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Zlaa H08020 Y342a4bHEHO20 €60ANOUITH020 PIBHAHHA 6ueedeno nepemesopenns Bexaynda. 3a
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2aromuces. 3natidena napa Jlakxca; 60Ha YMPUMYE CNEKMPAALHE PiBHAHHA MPEMBO20 NOPAIKY.
Memodom obeprenoi 3adaui po3citoeatms 6i0mMeopremMbes moukut IN -coaimorHutl Po3e’a3ok.
Pesyavmam irtocmpyemsves 00Ho- ma d60COAIMOHHUM PO36 AKAMU.

1. We consider the generalized equation which was first suggested in [1], namely

0 0 0
g (D2u+%u2+ﬂu) +Du=0 or <8_Z +D> <%Du+u+ﬂ> =0, (L.1)
where D := — +u— and [ is a real arbitrary constant. This equation is a generalization of the

iy

Vakhnenko equation (VE) that we have investigated recently (see [2, 3] and references therein).
In [1], we found the N-soliton solution to Eq. (1.1) via the use of Hirota’s method. The key

step in finding the solutions is to introduce the transformations

X
r=0X,T):=T+W(X,T) +z0, t=X, W= / UX',T)dX', (1.2)

where z( is a constant, u(x,t) = U(X,T) = Wx(X,T), and it is assumed that, as |X| — oo,
the derivatives of W vanish and W tends to a constant. In terms of the new variables, Eq. (1.1)
may be written as

X
Uxxr+UUr +Ux / UT(X,,T) Xm-l-Ux—i-ﬁUT =0, (1.3)
—00

or equivalently

Wxxr+ (1+ Wp)Wx + W =0. (1.4)
This is the transformed version of Eq. (1.1). The corresponding bilinear equation is

(D% Dy + D% +BDxDr)f - f =0, (1.5)

where D is the Hirota D operator [4] and W = 6 (In f(X,T)) x.

With 8 =0, (1.4) and (1.5) reduce to Egs. (2.6) and (2.9) in [2], respectively. With § = —1
and T — —T, (1.4) and (1.5) are associated with the Hirota — Satsuma equation (HSE) for
shallow water waves [4, 5]. The solution to the HSE by Hirota’s method is given in [5]; however,
as far as we are aware, the solution by the inverse scattering transform (IST) method has not
been given explicitly in the literature.
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The main aim of the present paper is to extend the investigation of Eq. (3) in [3] by the
IST method to Eq. (1.1).

2. Biacklund transformation and Lax pair. We follow the method developed in [6] and
show that the Backlund transformation for (1.5) is given by the equations

(D% +BDx — MX))f'- f =0, (2.1)
(3DxDr + 1+ p(T)Dx)f' - f =0, (2.2)

where A\(X) is an arbitrary function of X and p(T) is an arbitrary function of 7T'.
Consider the expression P defined by

P :=[(DrD% + DX + BDxDp)f"- f'Iff — ' f(DrD% + DX + BDxDr)f - f],  (2.3)
where f # f'. In [2], it was shown that
(DrD% + DX)f' - f1ff = ff[(DrD% + DX)f - 1 =
=2Dr(DXf"- f)- (f'f) = 2Dx({3DrDx +1}f"- f) - (Dx f'- f). (2:4)

By using (2.4) and identities (II.1) and (VIL.2) from [7], P given by (2.3) can be reduced to
the form

P =2Dp({D% + BDx —XX)}f' - f) - (f'f) -
—2Dx({3D7Dx + 1+ w(T)Dx}f'- f) - (Dxf' - f). (2.5)

It is clear from (2.5) that if (2.1) and (2.2) hold, then P = 0. Furthermore, it then follows
from (2.3) that if f is a solution of (1.5), then so is f’ and vice versa. Consequently, we have
proved that Egs. (2.1) and (2.2) constitute a Bicklund transformation for (1.5). As expected,
with f = —1 and T" — —T', (2.1) and (2.2) become the Bécklund transformation for the HSE
(see (5.131) and (5.132) in [4]).

Now we show that the IST problem for Eq. (1.4) has a third-order eigenvalue problem
that is similar to the one associated with a higher order KdV equation [8, 9], a Boussinesq
equation [8, 10, 11], and the HSE [4, 12].

Introducing the function

p=rf/f (2.6)
and taking into account (1.4), we find that (2.1) and (2.2) reduce to

PYxxx + (B+Wx)px —Ap =0, (2.7)

3¢xr + (L+ Wr)p + ppx =0, (2.8)

respectively, where we have used results similar to (X.1)—(X.3) in [4].

Computing the cross-derivative condition (Yxxx)r = (Yx7)xx from (2.7) and (2.8) and
using (2.7) and (2.8) again in order to eliminate any derivative of 1) higher than (3,0) or (1,1)
in (X,T), we obtain the following equation linear in ¢, ¥x, ¥xx, and :

3N + (1 + Wr)bxx — Wxrx +
+ Wxxr + (B+Wx)(1 +Wr) + p(T)A(X)]p = 0. (2.9)
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The integrability condition of system (2.7) and (2.8), or (2.7) and (2.9), is
Wxxr + (1+Wr)Wx + BWr|x9 + Ax (3¢ + pyp) = 0.

Hence, if (1.4) holds, Ax = 0 and so the spectrum X of (2.7) remains constant. The constant
A is what is required in the IST problem. Therefore, we obtain the following third-order Lax
pair for Eq. (1.4):

Yxxx + (B+ Wx)px — Ap =0, (2.10)
3\pr + (1 +Wr)pxx — Wxrpx + (B + Au(T))p = 0. (2.11)

Following the procedure given in [4, 9], we can rewrite (2.10) and (2.11) in terms of the
potential W. Recalling that 1 = f’/f and noting that W' — W = 6px and W' + W = 6pyx,
where ¢ = Inf'/f and p = In f'f, we find that (2.10) and (2.11) give the following Backlund
transformation in ordinary form:

W —=W)xx + (W' =W)Y(W' + W)x + (W' =W + (W' = W) —61=0, (2.12)

BAW' = W) + [(L+ W) (W = W)x + s (W = W)?) = Wxp(W —W)], =0. (2.13)

A systematic way to derive higher conservation laws via the Béacklund transformation has
been developed by Satsuma; he applied it to the KAV equation [13]. Later Satsuma and Kaup [9]
applied the method to a higher order KdV equation. Since, with constant A, our Eq. (2.12) is
(apart from a scaling factor) the same as Eq. (29) in [9], and our Eq. (2.13) is in conservation
form, we can apply the results on higher conservation laws in §4 of [9] to Eq. (1.4). Thus, we
deduce that Eq. (1.4) has an infinite sequence of conservation laws. For example, the first two
nontrivial conserved densities are U and (U — 3U% + 33U?).

3. The N-soliton solution. The inverse problem for certain third-order spectral equations
has been considered by Kaup [8] and Caudrey [10, 14]. As expected, with § = —1 and T" — —T,
(2.7) and (2.8) are the corresponding equations for the HSE (see Egs. (A8a) and (A8b) in [12]).
In [15], it is noted that the scattering problem for the HSE is similar to that for the Boussinesq
equation [11].

The general theory of the inverse scattering problem for N spectral equations has been
developed in [10]. Following [10], the spectral equation (2.10) can be rewritten as

0
5V =[O +B(X,0]- ¥, (3.1
" 0 1 0 0 0 0
v=vx |, A=[0 0o 1], B=[0o o0 o0
1/)XX A —,3 0 0 —WX 0

We find the eigenvalue A;({) of the matrix A from the equation det(A — \;E) = —A? — B+
+ A =0 (E is the identity matrix). This relation between the values A and \; can be rewritten
in parametric form with ¢ as parameter, namely

= (B/3)2(wiC — @i0)7h), A= (832 - ¢, (3:2)
where w; = ¢?mU=1D/3 are the cubes of roots of 1 (7 = 1,2,3). Because of the properties
A(G) = M(=¢71), A2(¢) = Aa(—¢71), A3(€) = Aa(=¢1), and A(¢) = A(=¢ 1), it is sufficient to
consider the values ¢ located outside (or inside) of the circle |(| = 1 only.
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The right- and left-eigenvectors are
T -
v = (L A, A7) . 5= +6 A, 1) (33)

It should be noted that the passage to the limit 8 — 0 must be carried out with \/BC
held constant.

The solution of the linear equation (2.10) (or equivalently (3.1)) has been obtained by Cau-
drey (see system (4.5) in [10]) in terms of Jost functions ¢;(X,() which have the asymptotic
behaviour

®;(X,(): =exp{—A;(()X},(X,() = v;(C) as X — —oo. (3.4)

We consider only the N-soliton solution by putting @;;(¢) = 0 in (6.20) from [10]. Then there
is only the bound state spectrum which is associated with the soliton solutions.

We follow the procedure described in [3]. Let the bound state spectrum be defined by K
poles located, for definiteness, outside the circle |(| = 1. Relation (6.20) from [10] is reduced
to the form

K 3 (k)
_ yexp{ (¢} ) A (GT)]X} (k)
Oy(X,() =1~ PUA 1 &1 (X, w;c ™). (3.5)

1 ,;Z Vo T

This relation (3.5) involves the spectral data, namely the poles Ci(k) and the quantities 'yi(]l-c).
As in [3], we need only to consider the function ®;(X,() since there is a set of symmetry
properties. One can prove similarly to [3] that Re A = 0 for compact support and there is the

relation between Jost functions:

$1x (X, () = —= [h1x (X, —w2() 1 (X, —w3() — p1x (X, —w3()p1 (X, —wa2()] - (3.6)

i
V3
As is for Eq. (3) in [3], the poles appear in pairs, wherein the properties for the pair n (n =
=1,2,...,N, and 2N = K) are

() ¢V =iwng,,  G) P = iwsg,. (3.7)

Since U is real and A is imaginary, either &, is real when 8 > 0 or £, is imaginary when 8 < 0,

i.e., \/Bfn is real.

By considering Eq. (3.6) in the vicinity of the first pole Cl ) of the pair n and using (3.5),
one can obtain a relation between 752 Y and 753 ), Substituting ¢1(X, ) in the form given
by (3.4) and (3.5) into (3.6) and letting X — —oo, we have 'ygn) = 'ygnfl) = 0 and the ratio

2” b / 13 = (wolp + (won) )/ (wsén + (w3&n)~1). Therefore, the properties of 'yi(f) should
be defined by the relationships

() Y = V/Byn (wabn + (w2n) 1), 7%”_1) =0,
(ii) 'an) =0, 713 \/_771 (W3€n w3£n)71) )

where 7, are arbitrary constants. We will show below that -, is real when Wx is real.

(3.8)
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Omitting the details, which can be found in [3], we indicate that the T-evolution of the
scattering data is given by the relationships (with £ = 1,2,..., K)

B B (3.9)
75 (1) =15 (0 exp{ [= (3X,(¢{) "+ (3Au(¢™) ']},
and then the N-soliton solution of Eq. (1.4) is
62
U(X,T) = Wx(X,T) = 35 In (det M(X,T)), (3.10)

where M is the 2N x 2N matrix given by

3
My = 01 — ZW{?(O) X
7j=2

L e [=BX(¢) T+ M) T+ () = ) X}

(3.11)

and
n=1,2,...,N, m=2n—1,
M cl J— 3 (iwatn — (o) ), Ae(c™) = VBB (w36 — (iw36m) ")
1) f 0) (wobm + (wabm) 1), 3 =0,
(c{“*”)z ﬁ/3( iwsEm + (iwstm) 1) Ag(dm“’)z B3 (—iwsbm + (iwam) 1) ,
yip ) =0, Y3 (0) = /By (0) (w3t + (wakm) ") -

For the N-soliton solution, there are N arbitrary constants &, and N arbitrary constants ~,,.

Finally, the N-soliton solution of Eq. (1.1) is given in parametric form by u(z,t) = U(¢,T),
z = 0(t,T), where 0(X,T) is defined in (1.2).

In passing, we note that, in the limit § — 0 with \/Efi held constant, the solution given
above reduces to the result for Eq. (1) obtained in [3].

4. Examples of one- and two-soliton solutions. In order to obtain the one-soliton
solution of Eq. (1.4), we need first to calculate the 2 x 2 matrix M according to (3.11) with
N = 1. The elements of the matrix are

\/E’Yl
M1 =1—
11 %

(wza ; %) exp [2h(X — ¢T)],

Mz == \/?;71 { (“’2& " f&) / (i‘”?’& - z‘é&) } *

X exp [2\/,8/3 <iw3§1 — ﬁ) X - ZkCT],
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Fig. 1. Hump-like u(z, t) for ¢ = —5, —4.2 and 5; loop- Fig. 2. Interaction process for r = 0.6 and s = —2.7

like u(x,t) for ¢ = —3.8 and 0, and the cusp-shaped
u(z,t) for g =2

= (o k) )}

X exp [2\/ﬁ/3 <—7jw2§1 + —) X - ZkCT] ,

1
twoé1

Moy =1 — \/j:l <W3gl n %&) exp [2k(X — ¢T)],

and the determinant of the matrix is

Y€+ 1
det M =41+
¢ {+2£%—1

2
exp [2k(X — cT)]} , (4.1)

where k = \/B(&; — ¢,1)/2 and ¢! = B(¢2 +- ¢, %2 — 1). Notice that this determinant is a perfect

square.
Thus, from (3.10), the one-soliton solution of Eq (1.4), as obtained by the IST method, is

U(X,T) = 6k%sech? [k(X — cT) + aq], (4.2)

7" <§% +1
2 \&-1
that «y is real; moreover, since \/Bfl is real, ; is also real.

In a similar way (details are omitted), we find that, for the two-soliton solution, M is a
4 x 4 matrix for which

where a; = 11n [ )] is an arbitrary constant. Since U is real, it follows from (4.2)

2
det M = (1+qf + 65 +b1aia3)”, i = exp [2ki(X — ¢T) + ], (4.3)

2. (fg—fgl—fl+£;1>3f§—53‘3+£i”—£;3 el [m_l <€§i1+1>]
P \g-glra-gY) 8- -8+ to2 2 \¢& -1/
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ki= VBGio — 600)/2 o =BE L + &2, 1),

Note that the determinant in (4.3) is a perfect square. Relationship (3.10) together with (4.3)
gives the two-soliton solution of (1.4).

Relations (4.2) and (4.3) agree with the one- and two-soliton solutions as found by Hirota’s
method [1]. A novel feature of Eq. (1.1) is that different types of soliton solutions are possible,
namely hump-like, cusp-like, or loop-like. As discussed in detail in [1], the shape of the one-
soliton solution to Eq. (1.4) depends on the value of ¢ := 3/ k%. Examples of loop-like solitons,
hump-like solitons, and a solution with cusp are illustrated in Fig. 1, where u is plotted against
& — ¢ 't. The interaction process between the solitons in the two-soliton solution to Eq. (1.1)
was also discussed in detail in [1]. The character of the interaction depends on the values of
r:=ki/ky and s := ﬁ/k% The example of the interaction is given in Fig. 2, where u is plotted
against = at several equally spaced values of .
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