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1. We consider the generalized equation which was �rst suggested in [1], namely
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and � is a real arbitrary constant. This equation is a generalization of the

Vakhnenko equation (VE) that we have investigated recently (see [2, 3] and references therein).

In [1], we found the N -soliton solution to Eq. (1.1) via the use of Hirota's method. The key

step in �nding the solutions is to introduce the transformations

x = �(X;T ) := T +W (X;T ) + x0; t = X; W =

XZ
�1

U(X 0; T ) dX 0; (1.2)

where x0 is a constant, u(x; t) = U(X;T ) = WX(X;T ), and it is assumed that, as jXj ! 1,

the derivatives of W vanish and W tends to a constant. In terms of the new variables, Eq. (1.1)

may be written as

UXXT + UUT + UX

XZ
�1

UT (X
0; T ) dX 0 + UX + �UT = 0; (1.3)

or equivalently

WXXT + (1 +WT )WX + �WT = 0: (1.4)

This is the transformed version of Eq. (1.1). The corresponding bilinear equation is

(D3
XDT +D2

X + �DXDT )f � f = 0; (1.5)

where D is the Hirota D operator [4] and W = 6 (ln f(X;T ))X .

With � = 0, (1.4) and (1.5) reduce to Eqs. (2.6) and (2.9) in [2], respectively. With � = �1
and T ! �T , (1.4) and (1.5) are associated with the Hirota { Satsuma equation (HSE) for

shallow water waves [4, 5]. The solution to the HSE by Hirota's method is given in [5]; however,

as far as we are aware, the solution by the inverse scattering transform (IST) method has not

been given explicitly in the literature.
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The main aim of the present paper is to extend the investigation of Eq. (3) in [3] by the

IST method to Eq. (1.1).

2. B�acklund transformation and Lax pair. We follow the method developed in [6] and

show that the B�acklund transformation for (1.5) is given by the equations

(D3
X + �DX � �(X))f 0 � f = 0; (2.1)

(3DXDT + 1 + �(T )DX)f 0 � f = 0; (2.2)

where �(X) is an arbitrary function of X and �(T ) is an arbitrary function of T .

Consider the expression P de�ned by

P := [(DTD
3
X +D2

X + �DXDT )f
0 � f 0]ff � f 0f 0[(DTD

3
X +D2

X + �DXDT )f � f ]; (2.3)

where f 6= f 0. In [2], it was shown that

[(DTD
3
X +D2

X)f 0 � f 0]ff � f 0f 0[(DTD
3
X +D2

X)f � f ] =
= 2DT (D

3
Xf

0 � f) � (f 0f)� 2DX(f3DTDX + 1gf 0 � f) � (DXf
0 � f): (2.4)

By using (2.4) and identities (II.1) and (VII.2) from [7], P given by (2.3) can be reduced to

the form

P = 2DT (fD3
X + �DX � �(X)gf 0 � f) � (f 0f)�

� 2DX(f3DTDX + 1 + �(T )DXgf 0 � f) � (DXf
0 � f): (2.5)

It is clear from (2.5) that if (2.1) and (2.2) hold, then P = 0. Furthermore, it then follows

from (2.3) that if f is a solution of (1.5), then so is f 0 and vice versa. Consequently, we have

proved that Eqs. (2.1) and (2.2) constitute a B�acklund transformation for (1.5). As expected,

with � = �1 and T ! �T , (2.1) and (2.2) become the B�acklund transformation for the HSE

(see (5.131) and (5.132) in [4]).

Now we show that the IST problem for Eq. (1.4) has a third-order eigenvalue problem

that is similar to the one associated with a higher order KdV equation [8, 9], a Boussinesq

equation [8, 10, 11], and the HSE [4, 12].

Introducing the function

 = f 0=f (2.6)

and taking into account (1.4), we �nd that (2.1) and (2.2) reduce to

 XXX + (� +WX) X � � = 0; (2.7)

3 XT + (1 +WT ) + � X = 0; (2.8)

respectively, where we have used results similar to (X.1){(X.3) in [4].

Computing the cross-derivative condition ( XXX)T = ( XT )XX from (2.7) and (2.8) and

using (2.7) and (2.8) again in order to eliminate any derivative of  higher than (3; 0) or (1; 1)

in (X;T ), we obtain the following equation linear in  T ,  X ,  XX , and  :

3� T + (1 +WT ) XX �WXT X +

+ [WXXT + (� +WX)(1 +WT ) + �(T )�(X)] = 0: (2.9)
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The integrability condition of system (2.7) and (2.8), or (2.7) and (2.9), is

[WXXT + (1 +WT )WX + �WT ]X + �X(3 T + � ) = 0:

Hence, if (1.4) holds, �X = 0 and so the spectrum � of (2.7) remains constant. The constant

� is what is required in the IST problem. Therefore, we obtain the following third-order Lax

pair for Eq. (1.4):

 XXX + (� +WX) X � � = 0; (2.10)

3� T + (1 +WT ) XX �WXT X + (� + ��(T )) = 0: (2.11)

Following the procedure given in [4, 9], we can rewrite (2.10) and (2.11) in terms of the

potential W . Recalling that  = f 0=f and noting that W 0 �W = 6'X and W 0 +W = 6�X ,

where ' = ln f 0=f and � = ln f 0f , we �nd that (2.10) and (2.11) give the following B�acklund

transformation in ordinary form:

(W 0 �W )XX + 1
2
(W 0 �W )(W 0 +W )X + 1

36
(W 0 �W )3 + �(W 0 �W )� 6� = 0; (2.12)

3�(W 0 �W )T +
�
(1 +WT )((W

0 �W )X + 1
6
(W 0 �W )2)�WXT (W

0 �W )
�
X

= 0: (2.13)

A systematic way to derive higher conservation laws via the B�acklund transformation has

been developed by Satsuma; he applied it to the KdV equation [13]. Later Satsuma and Kaup [9]

applied the method to a higher order KdV equation. Since, with constant �, our Eq. (2.12) is

(apart from a scaling factor) the same as Eq. (29) in [9], and our Eq. (2.13) is in conservation

form, we can apply the results on higher conservation laws in §4 of [9] to Eq. (1.4). Thus, we

deduce that Eq. (1.4) has an in�nite sequence of conservation laws. For example, the �rst two

nontrivial conserved densities are U and (U3 � 3U2
X + 3�U2).

3. The N-soliton solution. The inverse problem for certain third-order spectral equations

has been considered by Kaup [8] and Caudrey [10, 14]. As expected, with � = �1 and T ! �T ,
(2.7) and (2.8) are the corresponding equations for the HSE (see Eqs. (A8a) and (A8b) in [12]).

In [15], it is noted that the scattering problem for the HSE is similar to that for the Boussinesq

equation [11].

The general theory of the inverse scattering problem for N spectral equations has been

developed in [10]. Following [10], the spectral equation (2.10) can be rewritten as

@

@X
 = [A(�) +B(X; �)] �  ; (3.1)

 =

0
@  

 X
 XX

1
A ; A =

0
@0 1 0

0 0 1

� �� 0

1
A ; B =

0
@0 0 0

0 0 0

0 �WX 0

1
A :

We �nd the eigenvalue �j(�) of the matrix A from the equation det(A� �jE) = ��3j � ��j +

+ � = 0 (E is the identity matrix). This relation between the values � and �j can be rewritten

in parametric form with � as parameter, namely

�j = (�=3)1=2(!j� � (!j�)
�1); � = (�=3)3=2(�3 � ��3); (3.2)

where !j = ei2�(j�1)=3 are the cubes of roots of 1 (j = 1; 2; 3). Because of the properties

�1(�) = �1(���1), �2(�) = �3(���1), �3(�) = �2(���1), and �(�) = �(���1), it is suÆcient to

consider the values � located outside (or inside) of the circle j�j = 1 only.
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The right- and left-eigenvectors are

vj(�) =
�
1; �j ; �

2
j

�T
; evj(�) = �

�2j + �; �j ; 1
�
: (3.3)

It should be noted that the passage to the limit � ! 0 must be carried out with
p
��

held constant.

The solution of the linear equation (2.10) (or equivalently (3.1)) has been obtained by Cau-

drey (see system (4.5) in [10]) in terms of Jost functions �j(X; �) which have the asymptotic

behaviour

�j(X; �) : = expf��j(�)Xg�j(X; �)! vj(�) as X ! �1: (3.4)

We consider only the N -soliton solution by putting Qij(�) � 0 in (6.20) from [10]. Then there

is only the bound state spectrum which is associated with the soliton solutions.

We follow the procedure described in [3]. Let the bound state spectrum be de�ned by K

poles located, for de�niteness, outside the circle j�j = 1. Relation (6.20) from [10] is reduced

to the form

�1(X; �) = 1�
KX
k=1

3X
j=2



(k)
1j

expf[�j(�(k)1 )� �1(�
(k)
1 )]Xg

�1(�
(k)
1 )� �1(�)

�1(X;!j�
(k)
1 ): (3.5)

This relation (3.5) involves the spectral data, namely the poles �
(k)
i and the quantities 


(k)
ij .

As in [3], we need only to consider the function �1(X; �) since there is a set of symmetry

properties. One can prove similarly to [3] that Re� = 0 for compact support and there is the

relation between Jost functions:

�1X(X; �) =
ip
3
[�1X(X;�!2�)�1(X;�!3�)� �1X(X;�!3�)�1(X;�!2�)] : (3.6)

As is for Eq. (3) in [3], the poles appear in pairs, wherein the properties for the pair n (n =

= 1; 2; : : : ; N , and 2N = K) are

(i) �
(2n�1)
1 = i!2�n; (ii) �

(2n)
1 = �i!3�n: (3.7)

Since U is real and � is imaginary, either �n is real when � > 0 or �n is imaginary when � < 0,

i. e.,
p
��n is real.

By considering Eq. (3.6) in the vicinity of the �rst pole �
(2n�1)
1 of the pair n and using (3.5),

one can obtain a relation between 

(2n�1)
12 and 


(2n)
13 . Substituting �1(X; �) in the form given

by (3.4) and (3.5) into (3.6) and letting X ! �1, we have 

(2n)
12 = 


(2n�1)
13 = 0 and the ratio



(2n�1)
12 =


(2n)
13 = (!2�n + (!2�n)

�1
)=(!3�n + (!3�n)

�1
). Therefore, the properties of 


(k)
ij should

be de�ned by the relationships

(i) 

(2n�1)
12 =

p
�
n

�
!2�n + (!2�n)

�1
�
; 


(2n�1)
13 = 0;

(ii) 

(2n)
12 = 0; 


(2n)
13 =

p
�
n

�
!3�n + (!3�n)

�1
�
;

9=
; (3.8)

where 
n are arbitrary constants. We will show below that 
n is real when WX is real.
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Omitting the details, which can be found in [3], we indicate that the T -evolution of the

scattering data is given by the relationships (with k = 1; 2; : : : ;K)

�
(k)
j (T ) = �

(k)
j (0);



(k)
1j (T ) = 


(k)
1j (0) exp

����3�j(�(k)1 )
�
�1

+
�
3�1(�

(k)
1 )

�
�1�

T
	
;

9=
; (3.9)

and then the N -soliton solution of Eq. (1.4) is

U(X;T ) =WX(X;T ) = 3
@2

@X2
ln (detM(X;T )) ; (3.10)

where M is the 2N � 2N matrix given by

Mkl = Ækl �
3X

j=2



(k)
1j (0)�

� exp
����3�j(�(k)1 )

�
�1

+
�
3�1(�

(k)
1 )

�
�1�

T +
�
�j(�

(k)
1 )� �1(�

(l)
1 )
�
X
	

�j(�
(k)
1 )� �1(�

(l)
1 )

(3.11)

and

n= 1; 2; : : : ; N; m= 2n� 1;

�1(�
(m)
1 ) =

p
�=3

�
i!2�m � (i!2�m)

�1
�
; �2(�

(m)
1 ) =

p
�=3

�
i!3�m � (i!3�m)

�1
�
;



(m)
12 (0) =

p
�
m(0)

�
!2�m + (!2�m)�1

�
; 


(m)
13 = 0;

�1(�
(m+1)
1 ) =

p
�=3

��i!3�m + (i!3�m)�1
�
; �3(�

(m+1)
1 ) =

p
�=3

��i!2�m + (i!2�m)
�1
�
;



(m+1)
12 = 0; 


(m+1)
13 (0) =

p
�
m(0)

�
!3�m + (!3�m)

�1
�
:

For the N -soliton solution, there are N arbitrary constants �m and N arbitrary constants 
m.

Finally, the N -soliton solution of Eq. (1.1) is given in parametric form by u(x; t) = U(t; T ),

x = �(t; T ), where �(X;T ) is de�ned in (1.2).

In passing, we note that, in the limit � ! 0 with
p
��i held constant, the solution given

above reduces to the result for Eq. (1) obtained in [3].

4. Examples of one- and two-soliton solutions. In order to obtain the one-soliton

solution of Eq. (1.4), we need �rst to calculate the 2 � 2 matrix M according to (3.11) with

N = 1. The elements of the matrix are

M11 = 1�
p
�
1

2k

�
!2�1 +

1

!2�1

�
exp [2k(X � cT )];

M12 = �
p
3
1
2

��
!2�1 +

1

!2�1

���
i!3�1 �

1

i!3�1

��
�

� exp

�
2
p
�=3

�
i!3�1 �

1

i!3�1

�
X � 2kcT

�
;

90 ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2002, ü 6



Fig. 1. Hump-like u(x; t) for q = �5, �4:2 and 5; loop-
like u(x; t) for q = �3:8 and 0, and the cusp-shaped

u(x; t) for q = 2

Fig. 2. Interaction process for r = 0:6 and s = �2:7

M21 =

p
3
1
2

��
!3�1 +

1

!3�1

���
i!2�1 �

1

i!2�1

��
�

� exp

�
2
p
�=3

�
�i!2�1 +

1

i!2�1

�
X � 2kcT

�
;

M22 = 1�
p
�
1
2k

�
!3�1 +

1

!3�1

�
exp [2k(X � cT )];

and the determinant of the matrix is

detM =

�
1 +


1

2

�21 + 1

�21 � 1
exp [2k(X � cT )]

�2

; (4.1)

where k =
p
�(�1� ��11 )=2 and c�1 = �(�21 + ��21 � 1). Notice that this determinant is a perfect

square.

Thus, from (3.10), the one-soliton solution of Eq (1.4), as obtained by the IST method, is

U(X;T ) = 6k2 sech2 [k(X � cT ) + �1] ; (4.2)

where �1 = 1
2
ln

�

1

2

�
�21 + 1

�21 � 1

��
is an arbitrary constant. Since U is real, it follows from (4.2)

that �1 is real; moreover, since
p
��1 is real, 
1 is also real.

In a similar way (details are omitted), we �nd that, for the two-soliton solution, M is a

4 � 4 matrix for which

detM =
�
1 + q21 + q22 + b212q

2
1q

2
2

�2
; qi = exp [2ki(X � ciT ) + �i] ; (4.3)

b212 =

�
�3 � ��13 � �1 + ��11

�3 � ��13 + �1 � ��11

�3
�33 � ��33 + �31 � ��31

�33 � ��33 � �31 + ��31

; �i =
1
2
ln

�

2i�1

2

�
�22i�1 + 1

�22i�1 � 1

��
;
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ki =
p
�(�2i�1 � ��12i�1)=2; c�1i = �(�22i�1 + ��22i�1 � 1):

Note that the determinant in (4.3) is a perfect square. Relationship (3.10) together with (4.3)

gives the two-soliton solution of (1.4).

Relations (4.2) and (4.3) agree with the one- and two-soliton solutions as found by Hirota's

method [1]. A novel feature of Eq. (1.1) is that di�erent types of soliton solutions are possible,

namely hump-like, cusp-like, or loop-like. As discussed in detail in [1], the shape of the one-

soliton solution to Eq. (1.4) depends on the value of q := �=k2. Examples of loop-like solitons,

hump-like solitons, and a solution with cusp are illustrated in Fig. 1, where u is plotted against

x � c�1t. The interaction process between the solitons in the two-soliton solution to Eq. (1.1)

was also discussed in detail in [1]. The character of the interaction depends on the values of

r := k1=k2 and s := �=k22 . The example of the interaction is given in Fig. 2, where u is plotted

against x at several equally spaced values of t.
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