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The authors have investigated features, forecasting characteristics and interdependence between development of 
geomechanical processes and acoustic vibration of coal bed and country rock in critical area of formation in the process of 
forming hazard’s sites of gas-dynamic phenomena. It has been discovered that in the certain combination of physical and 
mechanical properties of rocks, amplitude-frequency spectrum of vibration source and starting strained and deformed state 
oscillation process in coal massif can turn into self-vibrating and resonant mode and activate rock burst or sudden coal or 
gas blowout. 
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We propose a closed-form scheme that reproduces a wide class of nonlinear and hysteretic effects exhibited by sedimentary 
rocks in longitudinal bar resonance. In particular, we correctly describe: hysteretic behaviour of a resonance curve on both 
its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost 
logarithmic) recovery (increase) of resonant frequency after large dynamical strains; and temporal relaxation of response 
amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in 
resonating bar experiments with a cyclic frequency protocol. The effect we describe and simulate is defined as the memory of 
previous maximum amplitude of alternating stress and manifested in the form of small hysteretic loops inside the main hys-
teretic loop on the resonance curve. These theoretical findings were confirmed experimentally at Los Alamos National Labo-
ratory. 
 

Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which 
each grain is much harder than the intergrain cementation material [1]. The peculiarities of grain and 
pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by 
rocks, both at quasistatic and alternating dynamic loading [1-4]. Thus, the hysteresis earlier established 
for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been 
discovered for the relation between acceleration amplitude and driving frequency in bar-shaped sam-
ples subjected to an alternating external drive that is frequency-swept through resonance. At strong 
drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, 
and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of reso-
nant frequency after the large conditioning drive has been removed. 

In this report we present a short sketch of a model [5,6] for explaining numerous experimental 
observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a 
broad set of experimental data can be understood as various aspects of the same internally consistent 
pattern [5,6]. A reliable probing method widely applied in resonant bar experiments is to drive a hori-
zontally suspended cylindrical sample with a piezoelectric force transducer cemented between one end 
of the sample and a massive backload, and to simultaneously measure the sample response with a low-
mass accelerometer attached to the opposite end of the bar [2,4]. The evolution equation for the field 
of bar longitudinal displacements u  as applied to above experimental configuration we write as fol-
lows 
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Here we use the Stokes internal friction associated with the dissipative function 22 ]/)[2/( txu ∂∂∂=ℑ γ .  
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The quantities ρ  and  γ  are, respectively, mean density of sandstone and coefficient of internal fric-
tion. The stress-strain relation )/( xu ∂∂−σ  we adopt in the form 
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which for 0>> ar  allows us to suppress the bar compressibility at strain xu ∂∂ /  tending toward 
ηsech0 −+ . Thus, the parameter ηcosh  is assigned for a typical distance between the centers of 

neighboring grains divided by the typical thickness of intergrain cementation contact. 
The indirect effect of strain on Young's modulus E, as mediated by the concentration c  of rup-

tured intergrain cohesive bonds, is incorporated in our theory as the main source of all non-trivial phe-
nomena. We introduce a phenomenological relationship between defect concentration c  and Young's 
modulus. Intuition suggests that E  must be some monotonically decreasing function of c , which can 
be expanded in a power series with respect to a small deviation of c  from its unstrained equilibrium 
value 0c . To lowest informative approximation we have 
 .)/1( +−= EccE cr    (3) 
Here crc  and +E  are the critical concentration of defects and the maximum possible value of Young's 
modulus, respectively. The equilibrium concentration of defects σc  associated with a stress σ  is given 
by 
 )/(exp0 kTcc συσ = ,   (4) 
where the parameter 0>υ  characterizes the intensity of dilatation. Although formula (4) should sup-
posedly be applicable to the ensemble of microscopic defects in crystals, it was derived in the frame-
work of continuum thermodynamic theory that does not actually need any specification of either the 
typical size of an elementary defect or the particular structure of the crystalline matrix. For this reason 
we believe it should also work for an ensemble of mesoscopic defects in consolidated materials, pro-
vided that for a single defect we understand some elementary rupture of intergrain cohesion. The ap-
proximate functional dependence of 0c  on temperature T  and water saturation s  based on experimen-
tal data was treated in [5,6]. 

In order to achieve reliable consistency between theory and experiment we have used the concept 
of blended kinetics, which finds more-or-less natural physical justification in consolidated materials 
[6]. The idea presents the actual concentration of defects c  as some reasonable superposition of con-
stituent concentrations g , where each particular g  obeys rather simple kinetics. Specifically, we take 
the constituent concentration g  to be governed by the kinetic equation: 
 ))](()([/ σσσ νθµθ ggggggtg −−+−−=∂∂ .   (5) 
Here )/exp(0 kTU−= µµ  and )/exp(0 kTU−=νν  are the rates of defect annihilation and defect crea-
tion, respectively, and )(zθ  designates the Heaviside step function. A huge disparity 00 µν >>  be-
tween the priming rates (attack frequencies) 0ν  and 0µ  is assumed, notwithstanding the native cohe-
sive properties of cementation material. Typical resonant response experiments [1-2,4] correspond to 
forced longitudinal vibration of a bar, which we associate with the boundary conditions: 
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where L  is sample length, and )(tD  is driving amplitude. Initial conditions are 
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Computer modeling of nonlinear and slow dynamics effects was performed in the vicinity of the 
resonance frequency )2(0f , which we choose to be the second frequency ( 2=l ) in the fundamental 
set, 
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Figure 1 shows typical resonance curves, i.e., dependences of response amplitudes R  (calculated at 
Lx = ) on drive frequency πω 2/=f , at successively higher drive amplitudes D . Solid lines corre-

spond to conditioned resonance curves calculated after two frequency sweeps were performed at each 
driving level in order to achieve repeatable hysteretic curves. The dashed line illustrates an uncondi-
tioned curve obtained without any preliminary conditioning. Arrows on the three highest curves indi-
cate sweep directions. To improve the illustration, results of the computer simulations were adapted to 
experimental conditions appropriate to the data obtained by TenCate and Shankland for Berea sand-
stone [2]. In particular, m3.0=L , Hz3920)2(0 =f , K275cosh/ =+ ηυ kE , 2300cosh =η , 2=a , 4=r . 

The shift of resonance frequency as a function of drive amplitude D  was found to follow the al-
most linear dependence typical of materials with nonclassical nonlinear response, i.e., materials that 
possess all the basic features of slow dynamics (see [5,6] for more details). Figure 2 shows the gradual 
recovery of resonant frequency rf  to its maximum limiting value 0f  after the bar has been subjected 
to high amplitude conditioning and conditioning was stopped. We clearly see the very wide time inter-
val 1000/)(10 0 ≤−≤ ttt c  of logarithmic recovery of the resonant frequency, in complete agreement 
with experimental results [4]. Here ct  is the moment when conditioning switches off and s10 =t  is the 
time scaling constant. Curves 3,2,1=j  on Fig. 2 correspond to successively high water saturations 

)12(05.0 −= js j . 
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 Figure 1.  Resonance curves 5,4,3,2,1,0=j  at 
successively higher driving amplitudes 
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back and forth within the frequency interval 

Hz41003700−  is chosen to be s120 . 

 Figure 2.  Time-dependent recovery of resonant 
frequency rf  to its asymptotic value 0f . The 
frequency shift 0ff r −  is normalized by both the 
asymptotic frequency 0f  and the unitless re-
sponse amplitude LR /  attained at conditioning 
resonance. 
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 Figure 3. Manifestation of end-point memory in dynamic response with a multiply-reversed fre-
quency protocol. 
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Hence, the system of the equations (1-5) enables us to describe correctly a wide class of experimental 
facts concerning the unusual dynamical behaviour of such mesoscopically inhomogeneous media as 
sandstones [4-6]. Moreover, as it is shown below, we have predicted the phenomenon of hysteresis 
with end-point memory in its essentially dynamical hypostasis [6]. These theoretical findings were 
confirmed experimentally in Los Alamos National Laboratory. 

The question of whether an effect similar to the end-point (discrete) memory that is observed in 
quasi-static experiments with a multiply-reversed loading-unloading protocol (see refs. [7-9] and ref-
erences there) could also be seen in resonating bar experiments with a multiply-reversed frequency 
protocol has been raised in [6] and was first examined theoretically. The graphical results of this in-
vestigation are presented in Fig. 3 (see also Fig. 16 in [6]). The model constants are given in [6]. One 
of the features of dynamical end-point memory, defined here as the memory of the previous maximum 
amplitude of alternating stress, is seen as small loops inside the major loop. The starting and final 
points of each small loop coincide, which is typical of end-point memory. 

Following the theoretical results, shown in Fig. 3, we performed experimental measurements to 
verify our prediction. The sample bar was a Fontainebleau sandstone and the drive level produced a 
calculated strain of about 6102 −⋅  at the peak. Figure 4 shows the low frequency sides of resonance 
curves that correspond to the frequency protocol given on inset of Fig. 4. We clearly see that the be-
ginning and end of each inner loop coincide, i.e., a major feature of end-point memory. 

The experimental results for the Fontainebleau sandstone shown in Fig. 4 were reproduced by us-
ing our model equations though with constants (including a state equation) developed for Berea sand-
stone [5, 6]. We note the good qualitative agreement between the experimental (Fig. 4) and the theo-
retical (Fig. 5) curves suggesting that our physical model is appropriate for both sandstones. 
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 Figure 4.  Figure 4.  The low frequency sides 
of experimental resonance curves for Fon-
tainebleau sandstone. 

 Figure 5.  The low frequency sides of the reso-
nance curves calculated for Berea sandstone. 
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