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Abstract

A B€aacklund transformation both in bilinear and in ordinary form for the transformed generalised Vakhnenko

equation (GVE) is derived. It is shown that the equation has an infinite sequence of conservation laws. An inverse

scattering problem is formulated; it has a third-order eigenvalue problem. A procedure for finding the exact N-soliton
solution to the GVE via the inverse scattering method is described. The procedure is illustrated by considering the cases

N ¼ 1 and 2.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The nonlinear propagation of deformation waves in a flexible long string is governed by the equation

uxt þ sgn
dx
ds

� �
uxx

ð1þ u2xÞ
3=2

" #
xx

¼ 0; ð1:1Þ

where u is the transverse displacement and s denotes the arc length measured along the solution curve from some fixed

reference point on the string. The properties of (1.1), and in particular its loop-soliton solution, have been discussed by

many authors, see [1–9] for example. Some related equations were presented and studied in [3,10–14]. Some other

equations that have loop-soliton solutions are discussed in [15–17].

Recently we have introduced and studied three new equations which have loop-soliton solutions, namely the

Vakhnenko equation (VE) [18–23], the generalised Vakhnenko equation (GVE) [24], and the modified generalised

Vakhnenko equation (mGVE) [25]. The GVE and mGVE also have hump-soliton and cusp-soliton solutions.

The VE, namely

o

ox
Duþ u ¼ 0; where D :¼ o

ot
þ u

o

ox
; ð1:2Þ

was first presented by Vakhnenko in [18] to describe high-frequency waves in a relaxing medium [19].

In [20–23] we discussed the multi-loop soliton solution to the VE with boundary condition u ! 0 as jxj ! 1. The

key step in finding this solution is to introduce the transformations
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x ¼ hðX ; T Þ :¼ T þ W ðX ; T Þ þ x0; t ¼ X ; W ¼
Z X

�1
UðX 0; T ÞdX 0; ð1:3Þ

where x0 is a constant, uðx; tÞ ¼ UðX ; T Þ ¼ WX ðX ; T Þ, and it is assumed that, as jX j ! 1, U ! 0, the derivatives of W
vanish, and W tends to a constant. In terms of the new variables the VE may be written

WXXT þ ð1þ WT ÞWX ¼ 0; ð1:4Þ

the transformed VE. Solutions in implicit form to (1.2) are found by first solving (1.4) and then transforming back to

the original variables.

(1.4) may be solved by Hirota�s method. This is accomplished by writing

W ¼ 6 ln f ðX ; T Þð ÞX ð1:5Þ

so that (1.4) may be written as the bilinear equation

ðD3
XDT þ D2

X Þf 
 f ¼ 0; ð1:6Þ

where D is the Hirota D operator [26]. The 2 and N loop soliton solutions to (1.2) were obtained via (1.6) in [20,21]

respectively.

In [23] we derived a B€aacklund transformation associated with (1.4) and hence showed that the IST problem involves

a third-order eigenvalue problem; we went on to recover the N loop soliton solution to (1.2) by using the IST method.

The main aim of the present paper is to extend the investigation of the VE in [23] to the GVE [24], namely

o

ox
D2u
�

þ 1

2
u2 þ bu

�
þDu ¼ 0 ð1:7Þ

or equivalently

ou
ox

�
þD

�
o

ox
Du

�
þ uþ b

�
¼ 0;

where b is a real arbitrary constant.

The transformed version of the GVE (1.7) is

UXXT þ UUT þ UX

Z X

�1
UT ðX 0; T ÞdX 0 þ UX þ bUT ¼ 0; ð1:8Þ

or equivalently

WXXT þ ð1þ WT ÞWX þ bWT ¼ 0: ð1:9Þ

The corresponding bilinear equation is

F ðDX ;DT Þf 
 f ¼ 0; ð1:10Þ

where

F ðDX ;DT Þ :¼ D3
XDT þ D2

X þ bDXDT : ð1:11Þ

Obviously, with b ¼ 0, (1.9) and (1.10) reduce to Eqs. (1.4) and (1.6) respectively which are associated with the VE.

With b ¼ �1 and T ! �T , (1.9) and (1.10) are associated with the Hirota–Satsuma equation (HSE) for shallow water

waves [26,27]. The solution to the HSE by Hirota�s method is given in [27]. It follows that F ðDX ;DT Þ, as given by (1.11)
with b ¼ �1 and T ! �T , satisfies the �N-soliton condition� (NSC) [26]. When b < 0, the scalings

T ! �lT ; X ! X=l; where l ¼
ffiffiffiffiffiffiffi
�b

p
; ð1:12Þ

transform (1.10) into the bilinear form of the HSE. However this is not possible when b > 0. In [24] we showed that the

NSC does in fact hold for arbitrary nonzero b and went on to find the N-soliton solution to (1.7) via use of Hirota�s
method applied to (1.10). A novel feature of the GVE is that different types of soliton solutions are possible, namely

hump-like, cusp-like or loop-like.

As far as we are aware, the solution by the IST method to the HSE (i.e. Eq. (1.8) with b ¼ �1 and T ! �T ) has not
been given explicitly in the literature. In this paper we present the IST method to solve (1.8) for arbitrary nonzero b and

hence find the N -soliton solution to (1.7) subject to the boundary condition u ! 0 as jxj ! 1.
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In Section 2 we derive the B€aacklund transformation and Lax pair for the transformed GVE. It is found that the IST
problem for the transformed GVE has a third-order eigenvalue problem. We also show that there is an infinite sequence

of conservation laws associated with the transformed GVE. In Section 3 we use the IST method to find the N-soliton
solution of the GVE. Finally, in Section 4, we consider the one-soliton and two-soliton solutions in more detail and

show that the solutions correspond to those derived via Hirota�s method in [24].

2. B€aacklund transformation, Lax pair and conservation laws for the transformed GVE

We will show that the B€aacklund transformation for (1.10) is given by the two equations

ðD3
X þ bDX � kðX ÞÞf 0 
 f ¼ 0; ð2:1Þ

ð3DXDT þ 1þ lðT ÞDX Þf 0 
 f ¼ 0; ð2:2Þ

where kðX Þ is an arbitrary function of X and lðT Þ is an arbitrary function of T . We follow the method developed in [28].

Consider the expression P defined by

P :¼ ½ðDTD3
X þ D2

X þ bDXDT Þf 0 
 f 0�ff � f 0f 0½ðDTD3
X þ D2

X þ bDXDT Þf 
 f �; ð2:3Þ

where f 6¼ f 0. In [23] it was shown that

½ðDTD3
X þ D2

X Þf 0 
 f 0�ff � f 0f 0½ðDTD3
X þ D2

X Þf 
 f � ¼ 2DT ðD3
X f

0 
 f Þ 
 ðf 0f Þ � 2DX ðf3DTDX þ 1gf 0 
 f Þ 
 ðDXf 0 
 f Þ:
ð2:4Þ

By using (2.4) and the identities (II.1) and (VII.2) from [29], P given by (2.3) can be reduced to the form

P ¼ 2DT ðfD3
X þ bDX � kðX Þgf 0 
 f Þ 
 ðf 0f Þ � 2DX ðf3DTDX þ 1þ lðT ÞDXgf 0 
 f Þ 
 ðDXf 0 
 f Þ: ð2:5Þ

It is clear from (2.5) that if (2.1) and (2.2) hold then P ¼ 0. Furthermore it then follows from (2.3) that if f is a solution

of (1.10) then so is f 0 and vice-versa. Consequently, we have proved that the two Eqs. (2.1) and (2.2) constitute a

B€aacklund transformation for Eq. (1.10). As expected, with b ¼ �1 and T ! �T , (2.1) and (2.2) become the B€aacklund
transformation for the HSE (see Eqs. (5.131) and (5.132) in [26]).

The inclusion of l in the operator 3DT þ lðT Þ which appears in (2.2) corresponds to a multiplication of f and f 0 by

terms of the form egðT Þ and eg
0ðT Þ respectively; from (1.5) we see that this has no effect on W or W 0. Hence, without loss of

generality, we may take l ¼ 0 in (2.2) if we wish.

By introducing the function

w ¼ f 0=f ; ð2:6Þ

and taking into account (1.5), we find that (2.1) and (2.2) reduce to

wXXX þ ðb þ WX ÞwX � kw ¼ 0; ð2:7Þ

3wXT þ ð1þ WT Þw þ lwX ¼ 0 ð2:8Þ

respectively, where we have used results similar to (X.1)–(X.3) in [26].

From (2.7) and (2.8) it can be shown that

3kwT þ ð1þ WT ÞwXX � WXTwX þ ½WXXT þ ðb þ WX Þð1þ WT Þ þ lk�w ¼ 0 ð2:9Þ

and

½WXXT þ ð1þ WT ÞWX þ bWT �Xw þ ð3wT þ lwÞkX ¼ 0: ð2:10Þ

In view of (1.9), (2.9) becomes

3kwT þ ð1þ WT ÞwXX � WXTwX þ ðb þ klÞw ¼ 0; ð2:11Þ

and (2.10) implies that kX ¼ 0 so the spectrum k of (2.7) remains constant. Constant k is what is required in the IST

problem discussed in Section 3. (2.7) and (2.11) are the Lax pair for (1.9). As expected, with b ¼ �1 and T ! �T , (2.7),
(2.8) and (2.11) are the corresponding equations for the HSE (cf. Eqs. (A8a), (A8b) and (A10b) respectively in [30]).
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Following the procedure given in [26,31], we can rewrite (2.7) and (2.11) in terms of the potential W . Recalling that

w ¼ f 0=f , and noting that W 0 � W ¼ 6uX and W 0 þ W ¼ 6qX , where u ¼ ln f 0=f and q ¼ ln f 0f , we find that (2.7) and

(2.11) give the following B€aacklund transformation in ordinary form:

ðW 0 � W ÞXX þ 1
2
ðW 0 � W ÞðW 0 þ W ÞX þ 1

36
ðW 0 � W Þ3 þ bðW 0 � W Þ � 6k ¼ 0; ð2:12Þ

3kðW 0 � W ÞT þ ð1
h

þ WT ÞððW 0 � W ÞX þ 1
6
ðW 0 � W Þ2Þ � WXT ðW 0 � W Þ

i
X
¼ 0: ð2:13Þ

A method for deriving higher conservation laws via the B€aacklund transformation was given in [32,33]. The method

was applied to a higher-order KdV equation in [31]. Apart from a scaling factor and the term involving b, our (2.12) is
the same as (29) in [31], and our (2.13) is in conservation form like (30) in [31]. Not surprisingly, when the method is

applied to the transformed GVE in the form (1.8), we obtain conserved densities which, apart from scaling factors and

terms involving b, agree with those given by Eqs. (37)–(39) in [31]. We also deduce that an infinite sequence of con-

servation laws is associated with (1.8) and that, for example, the first two nontrivial conserved densities are U and

ðU 3 � 3U 2
X þ 3bU 2Þ.

3. The IST problem and its N-soliton solution

As shown in Section 2, the IST problem for the transformed GVE (1.9) has a spectral equation for w of third-order,

namely (2.7). The inverse problem for certain third-order spectral equations has been considered by Kaup [34] and

Caudrey [35,36]. The time evolution of w is determined from (2.8) or (2.11).

Following the method described by Caudrey [35], the spectral equation (2.7) can be rewritten

o

oX
w ¼ AðfÞ½ þ BðX ; fÞ� 
 w ð3:1Þ

with

w ¼
w
wX

wXX

0
@

1
A; A ¼

0 1 0

0 0 1

k �b 0

0
@

1
A; B ¼

0 0 0

0 0 0

0 �WX 0

0
@

1
A: ð3:2Þ

We find the eigenvalue kjðfÞ of the matrix A from the equation

detðA� kjEÞ ¼ �k3j � bkj þ k ¼ 0; ð3:3Þ

where E is the identity matrix. The relation (3.3) between the values k and kj can be rewritten in parametric form with

f as parameter, namely

kj ¼
b
3

� �1=2

xjf

�
� 1

xjf

�
; ð3:4Þ

k ¼ b
3

� �3=2

f3
�

� 1

f3

�
; ð3:5Þ

where xj ¼ ei2pðj�1Þ=3 are the cube of roots of 1 (j ¼ 1; 2; 3). Because of the properties k1ðfÞ ¼ k1ð�f�1Þ,
k2ðfÞ ¼ k3ð�f�1Þ, k3ðfÞ ¼ k2ð�f�1Þ and kðfÞ ¼ kð�f�1Þ, it is sufficient to consider the values f located outside (or inside)
of the circle jfj ¼ 1 only.

The right- and left-eigenvectors are

vjðfÞ ¼
1

kj

k2j

0
@

1
A; ~vvjðfÞ ¼ k2j

�
þ b; kj; 1

�
: ð3:6Þ

It should be noted that the passage to the limit b ! 0 must be carried out with
ffiffiffi
b

p
f held constant.

The general theory of the inverse scattering problem for N spectral equations has been developed in [35]. The so-

lution of the linear equation (3.1) (or equivalently (1.9)) has been obtained by Caudrey [35] in terms of Jost functions

/jðX ; fÞ which have the asymptotic behaviour
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UjðX ; fÞ :¼ expf�kjðfÞXg/jðX ; fÞ ! vjðfÞ as X ! �1: ð3:7Þ

Here T is regarded as a parameter until the T -evolution of the scattering data is taken into account later. The solution of
the direct problem is given by the equation system (4.5) in [35]. We shall restrict our attention to the N -soliton solution.
To do this we consider Eq. (6.20) from [35] by putting QijðfÞ � 0. Then there is only the bound state spectrum which is

associated with the soliton solutions.

Let the bound state spectrum be defined by K poles located, for definiteness, outside the circle jfj ¼ 1. The relation

(4.5) from [35] is reduced to the form

U1ðX ; fÞ ¼ 1�
XK
k¼1

X3
j¼2

cðkÞ1j

expf½kjðfðkÞ1 Þ � k1ðfðkÞ1 Þ�Xg
k1ðfðkÞ1 Þ � k1ðfÞ

U1ðX ;xjf
ðkÞ
1 Þ: ð3:8Þ

We need only consider the function U1ðX ; fÞ since there is a set of symmetry properties as for the Boussinesq

equation, namely the properties (6.15), (6.16) in [35] for Jost functions /jðX ; fÞ

/1ðX ; f=x1Þ ¼ /2ðX ; f=x2Þ ¼ /3ðX ; f=x3Þ; /jðX ; fÞ ¼ /jðX ;�f�1Þ ð3:9Þ

that follow from Eqs. (3.2) and (3.4).

(3.8) involves the spectral data, namely the poles fðkÞi and the quantities cðkÞij . First we will prove that Rek ¼ 0 for

compact support. Indeed, from (2.7) we have

ðwX ÞXXX þ ½ðb þ WX ÞwX �X � kwX ¼ 0; ð3:10Þ

and together with (2.8) this enables us to write

o

oX
o2

oX 2
wXw�

�
� 3wXXw�

X þ ðb þ WX ÞwXw�
�
� 2RekwXw� ¼ 0: ð3:11Þ

Integrating (3.11) over all values of X , we obtain that for compact support Rek ¼ 0 since, in the general case,R1
�1 wXw� dX 6¼ 0.

As follows from Eqs. (2.12), (2.13), (2.36) and (2.37) of [34], wX ðfÞ is related to the adjoint states wAð�fÞ. In the usual
manner, using the adjoint states and Eq. (14) from [36], and Eq. (2.37) from [34], one can obtain

/1X ðX ; fÞ ¼ iffiffiffi
3

p /1X ðX ;½ � x2fÞ/1ðX ;� x3fÞ � /1X ðX ;� x3fÞ/1ðX ;� x2fÞ�: ð3:12Þ

It is easily seen that if fð1Þ1 is a pole of /1ðX ; fÞ, then there is a pole either at fð2Þ1 ¼ �x2f
ð1Þ
1 (if /1ðX ;�x2fÞ has a pole), or

at fð2Þ1 ¼ �x3f
ð1Þ
1 (if /1ðX ;�x3fÞ has a pole). For definiteness, let fð2Þ1 ¼ �x2f

ð1Þ
1 , then as follows from Eq. (3.12) the

point �x3f
ð2Þ
1 should be a pole. However, this pole coincides with the pole fð1Þ1 , since �x3f

ð2Þ
1 ¼ �x3ð�x2Þfð1Þ1 ¼ fð1Þ1 .

Hence, the poles appear in pairs fð2n�1Þ1 , fð2nÞ1 under the condition fð2nÞ1 =fð2n�1Þ1 ¼ �x2, where n is the number pair.

Let us consider N pairs of poles, i.e. in all there are K ¼ 2N poles over which the sum is taken in (3.8). For the pair n
(n ¼ 1; 2; . . . ;N) we have the properties

ðiÞ fð2n�1Þ1 ¼ ix2nn; ðiiÞ fð2nÞ1 ¼ �ix3nn: ð3:13Þ

Since U is real and k is imaginary, either nn is real when b > 0 or nn is imaginary when b < 0, i.e.
ffiffiffi
b

p
nn is real.

By considering Eq. (3.12) in the vicinity of the first pole fð2n�1Þ1 of the pair n and using the relation (3.8), one can

obtain a relation between cð2n�1Þ12 and cð2nÞ13 . In this case the functions /1X ðX ; fÞ, /1ðX ;�x2fÞ, /1X ðX ;�x2fÞ also have

poles here, while the functions /1ðX ;�x3fÞ, /1X ðX ;�x3fÞ do not have poles here. Substituting /1ðX ; fÞ in the form

given by (3.7) and (3.8) into Eq. (3.12) and letting X ! �1, we have cð2nÞ12 ¼ cð2n�1Þ13 ¼ 0 and the ratio

cð2n�1Þ12

cð2nÞ13

¼ x2nn þ ðx2nnÞ�1

x3nn þ ðx3nnÞ�1
: ð3:14Þ

Therefore the properties of cðkÞij should be defined by the relationships

ðiÞ cð2n�1Þ12 ¼
ffiffiffi
b

p
cn½x2nn þ ðx2nnÞ�1�; cð2n�1Þ13 ¼ 0;

ðiiÞ cð2nÞ12 ¼ 0; cð2nÞ13 ¼
ffiffiffi
b

p
cn½x3nn þ ðx3nnÞ�1�;

)
ð3:15Þ

where cn are arbitrary constants. We will show below that cn is real when WX is real.
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Following [23] we expand U1ðX ; fÞ as an asymptotic series in k�1
1 ðfÞ to obtain

U1ðX ; fÞ ¼ 1� 1

3k1ðfÞ
W ðX Þ½ � W ð �1Þ� þOðk�2

1 ðfÞÞ: ð3:16Þ

On the other hand, we may rewrite the relationship (3.8) as (see, for instance, Eqs. (6.33) and (6.34) in [35])

U1ðX ; fÞ ¼ 1�
XK
k¼1

expf�k1ðfðkÞ1 ÞXg
k1ðfðkÞ1 Þ � k1ðfÞ

WkðX Þ; ð3:17Þ

WkðX Þ ¼
X3
j¼2

cðkÞ1j expfkjðfðkÞ1 ÞXgU1ðX ;xjf
ðkÞ
1 Þ:

From (3.16) and (3.17) it may be shown that (cf. Eq. (6.38) in [35])

W ðX Þ � W ð�1Þ ¼ �3
XK
k¼1

expf�k1ðfðkÞ1 ÞXgWkðX Þ ¼ 3
o

oX
lnðdetMÞ: ð3:18Þ

The matrix M is defined as in the relationship (6.36) in [35] by

MklðX Þ ¼ dkl �
X3
j¼2

cðkÞ1j

expf½kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ�Xg
kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ

: ð3:19Þ

Now let us consider the T -evolution of the spectral data. By analyzing the solution of Eq. (2.8) when X ! �1
together with (3.7), we find that

/iðX ; T ; fÞ ¼ exp
h
� 3kiðfÞð Þ�1T

i
/iðX ; 0; fÞ:

Hence the T -evolution of the scattering data is given by the relationships (with k ¼ 1; 2; . . . ;K)

fðkÞj ðT Þ ¼ fðkÞj ð0Þ;

cðkÞ1j ðT Þ ¼ cðkÞ1j ð0Þ exp � 3kjðfðkÞ1 Þ
� ��1

þ 3k1ðfðkÞ1 Þ
� ��1� �

T
� �9=;: ð3:20Þ

The final result, including the T -evolution, for the N -soliton solution of the transformed GVE (1.8) is

UðX ; T Þ ¼ WX ðX ; T Þ ¼ 3
o2

oX 2
ln detMðX ; T Þð Þ; ð3:21Þ

where M is the 2N � 2N matrix given by

Mkl ¼ dkl �
X3
j¼2

cðkÞ1j ð0Þ
exp � 3kjðfðkÞ1 Þ

� ��1
þ 3k1ðfðkÞ1 Þ
� ��1� �

T þ kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ
� �

X
� �

kjðfðkÞ1 Þ � k1ðfðlÞ1 Þ
ð3:22Þ

and

n ¼ 1; 2; . . . ;N ; m ¼ 2n� 1;

k1ðfðmÞ1 Þ ¼ i
ffiffiffiffiffiffiffiffi
b=3

p
½x2nm þ ðx2nmÞ�1�; k2ðfðmÞ1 Þ ¼ i

ffiffiffiffiffiffiffiffi
b=3

p
½x3nm þ ðx3nmÞ�1�;

cðmÞ12 ð0Þ ¼
ffiffiffi
b

p
cmð0Þ½x2nm þ ðx2nmÞ�1�; cðmÞ13 ¼ 0;

k1ðfðmþ1Þ1 Þ ¼ �i
ffiffiffiffiffiffiffiffi
b=3

p
½x3nm þ ðx3nmÞ�1�; k3ðfðmþ1Þ1 Þ ¼ �i

ffiffiffiffiffiffiffiffi
b=3

p
½x2nm þ ðx2nmÞ�1�;

cðmþ1Þ12 ¼ 0; cðmþ1Þ13 ð0Þ ¼
ffiffiffi
b

p
cmð0Þ½x3nm þ ðx3nmÞ�1�:

For the N-soliton solution there are N arbitrary constants nm and N arbitrary constants cm. We note that comparison

of (1.5) with (3.21) shows that

lnðdetMÞ ¼ 2 ln f ð3:23Þ

so that detM should be a perfect square for arbitrary N .
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Finally, the N-soliton solution of the untransformed GVE (1.7) is given in parametric form by

uðx; tÞ ¼ Uðt; T Þ; x ¼ hðt; T Þ; ð3:24Þ

where hðX ; T Þ is defined in (1.3).

4. Examples of one- and two-soliton solutions

In order to obtain the one-soliton solution of the transformed GVE (1.8) we need first to calculate the 2� 2 matrix

M according to (3.22) with N ¼ 1. The elements of the matrix are

M11 ¼ 1�
ffiffiffi
b

p
c1

2k
½x2n1 þ ðx2n1Þ�1� exp½2kðX � cT Þ�;

M12 ¼
ffiffiffi
3

p
c1i
2

½x2n1 þ ðx2n1Þ�1�
½x3n1 þ ðx3n1Þ�1�

( )
exp 2i

ffiffiffiffiffiffiffiffi
b=3

p
½x3n1

n
þ ðx3n1Þ�1�X � 2kcT

o
;

M21 ¼ �
ffiffiffi
3

p
c1i
2

½x3n1 þ ðx3n1Þ�1�
½x2n1 þ ðx2n1Þ�1�

( )
exp

n
� 2i

ffiffiffiffiffiffiffiffi
b=3

p
½x2n1 þ ðx2n1Þ�1�X � 2kcT

o
;

M22 ¼ 1�
ffiffiffi
b

p
c1

2k
½x3n1 þ ðx3n1Þ�1� exp½2kðX � cT Þ�

ð4:1Þ

and the determinant of the matrix is

detM ¼ 1

(
þ c1

2

n21 þ 1

n21 � 1

 !
exp 2kðX½ � cT Þ�

)2

; ð4:2Þ

where k ¼
ffiffiffi
b

p
ðn1 � n�1

1 Þ=2 and c�1 ¼ bðn21 þ n�2
1 � 1Þ. Notice that this determinant is a perfect square; this is consistent

with (3.23).

From (3.21) and (4.2), the one-soliton solution of the transformed GVE (1.8), as obtained by the IST method, is

UðX ; T Þ ¼ 6k2sech2 kðX½ � cT Þ þ a1�; ð4:3Þ

where

a1 ¼
1

2
ln

c1
2

n21 þ 1

n21 � 1

 !" #
:

a1 is an arbitrary constant. Since U is real, it follows from (4.3) that a1 is real; moreover, since
ffiffiffi
b

p
n1 is real, c1 is also

real. (4.3) agrees with the one-soliton solution to the transformed GVE as found by Hirota�s method and given by (4.1)–
(4.4) in [24].

In a similar way (details omitted) we find that for the two-soliton solution M is a 4� 4 matrix for which detM is a

perfect square given by

detM ¼ 1
�

þ q21 þ q22 þ b212q
2
1q

2
2

 2
; ð4:4Þ

where

qi ¼ exp 2kiðX½ � ciT Þ þ ai�; ð4:5Þ

b212 ¼
n3 � n�1

3 � n1 þ n�1
1

n3 � n�1
3 þ n1 � n�1

1

 !3

n33 � n�3
3 þ n31 � n�3

1

n33 � n�3
3 � n31 þ n�3

1

; ð4:6Þ

ki ¼
ffiffiffi
b

p
ðn2i�1 � n�1

2i�1Þ=2; c�1i ¼ bðn22i�1 þ n�2
2i�1 � 1Þ;

ai ¼
1

2
ln

c2i�1
2

n22i�1 þ 1

n22i�1 � 1

 !" #
:
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The ai are real arbitrary constants. The relationship (3.21) together with (4.4) gives the two-soliton solution of (1.8).

(4.4)–(4.6) agree with the two-soliton solution as found by Hirota�s method and given by (7.1)–(7.7) in [24].

In passing we note that in the limit b ! 0 with
ffiffiffi
b

p
ni held constant, the one- and two-soliton solutions given above

reduce to the ones obtained in [23] for the VE.

By combining the above results with (3.24) we obtain the one- and two-soliton solutions to the GVE. As discussed in

detail in [24] the shape of the one-soliton solution to the GVE (1.7) depends on the value of q :¼ b=k2. Examples of

Fig. 1. Hump-like uðx; tÞ for q ¼ �5, �4:2 and 5; loop-like uðx; tÞ for q ¼ �3:8 and 0, and the cusp-shaped uðx; tÞ for q ¼ 2.

-30 -20 -10 0 10 20 30
x

u

-30 -20 -10 0 10 20 30

t = -8

t = 0

t = 8

Fig. 2. The interaction process for r ¼ 0:6 and s ¼ �2:7.
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loop-like and hump-like solitons, and the cusp-shaped soliton, are illustrated in Fig. 1 where u is plotted against

x� c�1t. The interaction process between the solitons in the two-soliton solution to the GVE was also discussed in detail

in [24]. The character of the interaction depends on the values of r :¼ k1=k2 and s :¼ b=k22 . An example of an interaction
is given in Fig. 2 where u is plotted against x at several equally spaced values of t.

5. Conclusion

We have extended our work on the VE (1.2) presented in [23] to the GVE (1.7). In particular in Section 3 we found

the N -soliton solution of the transformed GVE by using the IST method. This result, together with (3.24), gives the N -
soliton solution to the GVE. In principle this solution is equivalent to the one in [24] as derived by Hirota�s method. In
Section 4 we showed that the one- and two-soliton solutions to the GVE discussed in detail in [24] are recovered ex-

plicitly.
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