with

n =
z3 − z2

z4 − z2

, η =
wz4 − (z4 − z3)Π(n; w|m)

p
,

where p and m are as in (2.5).
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3. The generalized Degasperis–Procesi equation. Since the different polynomials in
(2.3) and (2.4) can be written in the same form, as is shown by the right-hand sides in (2.3)
and (2.4), we anticipate that there is a nonlinear equation which, for travelling-wave solutions,
will reduce to

(zzη)
2 = f(z), (3.1)

with

f(z) = z4 + 2cz3 + Az2 + Dz + B = (z − z1)(z − z2)(z − z3)(z − z4).

It follows that this equation should be solvable in a way similar to that for the CHe and the DPe.
Let us consider the new nonlinear evolution equation

(ut + uux)b−1(ut − utxx + (b + 1)uux − buxuxx − uuxxx) +
1

2
(2 − b)D|v|bub

x = 0. (3.2)

Equation (3.2) generalizes Eq. (1.1) due to the inclusion of an additional factor and an additional
term. For travelling waves, Eq. (3.2) in terms of variables (2.1) has the form

zb−1(zzηηη + bzηzηη − (b + 1)zzη − bczη) −
1

2
(2 − b)Dzη = 0, with c = ±1. (3.3)

It can be seen that Eq. (3.3) generalizes Eq. (2.2) due to the inclusion of an additional factor zb−1

and an additional term
1

2
(2 − b)Dzη. After two integrations, we get

(zzη)
2 = f(z), with f(z) = z4 + 2cz3 + Az2 + Dz4−b + Bz3−b. (3.4)

With b = 3, Eq. (3.2) becomes

(ut + uux)2(ut − utxx + 4uux − 3uxuxx − uuxxx) −
1

2
D|v|3u3

x = 0. (3.5)

This will be referred hereafter as the generalized Degasperis–Procesi equation (gDPe). Also,
with b = 3, Eq. (3.3) becomes

z2(zzηηη + 3zηzηη − 4zzη − 3czη) +
1

2
Dzη = 0

and Eq. (3.4) becomes Eq. (3.1). Eq. (3.1) with B = 0 corresponds to the CHe, for which f(z)
is given by (2.3); Eq. (3.1) with D = 0 corresponds to the DPe, for which f(z) is given by (2.4).

In principle, as the polynomial in (3.1) is a quartic, we can use the method of integration we
applied to the CHe and the DPe to integrate gDPe (3.5) and obtain travelling-wave solutions in
the forms given by Eqs. (2.5) or (2.6).

It is necessary to note that f(z) in (3.1) involves three arbitrary constants A, B, D in contrast
to f(z) in (2.3) and (2.4), where there are only two constants. Hence, the gDPe should possess
a wider variety of travelling-wave solutions than either the CHe or the DPe.

Since Eq. (3.1) is invariant under the transformation z → −z, c → −c, D → −D, we can
consider only the case c = 1 (i. e. v > 0). Note that there is a restriction on the roots; they
cannot be arbitrary because z1 + z2 + z3 + z4 = −2c, and they must be real.

90 ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2006, №8



In Table 1, we classify the different types of travelling-wave solutions of gDPe (3.5) according
to the disposition of the real roots of the polynomial f(z). With distinct roots, the solutions are
shown in the first column (Figs. 1.1–1.5). When z1 6= z2 and z3 = z4, the solutions take the
forms which are shown in the second column (Figs. 2.1–2.5). When z1 = z2 and z3 6= z4, the
solutions are shown in the third column (Figs. 3.1–3.3). Finally, in the fourth column, there are
the solutions with z1 = z2 and z3 = z4 (Figs. 4.1–4.3).

It should be noted that it is possible to construct other explicit solutions as composite waves
by using separate parts of the solutions from Table 1 [8]. Examples of this procedure have been
given in Appendix B in [10]. In particular, the circle in Fig. 1.3b can be used to construct a
periodic bell-like solution (see Fig. 3 (c) in [9]), while the two-valued solution in Figs. 4.3 a, 4.3
b can be used to construct a kink-like solution with infinite slope (see Fig. 4(c) in [9]). Since
these solutions are combined only from parts of the solutions we show in Table 1, such composite
solutions are not presented in Table 1.

4. The graphical interpretation of the solutions. In this section, we suggest a graphical
interpretation of the solutions from Table 1. Let us consider a 3D spiral. It is shown in the first
column of Table 2. If we project the spiral perpendicularly to the spiral axis, then we will see
the periodic hump given by the curve in Fig. 1.1 in Table 2. At a specific projection angle to the
spiral axis, the projection of the spiral will appear as a periodic cuspon (Fig. 1.2 in Table 2).
Changing the angle between the direction of observation and the axis of the spiral, we can then
see a periodic-loop solution (Fig. 1.3 a in Table 2). In the exceptional case where the observation
takes place along the spiral axis, the spiral appears as a circle (Fig. 1.3 b in Table 2). Thereafter
the solutions are repeated in the reverse sequence: a periodic inverted loop solution (Fig. 1.3 c in
Table 2), and a periodic inverted cuspon (Fig. 1.4 in Table 2), a periodic-hump solution (Fig. 1.5
in Table 2). Hence, we see all the solutions from the first column of Table 1.

To interpret the solutions from the second and third columns of Table 1, let us consider the
curves in the relevant columns of Table 2. These curves comprise one loop taken from a spiral.
In the second column in Table 2, the upper part of the loop is extended, whereas the lower part
is extended in the third column. At different projection angles for these curves on the plane,
we observe a solitary smooth hump (Fig. 2.1 in Table 2), a hump-like solitary wave (Fig. 3.1
in Table 2), a periodic peakon (Fig. 2.2 in Table 2), a solitary cuspon (Fig. 3.2 in Table 2),
a loop-like solitary wave (Figs. 2.3 and 3.3 in Table 2), a solitary inverted cuspon (Fig. 2.4 in
Table 2), and an inverted hump (Fig. 2.5 in Table 2).

Finally, let us consider the 3D curve which is shown in the fourth column of Table 2. It is none
other than a half loop of a spiral with expanded upper and lower parts. This curve enables us
to interpret the solutions from the fourth column. The projections give a kink-like solitary wave
(Fig. 4.1 in Table 2), a single peakon solution (Fig. 4.2 in Table 2), and finally, a two-valued
solution (Fig. 4.3 in Table 2).

Consequently, all the types of the solution from Table 1 are interpreted in Table 2.
5. Conclusion. A new nonlinear evolution equation generalizing the CHe and the DPe

is suggested. This equation can be applied to describe shallow water waves, turbulent flows,
and wave propagation in relaxing media. It can be integrated in a similar way to the CHe
and the DPe in order to find travelling wave solutions. It turns out that the solutions of this
new equation can be interpreted as the projection of a spiral on a plane at different projection
angles to the axis of the spiral. The classification of the travelling wave solutions presented in
this paper may be of help in the understanding and description of the physical processes being
investigated.
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Fig. 1
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Fig. 2
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