
International Journal of Differential Equations and Applications 

Volume 1 No.4 2000, 429-449 

THE VAKHNENKO EQUATION FROM THE VIEWPOINT
 

OF THE INVERSE SCATTERING METHOD
 

FOR THE KdV EQUATION
 

V.O. Vakhnenko! §, E.J. Parkes2 , A.V. Michtchenko''
 

1Institute for Geophysics
 
Palladin Ave. 32, Kyiv, 03680, UKRAINE
 

e-mail: vakhnenko@bitp.kiev.ua
 
2Dept. Math., Univ. of Strathclyde
 

Richmond St., Glasgow GI1XH, U.K.
 
e-mail: ejp@maths.strath.ac.uk
 

3ESIME,Inst. Politecn. National
 
Mexico, D.F., C.P. 07738, MEXICO
 

e-mail: mitchenfsmaya.esimes.ipn.mx
 

Abstract: The formulation of the inverse scattering transform method 
is discussed for the nonlinear evolution equation (Ut + 'Uux)x + U = 0 
(the Vakhnenko equation). It is shown that the equation system for the 
inverse scattering problem associated with the Vakhnenko equation can 
not contain the isospectral Schrodinger equation. The exact two soliton 
solutions are obtained by means of the use of elements of the inverse 
scattering problem for the KdV equation. 
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1. Introduction 

This paper deals with a nonlinear evolution equation (see [1]) 

a (8 8)ax at + 'Uax 'U + 'U = 0, (1.1) 

that was proposed by Vakhnenko. The equation arose as a result describ-
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ing high-frequency perturbations in a relaxing medium [2]. In contrast 
to the high-frequency perturbations, the low-frequency perturbations 
satisfy the well-known KdV equation [1] that is widely encountered in 
applications [3]. Eq. (1.1) has been studied in various Refs. [1], [4], 
[5], [6], [7]. Hereafter, as was initiated in [4], this equation is referred 
as Vakhnenko equation (VE). It is noted that Eq. (1.1) and the KdV 
equation have the same hydrodynamic nonlinearity and do not contain 
dissipative terms; only the dispersive terms are different. The simi­
larity between these equations indicates that, in studying the VE, the 
application of the inverse scattering transform (1ST) method should be 
possible. The 1ST method is the most appropriate way of tackling ini­
tial value problems. The results of applying the 1ST method would be 
useful in solving the Cauchy problem for the VEe The study of the VE 
is of scientific interest both from the viewpoint of the existence of sta­
ble wave'formations and from the viewpoint of the general problem of 
integrability of nonlinear equations. 

III papers [1], [4] two families of periodic solutions were obtained for 
the VEe This was achieved by assuming travelling wave solutions and 
the use of direct integration. There is also a solitary wave solution that 
has loop like form (see Fig. 1 in [1]). This multiple-valued solution is 
similar to the loop-like soliton solution for the equation describing the 
dynamics of a stretched rope [8]. Loop-like solitons on vortex filaments 
have been studied in [9], [10]. 

We have succeeded in finding new coordinates in terms of which the 
solitary wavesolution is given by single-valued parametric relations. The 
transformation into these coordinates is the key to solving the problem of 
the interaction of solitons. In this paper the exact two-soliton solution 
is obtained for the VEe It should be noted that the first attempt to 
obtain the interaction of the two solitons for the VE fared poorly [1]; 
a mistake was made in deriving the linear equation (12) in [1] which 
rendered the conclusions erroneous. Unlike [5], [6] where the interaction 
of the solitons was studied by the Hirota method [11], [12], we use now 
elements of the 1ST method for the KdV equation. The analysis of 
the two-soliton solution in the framework of the 1ST method for the 
KdV equation leads us to the conclusion that, for the 1ST problem, 
the equation system associated with the VE (1.1) does not contain the 
isospectral Schrodinger equation. 
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2. The Transformed VE 

As previously [5], let us define new independent variables (T, X) by the 
transformation 

cpdT = dx - u dt, X=t. (2.1) 

The function cp is to be obtained. It is important that the functions 
a: = fJ(T, X) and u = U(T, X) turn out to be single-valued. In terms of 
the coordinates (T, X) the solution of the VE is given by single-valued 
parametric relations. The transformation into these coordinates is the 
key-point in solving the problem of the interaction of solitons as well as 
explaining the multiple-valued solutions [2]. The transformation (2.1) 
is similar to the transformation between Eulerian coordinates (x, t) and 
Lagrangian coordinates (T, X). We require that T = x if there is no 
perturbation, i.e, if u(x, t) = O. Hence cp = 1 when u(x, t) = O. For 
example, it may be shown, that Eqs. (12) and (14) imply cp = 1 - ii]», 
for the one loop soliton solution (see [1]). 

The function cp is the additional dependent variable in the equation 
system (2.3), (2.4) to which we reduce the original Eq. (1.1). We note 
that the transformation inverse to (2.1) is 

dx=cpdT+UdX, U(T, X) == u(x, t), (2.2) 

and taking into account the condition that dx is an exact differential, 
we obtain acp _ au 

(2.3)ax - er: 
This equation, together with Eq. (1.1) rewritten in terms of cp(T, X) and 
U(T, X), namely 

a2 cp
aX2 +Ucp = 0, (2.4) 

is the main system of equations. The equation system (2.3), (2.4) can 
be reduced to a nonlinear equation in one unknown W defined by 

Wx=U. (2.5) 

As in [5], [6], we study solutions U that vanish as IXI ~ 00 or, equiv­
alently, solutions for which W tends to a constant as IXI ~ 00. From 
(2.3) and (2.5) and the requirement that cp ~ 1 as IXI ~ 00 we have 
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cp = 1 + WT; then from (2.4) we arrive at the transformed form of the 
VE 

WXXT + (1 + WT)WX = O. (2.6) 

Furthermore it follows from (2.2) that the original independent space 
coordinate x is given by 

x = 8(T, X) := Xo +T + ~ (2.7) 

where Xo is an arbitrary constant. Since the functions 8(T, X) and 
U(T, X) are single-valued, the problem of multi-valued solutions has 
been solved from the mathematical point of view. 

3. One-soliton Solutions as Reflectionless Potentials 

The method of the inverse scattering transform (1ST) is a powerful 
method to as a means for solving nonlinear evolution equations. Let 
us remember that the KdV equation 

'Ut + 6uux + U xxx = 0 (3.1) 

is associated with the system of the equations 

"pxx+u"p=).."p, (3.2) 

"pt + 3A"px + "pxzz + 3u"pz = O. (3.3) 

The equation system (3.2), (3.3) is a case of the 1ST method pre­
sented in a classic paper [13]. Since the system (3.2), (3.3) contains 
the Schrodinger equation (3.2), we will use elements of the 1ST method 
as applied to the KdV equation in order to analyze the transformed VEe 
The known one-soliton solution of the KdV equation (3.1) has the form 
(without the time-dependence) 

u = 2"12 sech2 "Ix. (3.4) 

Here, as an example, we will consider the case" 'fJ = 1. 
The results in this paper are based on .the assumption that the sys­

tem of equations associated with (2.6), which are analogous to (3.2) and 
(3.3), are unknown. However, after the calculations in this paper were 
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completed, we made some progress in the formulation of these equations, 
i.e, the eigenvalue problem for the VE [14]. 

Now let us focus on the fact that Eq. (2.4) is the Schrodinger equation 

f)2"p
aX2 - Q.,p = >...,p 

with eigenvalue (energy) A = 0 and potential Q = -U. Eq. (2.4) deter­
mines the dependence on the coordinate X, and time T appears here as 
a parameter. However, the time-dependence is determined by Eq. (2.3). 

The known one-soliton solution of Eq. (1.1), which we obtained re­
cently [1], [4], has the form 

3 2 T- vX 
(3.5)U = 2V sech 2VV' 

If it is not otherwise noted, for convenience we will consider v = 4, T = 
0, and then Eq. (3.5) reduces to 

U = 6 sech2 X. (3.6) 

The principal fact is that both 'U = 2 sech2 x (3.4) and U = 6 sech2 X 
(3.6) relate to refiectionless potentials. The general form of the reflec­
tionless potentials is (see Section 2.4 in [3]) 

'U = m(m + 1) sech2 a: (3.7) 

We have m = 1 for the potential (3.4) and m = 2 for the potential (3.6). 
It is known [3], [15] that for integrable nonlinear equations, reflection­
less potentials generate soliton solutions (in the general case, N -soliton 
solutions). 

4. Two-level Reflectionless Potential 

Let us consider the one-soliton solution of the system (2.3), (2.4) in the 
framework of the 1ST method for the KdV equation. For this purpose 
let us analyze the Schodinger equation with the potential Q == -U = 
-6 sech2 X (T is a parameter) 

(4.1) 
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For the scattering problem, the solution of Eq, (4.1) should satisfy the 
boundary conditions 

i kX 

'l/J{X, k) I"V { e- , X --+ -00, (4.2) 
i kX b(k) ei kX + a(k) e- , X --+- +00, 

where b{k) and a{k) are the coefficients of reflection and transmission 
respectively. 

In [3] (see Section 2.4) the original method for finding the wave­
functions 'l/J and eigenvaluesfor the reflectionless potential Qm = -m{m+ 
1) sech2 X was described. The general solution Ym of Eq. (4.1) for the 
potential Qm connects with the general solution Yo for Qo = 0 by the 
relationship 

m ( , d ) Ym(X, k) = m tanh X - dX Yo(X, k), (4.3)JI 
and then 

m ik+m' 
a(k) = II Ok ' ' b(k) = O. (4.4) 

m'=l ~ -m 

In our case (m = 2) Eq. (4.1) has two bound states 

-ik1 == ~l = 1, .,pI = v1 tanh X sech X, 
(4.5) 

v'3
-ik2 == ~2 = 2, 'l/J2 = 2 sech

2 x. 

The wave-functions 'l/Ji are normalized, i.e, r: l'l/Jil2dX = 1, and this 
conforms to the requirement used in the 1ST method. 

Here the main difference between the VE and the known integrable 
nonlinear equations appears. It is connected with the existence of only 
one bound state for the known equations associated with the isospectral 
Schrodinger equation, while for the VE two bound states occur. In­
deed, for the known integrable equations, the potential corresponding 
to the one-soliton solution has the following dependence on the space 
coordinate (see Eq. (4.3.9) in [3]): 

(4.6) 
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It is easy to see that this is related to the case when m = 1 in Eq. (3.7), 
i.e. there is only the one bound state 

'ljJ = V'fJ/2 sech "IX, 
(4.7)

'ljJ rv cVij exp( -"Ix), c = \1'2, as X --+ +00. 

5. Reconstruction of the One-soliton Solution for the VE 

Keeping in mind that there is an incomplete analogy of our problem to 
the known integrable equations, we shall try to reconstruct the potential 
(the solution of the transformed VE) from the scattering data as well as 
to find afterwards the time-dependence for the scattering data and for 
the one-soliton solution. 

As is well known [3], [15], in order to reconstruct the potential for 
the Schrodinger equation (4.1), we have to know the scattering data. 
From the relationships (4.5) we obtain, as X --+ 00, 

~1 = 1, 
(5.1) 

C2 = v'I2, ~2 = 2. 

Clearly ~1 = ~~2 = 1 is in agreement with (3.5), (3.6) and (3.4). We 

shall abandon this condition, i.e, v = 4 in Eq. (3.5), and in the final 
formulas. 

For convenience we reproduce the well known procedure for the re­
construction of the potential. The function B (X; T) is constructed from 
the scattering data (T is the parameter) 

n 00 

B(XjT) = L c~(t)e-"mX + 2~ ! b(k,T)eikXdk. 
m=l -00 

In the next step the following Marchenko-Gelfand-Levitan equation is 
to be solved [16] for the unknown K(X, y; T): 

00 

K(X,yjT)+B(X+yjT)+ f B(y+zjT)K(X,zjT)dz=O. (5.2) 

x 



436 V.o. Vakhnenko, E.J. Parkes, A.V. Michtchenko 

The potential is then obtained by means of the relationship 

d 
-U = Q = -2dXK(X,XjT). (5.3) 

In particular, for the reflectionless potential (3.7), b(k) = 0 in (4.2), and 
the solution can be found in the form 

N 

K(X,yjT) = - I: em(T)"pm(XjT)e-"mY. (5.4) 
m=l 

This procedure, as is well known, leads to the equation system in 'l/lm 

Aw=C, (5.5) 

where the matrix A = [amn] has elements 

and \II = ["pm] and C = [em(T)e-I'm X ] are column-vectors. 
In Eqs. (5.2)-(5.5) T is a parameter. Although we took T = 0 earlier, 

we preserve the variable T in these relationships in order to use them 
later to find the time-dependence of the scattering data. 

It is known [3], [15] that for a reflectionless potential the value of the 
determinant ~ = det [amn] is sufficient for reconstructing the potential. 
Then Eq. (5.3) is reduced to 

K(X X.T) = dlnl~1 -u = _2 f1l ln I~I (5.6)
" dX ' dX2 · 

We use (5.5) and (5.6) to obtain the one-soliton solution of the VEe 
The scattering data (5.1) and b(k) = 0 enable us to find the determinant 

CIC2 -3X -e
3 

(5.7)~= 
2 

CIC2 -3X 1 + C2 e - 4X -e 
3 4 

and then the potential 

-2Xd e 2 
-U = 12dX 1 + e-2X = -6 sech X. 
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Thus, we have repeated the standard method' for reproducing the po­
tential by means of scattering data (as yet without time-dependence). 
It is clear from U = Wx and (5.6) that 

W = 2K(X,X;T). 

It is noted that the determinant for the one-soliton solution of the KdV 
equation (3.1) has the form 

(5.8) 

The interpretation of (5.7) is important. In the matrix, two states 
2X with'Ql = e-x and Q2 = e- are involved. Clearly, the time-dependence 

for an individual state is its own characteristic. However, since these two 
states relate to the common soliton, there must be a connection between 
them, i.e, cl(T) and c2(T) must be connected. The relation (5.7) deter­
mines this connection. 

At the beginning we considered the dependence of the potential on 
the space coordinate, and the time was a parameter. Let us now find 
the time-dependence of the scattering data cl(T), c2(T) that enables us 
to find the functional dependence of the potential (2.7) on T, i.e, the 
time-dependence of the one-soliton solution. We start from the relation 
(see Eq. (22), Chap. 1, Section 2 in [15]) 

00 

't/J(X, k; T) = e-ikX + ! K(X, YjT)e-ikYdy. (5.9) 

X 

Hence, there is a linear operator that reduces the solution e- i kX of the 
Schrodinger equation with null potential Q = 0 to the solution of this 
equation with the potential U(X). The function K(X, y; T) is the kernel 
of the transformation operator. 

We write Eq. (5.9) for k = 0; this procedure is correct and an ap­
propriate theorem has been proved (see Section 3.3 in [3]): 

't/J(X, k = OJ T) = 1+ f
00 

K(X, YjT)dy. (5.10) 

X 

Clearly, 'l/J(X, k = 0;T) = cp(X, T), where cp(X, T) satisfies the equation 
system (2.3), (2.4). Taking into account (5.10), we rewrite the relation­
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ship (2.3) as 

00 

X,
1 +!K(X, y;T)dy = 2 8K(i-r T) + C. (5.11) 

x 

Since this equation must be valid at arbitrary X, and taking into account 
that the function K(X, y; T) --t 0 at IXI --t 00, we define the constant of 
integration G = 1. We write, once again, K(X, y; T) as (5.4), because 
the potential is reflectionless, and we obtain from (5.11) 

In this equation we must substitute the values "pm that are the solution 
of system (5.5). Here we consider the values Cm already as functions of 
T, i.e, em = cm(T). For example "pI is given by 

'l/Jl = 
~-1 (Cle-n1X + Cl~e-(nl+2n2)X _ Cl~ e-(n1+2n2)X). (5.13) 

21t2 Itl + 1t2 

Here ~ is the determinant (5.7) with time-dependence of em = cm(T). 
We can calculate the following terms which are required for (5.12) (with 
Itl = 1, 1t2 = 2): 

t em(T) 'l/Jm(X; T)e-nmX = 6.-1 (c~e-2X + !~e-4X) , 
m=1 It m 2 

E
2

em (T)'l/Jm (X; T)e-K,m X (5.14) 
m=1 

= ~ -1 (de-2X + ...2e- 4X + ~crle-6X)
1 ~ 12 1-~ • 

Then, substituting (5.14) into (5.12) and equating to zero the coefficients 
of e-2j X , (j = 1, ... ,6), we obtain the system of differential equations 



THE VAKHNENKO EQUATION FROM THE VIEWPOINT... 439 

for cm(T), (m = 1, 2) 

e-2X 
: (~)' = ~e?, 

4X e- : (~)' = ~(~ + e1), 

6X e- : !(e?~)' + e? (~)' - ~ (en' = ~~,
3 (5.15) 

8X e- : ~ (4~)' - 4~ (4)' = ~ (e1~ + 94), 

lOX e- : ~ (~~)' - 4~ (~)' = ~e?4, 
12X e- : c~c~ (c~~)' = c~c~ (c~~)' , 

where the prime denotes the derivative with respect to time T. 
The equation system (5.15) is overdetermined; only the first two 

equations are independent. Consequently, we solve them with initial 
conditions c~(O) = 6, c~(O) = 12. At first, we write the general solution 
of the system (5.15) as 

(5.16) 

where rl, T2 are arbitrary constants. Hence, in the general case, the 
time-dependence of the first and second states are different. Neverthe­
less, we have T2 == 0 due to the relationship between Cl (0) and C2 (0), 
and then 

e?(T) = e?(O)eT/2 = 6eT/2 
, ~(T) = ~et(O)eT = 12eT. (5.17) 

Thus, the time-dependences satisfy the condition c~(T)/C2(T) = const. 
Indeed, if the time-dependence is as in (5.17), the determinant (5.7) can 
be rewritten as a perfect cube, namely 

3 
tJ& = (1 + e-2(X-T/4») • (5.18) 

For convenience, up to this point we have used ~1 = 1, ~2 = 2. Now we 
return to one arbitrary parameter ~1 (with ~2 = 2~1) and rename it as 
a == ~1, and then we obtain 

3 

(5.19)tJ& = { 1 + exp [-20 (X - 4~2 ) ] } • 
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The potential for the one-soliton solution can easily be found by Eq. (5.6) 

2ln 
I~Id 2 2 ( T )U = 2 dX2 = 60 sech e, e = 0 X - X o - 402 • (5.20) 

For reference we have written the complete equations for finding the 
solution ofEq. (1.1) in terms of the original variables x, t (for convenience 
we rename T 88 IJ == T because here IJ is parameter) 

8(8 8)ax at + U ox U +U = 0, 

U= (a:)p' x = W = 2 (a~!~I) 1£ , (5.21)Xo + J.& +W, 

~ = (1 +q2)3, IJ - IJO)q =exp(-e), e = 0 t - 402 ' (5.22)( 

a = const, IJo = const. 

Thus, we have obtained the one-soliton solution of the VE by using 
elements of the 1ST method for the KdV equation. The proposed method 
is also applicable for finding the two-soliton solution. It is likely that 
this procedure will shed light upon the formulation of the 1ST problem 
that enables one to make progress in the study of the Cauchy problem 
for the VE (1.1). 

6. Two-soliton Solution 

In this section we will obtain the two-soliton solution for the VE (1.1). 
The key for this solution is the value which is assigned to the determinant 
(5.21) in the one-soliton solution. For more information we rewrite the 
values (5.22) once again 

~=(1+q2)3, q=exp[-o(t-J.&~;O)]. (6.1) 

It can be seen that there is some analogy to the one-soliton solution of 
the KdV equation (5.8), namely 

A = 1 + q2, q = exp(ax - 4a3t ). 

Moreover, as we noted, the potentials corresponding to the one-soliton 
solution 
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(a) for the transformed VE (T = 0, a = 1) 

U = 6 sech2 X, (6.2) 

(b) for the KdV equation (t = 0, 1] = 1) 

'U = 2 sech2 x, (6.3) 

differ from each other by their coefficients. Bearing in mind (5.3) and 

that K = a~l~1 (see (5.6», one can see that the coefficient 6 in (6.2), 

in contrast to the coefficient 2 in (6.3), is generated by the exponent 3 
in relationship (6.1). 

Now, if it is recalled that the two-soliton solution for the KdV has 
the form [11] 

(6.4) 

we can expect that the two-soliton solution for VE can be found in the 
form (5.21) with F instead of 1l in relation (5.6), where 

The value A12 is to be found. It should be noted that F is not equal to 
the determinant 1l of the matrix in (5.5) which is constructed from four 
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states with q1, q~, q2, q~, (each soliton has two bound states (4.5» 

il= 

1 +3q~ 2v'2qr 6\1'a1a2 
+ q1q2

a1 a2 

6\1'2a1a2 2 

a1 + 2a2 q1q2 

2v'2qr 1 +3qt 
6\1'2a1a2 2
2 + q1q2

a1 a2 

6\1'a1a2 2 2 
«i +a2 q1q2 

6\1'a1a2 
+ q1q2

a1 a2 

6\1'2a1a2 2 

2a1 +a2 q1q2 1 +3q~ 2v'2q~ 

6\1'2a1a2 2 
+ 2 q1q2

«i a2 

6\1'a1a2 2 2 
«i +a2 q1q2 2v'2tA 1 +3q~ 

(6.6) 

If the relation F = il were true, we would have A12 = A12. Moreover, 
these conditions would lead us to the statement that the problem for 
scattering data for the VE (1.1) should connect with the isospectral 
Schrodinger equation. This statement was made in a paper by Hirota 
and Satsuma [17] as well as in the monograph by Newell, Chapters 3 and 
4 [18]. However, because F i= il and A12 i= A12, we can state that the 
equation system for the 1ST problem associated with the transformed 
VE (1.1) does not contain the isospectral Schrodinger equation. 

The value A12 for (6.5) can be found in the following way. The 
functional relation (6.5), with A12 regarded as unknown, is substituted 
into Eq. (5.21), and then into Eqs. (2.3) and (2.4). As a consequence 
of this, a complicated system of equations arises. Without going into 
details, we note that the procedure is similar to the procedure for finding 
the system (5.5). Equating to zero the coefficients of eix , we obtain a 
system of equations. It turns out that the equations are dependent. As 
a result we obtain 

(a1 - a2)2 a~ + a~ - a1a2
A12 - • (6.7) 

- (a1 + a2)2 a~ + a~ + a1a2· 

Thus the relationships (5.21), (6.5), (6.7) are the exact two-soliton so­
lution of the VE (1.1): 

8(8 8)ax at + 'U ax 'U + 'U = 0, 
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W = 2 (8In IFI) (6.8)
8t ' 

J.' 

0i = const, JJi = const. 

A similar result has been obtained, independently of the method 
presented here, in [5] by the means of the Hirota method [11], [12] in 
some other variables. 

7. Interaction of Two Solitons 

In the interaction of two solitons for the VE there are features that are 
not characteristic of the KdV equation. Let us consider the interaction of 
the two solitons for different ratios 02/01 (see Figs. 1-3). We consider for 
definiteness that the larger soliton moving with larger velocity catches 
up with the smaller soliton moving in the same direction. After the 
nonlinear interaction the solitons separate, their forms are restored but 
phase-shifts arise. For convenience in the figures the interactions of 
solitons are shown in coordinates moving with speed v = 2(o~ + o~). 

Now we analyze the phase-shift of each soliton. Two moments of 
time are considered: (a) t1 when the smaller soliton is far ahead and 
the larger soliton is at a point x = 0 (01 > 02, JJl = 0, JJ2 = const, 
JJ2 » 02); (b) t2 » tl when the larger soliton leaves the smaller soliton 
behind. 

1. Time t = t1 = 0: 

(a) soliton 'U1 = 60~ sech2
(-81) has its maximum amplitude at 

q~ = 1, q~« 1, i.e, at a point X1maz(t1) = Xo - 601; 

(b) soliton '1.£2 = 6a~sech2(-e2 + ~lnA12) at q~ » 1 and q~ ~ 
1, (JJ ~ JJ2) has its maximum amplitude at a point 
X2maz(t1) = Xo + JJ2 - 202 In A12 - 6(20 1 + 02). 

2. Time t = t2, ((o~ - a~)t2 »p'2). Similar analysis shows that the 
locations where there are maximum soliton amplitudes are: 
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(a) Xlmax (t2) = Xo - 2a1ln A12+4a~t2 - 6(2a2 +al) for soliton 
Ul when q~ » 1, q~ ~ 1; 

(b) X2max(t2) = Xo + 1-'2 + 4a~t2' - 6a2 for soliton U2. 

Consequently, the larger and smaller solitons have the phase-shifts, 
respectively 

(7.1) 

The larger soliton always has a forward phase-shift, i.e. dl > 0, while 
the smaller soliton can have three kinds of phase-shift. Note that this 
property is not characteristic of the KdV equation. The different kinds 
of phase-shift are illustrated in Figs. 1-3. There is a special value of the 
ratio (a2/al)* = 0.88867. 

1. For a2/al > (a2/al)* the phase-shift of soliton U2 is in the oppo­
site direction to the phase-shift of the larger soliton (Fig. 1). 

2. For a2/al = (a2/al)* the soliton U2 has no phase-shift (Fig. 2). 

3. For 02/al < (02/al)* both solitons have phase-shifts in the same 
direction (Fig. 3). 

The question now arises as to whether the conservation law of the 
momentum is valid when both solitons have phase-shifts in the same 
direction. It turns out that this law is not violated at arbitrary phase­
shift. This is connected with the following property. The soliton mass 
determined by the integral 11 = J~oo u dx is identically equal to zero. 
Indeed, 

[au au] 00 

11 = 
00 

u dx = - at + 'U ax -00 =:= o.1
-00 

Thus, the arbitrary phase-shift can exist and consequently this does not 
violate the conservation law of the momentum. 
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8. Conclusion 

The main result of this paper is that we have obtained a way of applying 
the 1ST method to the transformed VEe Keeping in mind that the 1ST 
is the most appropriate way of tackling the initial value problem, one 
has to formulate the associated eigenvalue problem. We have proved 
that the equation system for the 1ST problem associated with the VE 
does not contain the isospectral Schrodinger equation. Nevertheless, 
the analysis of the transformed VE in the context of the isospectral 
Schr6dinger equation allowed us to obtaierthe two-soliton solution. 

Once this investigation was completed, we made some progress in 
the formulation of the 1ST for the transformed VE; we found that the 
spectral problem associated with the VE is of third order [14]. 
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Figure 1: Interaction of two solutions in moving coordinates at 
time interval ~t = 70/al 
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Figure 2: The phase-shift of the smaller soliton is zero.
 
The time interval is ~t = 5/0.1
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Figure 3: Both solitons have phase-shifts in the same direction. 
The time interval is ~t = 1/01 
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